Table 4.
Accuracy | Sensitivity | Specificity | AUC | Precision | |
---|---|---|---|---|---|
A) DILI_MOE_transp _RF100 | |||||
10-fold CV (average +/− standard deviation for 50 iterations) | 0.65 ± 0.01 | 0.68 ± 0.01 | 0.61 ± 0.01 | 0.69 ± 0.01 | 0.65 ± 0.01 |
Mulliner 921 cpds | 0.57 | 0.63 | 0.50 | 0.59 | 0.62 |
Liew 341 cpds | 0.67 | 0.72 | 0.56 | 0.71 | 0.75 |
Chen 96 cpds | 0.59 | 0.54 | 0.65 | 0.61 | 0.63 |
Merged test set 966cpds | 0.59 | 0.68 | 0.50 | 0.62 | 0.62 |
B) DILI_ MOE _RF100 | |||||
10-fold CV (average +/− standard deviation for 50 iterations) | 0.65 ± 0.01 | 0.68 ± 0.01 | 0.61 ± 0.01 | 0.69 ± 0.01 | 0.65 ± 0.01 |
Mulliner 921 cpds | 0.58 | 0.60 | 0.55 | 0.59 | 0.63 |
Liew 341 cpds | 0.68 | 0.68 | 0.67 | 0.71 | 0.79 |
Chen 96 cpds | 0.63 | 0.56 | 0.70 | 0.66 | 0.67 |
Merged test set 966cpds | 0.60 | 0.64 | 0.56 | 0.62 | 0.63 |
C) DILI_RDKit_RF100 | |||||
10-fold CV (average +/− standard deviation for 50 iterations) | 0.64 ± 0.01 | 0.70 ± 0.01 | 0.57 ± 0.01 | 0.69 ± 0.01 | 0.63 ± 0.01 |
Mulliner 921 cpds | 0.60 | 0.64 | 0.54 | 0.62 | 0.64 |
Liew 332 cpds | 0.67 | 0.72 | 0.56 | 0.71 | 0.72 |
Chen 95 cpds | 0.64 | 0.64 | 0.64 | 0.73 | 0.64 |
Merged test set 966cpds | 0.60 | 0.67 | 0.52 | 0.64 | 0.63 |
Notes: The number of compounds for the external datasets is slightly different for the predictions on model C because for some compounds (peptides), some descriptor values computed by RDKit were too large to be handled by the machine learning algorithm.