Abstract
A burgeoning literature documents the confluence of ovarian steroids and central serotonergic systems in the in-junction of epileptic seizures and epileptogenesis. Estrogen administration in animals reduces neuronal death from seizures by up-regulation of the prosurvival molecule i.e. Bcl-2, anti-oxidant potential and protection of NPY interneurons. Serotonin modulates epileptiform activity in either direction i.e administration of 5-HT agonists or reuptake inhibitors leads to the acti-vation of 5-HT3 and 5-HT1A receptors tending to impede focal and generalized seizures, while depletion of brain 5-HT along with the destruction of serotonergic terminals leads to expanded neuronal excitability hence abatement of seizure threshold in experimental animal models. Serotonergic neurotransmission is influenced by the organizational activity of ster-oid hormones in the growing brain and the actuation effects of steroids which come in adulthood. It is further established that ovarian steroids bring induction of dendritic spine proliferation on serotonin neurons thus thawing a profound effect on sero-tonergic transmission. This review features 5-HT1A and 5-HT3 receptors as potential targets for ameliorating seizure-induced neurodegeneration and recurrent hypersynchronous neuronal activity. Indeed 5-HT3 receptors mediate cross-talk be-tween estrogenic and serotonergic pathways, and could be well exploited for combinatorial drug therapy against epileptogen-esis.
Keywords: Epileptic seizures, epileptogenesis, neuroprotection, estrogen, serotonin, neuronal plasticity
1. INTRODUCTION
The term epilepsy is procured from the Greek word epilam-banein, connoting to attack or seize [1]. Epilepsy is a chronic neurological disorder pronounced with abrupt recurring events of sensory disturbance, loss of consciousness, or convulsions correlated with abnormal electrical activity in the brain [2]. Epilepsy is mainly classified as Partial Seizures (Simple Partial Seizures, Complex Partial Seizures & Secondarily Generalized Seizures) and Generalized seizures (Absence Seizures, Myoclonic Seizures, Atonic Seizures, Tonic Seizures,
Tonic-Clonic Seizures) [3]. Partial seizures are restricted to distinct zones of the cerebral cortex; only a definite part of the body is typically involved, at least at the beginning. On the contrary, generalized seizures are eminent in disverse areas of the brain. A person is diagnosed with epilepsy if two or more seizures are evoked, which could not be defined by a medical condition, fever or drug withdrawal [1]. The causes of epilepsy remain diverse including but not limited to neurodegenerative diseases, cerebrovascular diseases, traumatic head injury, intracerebral tumors etc [4].
The high firing of neurons during epileptic seizures is brought about by the inability of neurons to conserve equilibrium between excitation and inhibition virtually because of inflated glutaminergic transmission (which is excitatory in nature) and suppressed GABAergic transmission (which is inhibitory in nature). Epilepsy is a social and economic burden, usually, patients suffering from epilepsy also suffer from social stigma. Singh and Trevick, (2016) reported that 70 million people worldwide suffer from epilepsy while developing nations contribute 90% of such cases [5]. A recent study summarizing epidemiological studies of epilepsy in the Arab world concluded prevalence rates of 7.5/1000 as median lifetime epilepsy and 4.4/1000 as active epilepsy, except for pediatric studies. While median incidence reported was 56.0/100,000 [6].
The treatment of seizures was unleashed with the launch of bromides. In 1910, phenobarbital (PHB) was introduced which ruled the market for several years. Phenytoin (PHT), Carbamazepine (CBZ), Ethosuximide (ETX), and Sodium Valproate (SVP) were later additions in the market. These drugs continued to be the backbone of epilepsy treatment till the 1990s, when second-generation antiepileptic drugs e.g Oxcarbazepine, Lamotrigine, Gabapentin, Topiramate, and Levetiracetam, with comparatively good efficacy, better tolerability, little side effects and rare necessity for therapeutic drug monitoring were invented [7]. However, still the treatment of epilepsy remains grueling, as 30% to 40% of patients remain unresponsive to the effect of current AEDs or their combination therapies [8]. Undoubtedly, none of these drugs have been able to target epileptogenesis i.e process through which neurons transform into epileptic. During epileptogenesis the underlying neurodegeneration (AEDs have meager neuroprotective potential) degenerates drug targets, or alters the properties of the binding site, leading to the onset of drug refractory epilepsies. In this review, we have tried to end this misery by focusing on the role of reproductive hormone (estrogen) and neurotransmitter (serotonin) and their interaction to possibly unleash a new target for anti-epileptic therapy, and a possible strategy to interfere with the process of epileptogenesis.
2. ESTROGEN
Estrogen is a gonadal steroid hormone with a small molecular weight which is associated with the female reproductive system and easily reaches out to the neuronal tissue by crossing the blood-brain barrier due to its highly lipophilic nature [9, 10]. Accordingly, on reaching neuronal tissues, it starts to unveil effects on neuronal areas associated with seizures and seizure-related damage including cholinergic and GABAergic neurons of the basal forebrain region [11, 12], supramamillary area [13] monoaminergic nuclei of the midbrain [13], and the hippocampus [14, 15]. These effects are mediated by different estrogenic receptors [16, 17]. The ligand-activated transcription factors form the classic intracellular estrogen receptors (ER) i.e. ERα and ERβ [18, 19]. The mRNA distribution of intracellular ERα and ERβ is notably divergent; ERα is imperious in pituitary, kidney, epididymis and adrenal glands while ERβ in prostate, lung, bladder and brain. The overlapping high expression of both estrogen receptor subtypes is reported in female reproductive organs like ovary and uterus as well as in male reproductive organs like testis [13, 20]. In the hippocampus, ERα is found in the pyramidal cell layers of CA1, CA2, and CA3 while ERβ in the CA1, CA2 and DG [21, 22]. ERβ is further subdivided into two isoforms i.e. ERβ1 & ERβ2 [17]. ERβ1 is having a greater affinity towards estrogens than ERβ2 because the ligand-binding domain of ERβ2 holds an insertion of 18 amino acid [23]. Subcellularly, ER was identified in synaptic spines, nuclei, cytoplasm, and presynapses [24]. Estrogen also tends to act by nongenomic mechanisms which involve the interaction of putative non-nuclear estrogen receptors with second messenger systems resulting in rapid actions on neuronal excitability by the activation of many cellular pathways like the cyclic AMP and mitogen activated protein kinase (MAPK) [25-28].
2.1. Estrogen as Proconvulsant
It is a central tenet that seizures result owing to the disparity between excitatory transmission mediated by glutamate and inhibitory transmission mediated by GABA. Estradiol increases excitatory (glutamatergic) transmission and that facilitation of transmission extends to seizures [29-30]. Lange & Julien, (1978) observed an increase in cortical electroencephalogram (EEG) signal in case of a seizure after they applied bolus of estradiol to the cortex of anesthetized cats [29]. Estradiol facilitates long-term potentiation (LTP) [30, 31] and induces dendritic spine growth resulting with a net excitatory effect [32]. Electrophysiological and ultrastructural studies signal that administration of estradiol to rat for 24 h exhibited null impact on excitatory synapses while a significant reduction in transmission of the inhibitory synaptic GABAergic signal was observed in hippocampus conceivably because the release of GABA was reduced [33]. Estrogen affects IPSCs without affecting excitatory postsynaptic currents, reducing the amplitude and frequency of IPSCs evoked synaptically and amplitude but not the frequency of miniature IPSCs [34], paired-pulse depression of evoked IPSCs and docking of vesicles at inhibitory synapses [35]. In the brain, estrogen also targets growth factors, more exclusively the neurotrophin i.e Brain Derived Neurotropic Factor (BDNF) which is encoded by BDNF gene. The ovariectomy of adult female rats emanated in shrunken BDNF levels while such effects were reversed on subsequent treatment with estrogen. BDNF is elevated during seizures in the hippocampus, an area that is thought to be important in seizure generation [36]. For example, recombinant BDNF when applied to hippocampal slices potentiates glutamatergic transmission [37-39] and is required for LTP in the hippocampus [40-43]. Estradiol is reported to exert its effects on NMDA and dendritic spine morphology, similar effects have been observed with BDNF although they vary in relation to effect on spines [44]. BDNF binds to the ectodomain of a tyrosine kinase (TrkB) receptor emanating in dimerization of receptor, receptor tyrosine kinase activity activation and consequential creation of docking sites for adaptor proteins (shc) or enzymes (PLCγ1) in the cytoplasmic domains in the event of tyrosinase phosphorylation, henceforth coupling to intracellular signaling cascades. BDNF inhibits signal mediated by GABA and produces structural plasticities in the hippocampal dentate granule cells by activating TrkB analogous to an epileptic brain [45-51]. Thus BDNF is potentially proconvulsant and BDNF at least in part, mediates estrogenic actions.
2.2. Estrogen and Neuroprotection
The subtypes of estradiol i.e α-estradiol and β-estradiol exhibit opposite effect on neurons i.e. former may impair DNA, in fact, be damaging while later exhibits neuroprotective potential. Indeed effect of β-estradiol on neurons can be well established during menopause i.e. state of slackening levels of β-estradiol leading to a heightened cascade of neurodegenerative disorders, while consequent administration of β-estradiol around menopause delays the onset of such disorders [52]. However use of estrogens is still limited by a dint of their feminizing effects for which recently non-feminizing estrogens have been investigated as postmenopausal neuroprotectants [53]. These non-feminizing estrogens are described to exert such effects because of the inadequate binding affinity towards estrogen receptors (ERs). Estrogen apart from direct effects on neurons also protects the neurons by changing the physiology and morphology of astrocytes [54]. Neuronal injury exerts upregulation of neuronal ERs [55] and aromatase enzyme in astrocytes which bring aromatization of testosterone to synthesize β-estradiol in astrocytes [56]. These results implicate towards an endogenous protective mechanism offered by β-estradiol. GPR-30 (also GPER1) is pertussis toxin-sensitive G-protein operated membrane receptor for estrogen [57] having significant abundance in the hypothalamus [58, 59], CA1 area of the hippocampus [60] and basal forebrain [61, 62]. The neuroprotective effects of estradiol can also be mediated via activation of this receptor [60], though the pathway requires transactivation of IGF-1 receptors [63, 64]. Further, GPR-30 mediates a cross-talk between the genomic and non-genomic mode of estradiol action, since the action of estradiol tends to be mediated by both non-genomic and genomic pathways.
2.3. Estrogen Neuroprotection in Seizure-induced Hippocampal Damage
Hippocampal sclerosis is the most typical pathology amalgamated with limbic system seizures [65-68]. Seizure-induced neuronal debt leads to restructuring of hippocampal axonal networks [69]. The degeneration of pyramidal cells and interneurons leads to retiring of the hippocampus [70]. The state is mimicked by administration of chemoconvulsants: pilocarpine- or kainic acid in animals [71, 72]. These chemoconvulsants lead to profound cell death of CA1, CA3 and NPY/somatostatin containing neuronal cells in hilar regions of the hippocampus, in a similar pattern resembling hippocampal sclerosis [73]. Estrogen administration in animals upregulates the prosurvival molecule i.e. Bcl-2, exhibits anti-oxidant potential and protects NPY interneurons thereby reducing the neuronal mortality from seizures [69, 74-78]. Neuropeptide-Y (NPY) behaves as a natural barrier against the progression of seizures in hippocampus from the perforant path to dentate gyrus granular cell [79]. Estrogen induces NPY formation through BDNF-TrkB signaling hence estrogen via BDNF increases NPY levels in the brain [80-85]. Estrogen in inhibitory presynaptic boutons promotes the higher release of NPY during seizures. The effect of estradiol on the release of NPY can further be correlated because of predominating ERα (an estrogen receptor subtype) over large dense-core vesicles in the hippocampal region [81]. Thus putative neuroprotective efficacy of β-estradiol in the dentate gyrus cells of the hippocampus are well characterized via involvement of NPY [80]. OVX female rats are highly susceptible against SE-induced hippocampal neuronal damage, however β-estradiol administration protects the same. The protection appears to be dose dependent with lower dose of β-estradiol protecting hilus of the dentate gyrus, CA1 and CA3 areas of the hippocampus [69, 86-88] while very high doses of β-estradiol administered (40 µg/animal) seem to play opposite behavior in the KA model [89]. Now the question arises whether genomic or non-genomic mechanisms of estrogen are involved in this and it was ingrained that longer pretreatment with β-estradiol is relatively more efficacious with respect to an acute parental dose of β-estradiol perhaps due to its activity at genetic level [80, 89]. Tamoxifen (an ER antagonist) blocks neuroprotection exerted by β-estradiol supports the fact that both types of intracellular ER are responsible for the genomic effects found in the hippocampal region [14, 21, 69].
2.4. Catamenial Epilepsy
Women with epilepsy display distinct issues than men with epilepsy. A menstrual cycle-associated variation of convulsions has been recounted to affect 10-70% of women with focal and generalized epilepsy; Catamenial epilepsy [90]. Catamenial epilepsy is inferable to (1) the neuroactive acreage of steroid hormones and (2) the cyclic fluctuation in their serum levels [91]. The three paradigms of Catamenial aggravation of epilepsy incongruity to serum estradiol (E2) and progesterone (P) ratio are; C1 = perimenstrual; C2 = preovulatory; C3 = luteal phase. This ratio is maximal during the days prior to ovulation and menstruation but is lowest during the early- and mid-luteal phase. Herzog et al., (1997) also defined Catamenial epilepsy as higher than average seizure frequency amid perimenstrual and periovulatory periods in normal ovulatory cycles and during the luteal phase in anovulatory cycles. Estradiol amplifies glutamatergic and restrains γ-aminobutyric acid (GABA) transmission. It augments neuronal metabolism and discharge rates, facilitates kindling, experimental as well as clinical seizures [92]. Whilst progesterone depresses neuronal metabolism, epileptiform discharges, suppresses kindling as well as experimental and clinical seizures [92], the lopsidedness of which leads to Catamenial epilepsy. Estrogen (i.v; infusion) in women with epilepsy was bound with rapid interictal epileptiform activity, and that seizures were aggravated when estrogens were given premenstrually [93]. Hormone Replacement Therapy (HRT) inculpates taking hormone supplements to mitigate hot flushes and night sweats of the menopause. Estrogen is prescribed in hysterectomised women, while in others a natural/synthetic progesterone hormone is added to protect overgrowing womb lining. Harden 2008, reported an increase in seizure frequency in women with epilepsy at perimenopause (39 subjects were included in the study; 25 reported an increase), 15% of subjects were on synthetic HRT and 72% were having catamenial epilepsy pattern. The results corroborated that HRT insignificantly and catamenial seizures significantly escalated seizures at perimenopause. The reason being increase in the ratio of estrogen-to-progesterone [94]. However, after menopause (one year without menses), HRT was associated with a significant increase, while catamenial seizure pattern was concorded with a significant abatement in seizures [94]. In rodent postmenopausal model, estrogen pretreatment was effective in restricting “spread,” neuronal loss, and mortality in ovariectomized rats, while seizure severity grossly remained the same against KA-induced seizures [95]. Estrogen pretreatment in ovariectomized rats reduced the number of seizures against NMDA-induced seizures, further estrogen replacement returned seizure number to that of the intact state [96]. Neuroprotective effect of estrogen in ovariectomized rats was reported for lithium–PILO model of SE [97]. Scharfman et al., 2009 confirmed the protection of hypothalamic centers controlling reproductive function by Raloxifene in PILO treated rats. Further results suggest that Raloxifene might be a suitable alternative for hormone replacement in postmenopausal women with epilepsy, in which estrogens are often avoided because they are considered as proconvulsant [98]. Thus hormone replacement therapy with estrogens has the potential to increase seizure frequency and thus cannot be recommended for women with epilepsy.
3. SEROTONIN
Serotonin (5-hydroxytryptamine; 5-HT), a ubiquitous substance, first identified in enterochromaffin cells by Vialli and Erspamer in 1937 and named as “enteramine” was later confirmed to be same substance identified in 1952 possessing clotted blood vasoconstrictor effects [99]. Serotonergic system is intricately involved in regulation of neurologic and psychiatric functions, the disturbances of which leads to physiological and functional anomalies including psychosis, chronic impulsivity, obsessive-compulsive disorder, bulimia, epilepsy etc. [100-104]. The categorization of 5-HT receptor subtypes has been done on the basis of their affinity towards ligands into seven receptor families encompassing fourteen 5-HT mammalian receptors [105, 106]. Except for serotonin 5-HT3 receptor (Cys-loop superfamily of ligand-gated ion channels) serotonin generally transduces through G-protein coupled receptors to modulate neuronal excitement [107-110]. Hippocampus consists of both pre- and postsynaptic serotonin receptors which play a role in serotonergic neurotransmission. Tryptophan hydroxylase (TPH1 and TPH2); the precursor for producing serotonin and monoamine oxidase A (MAO-A); responsible for 5-HT degradation have been reported in the hippocampus [101, 111]. The serotonin transporter seems to be condition-regulated in the hippocampus and crucially affects serotonergic neurotransmission [112].
3.1. Serotonin, Serotonin Receptors and Epilepsy
In mice with genetically raised 5-HT levels, the threshold to KA-induced seizures was elevated [113]. Further serotonergic neurons in the raphe nuclei had been reported to be significantly compromised during PILO induced SE [114]. Trindade-Filho et al., (2008) stereotaxically injected 5,7-dihydroxytryptamine (5,7-DHT; a neurotoxin used to reduce the concentration of serotonin in the brain) into the median raphe nucleus of rat brain and later upon PILO administration postulated increased inclination towards SE (acute phase) and spontaneous seizures (chronic phase) [115]. It is widely known that enhancement of 5-HT release by standard anti-seizure drugs (e.g., Valproic acid, Carbamazepine, Phenytoin, Lamotrigine and Zonisamide) contributes to antiseizure effects [116-118], while in brain depletion in the level of 5-HT by agents such as p-chlorophenylalanine enhances seizure induction [119, 120]. Taken together, these results conjecture that normal serotonin levels could have an inhibitory action on seizure activity.
Chemoconvulsions induced by administration of Bicuculline, Picrotoxin, or PILO were inhibited by 5-HT1A receptor agonist; 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) [121-123]. Buspirone (5-HT1A receptor agonist) protected against PILO-induced seizures, the possible mechanism inculcated was 5-HT1A receptor stimulation and inhibition of oxidative stress [124]. In severe seizure GEPRs (GEPR-s) the combination of fluoxetine with 5-HT1A somatodendritic autoreceptor antagonists (-)-pindolol and LY 206130 (1-[1-H-indol-4-yloxy]-3-[cyclohexylamino]-2-propanol maleate) appended anticonvulsant action [119]. The threshold for KA-induced seizures was lowered in 5-HT1A receptors knockouts [125-126]. Further 5-HT1A receptor binding was reduced in the limbic areas on the ipsilateral side in patients with TLE, and that 5-HT1A-binding asymmetry was greater for patients as compared with healthy controls [127].
Pentylenetetrazole (PTZ) and electrically-evoked convulsions were inhibited by 5-HT2 agonist; m-chlorophenylpi- perazine (mCPP) [128, 129]. Krishna Kumar et al., (2009), reputed that PILO induced epilepsy leads to down-regulation of the 5-HT content, 5-HT2C gene expression and 5-HT2C receptor binding with an increased affinity in rat cerebellum which was reversed upon treatment with Carbamazepine and B. monnieri [128]. Audiogenic seizures were triggered in mice due to genetic deletion of 5-HT2C receptors [130-132]. Freitas et al., (2005), reported that PILO-induced SE was not able to instigate variation in 5-HT2 receptor density in the hippocampus, but inflated the Kd values, indicating that the affinity of 5-HT for 5-HT2 receptor reduces in this tissue [133]. Contrary O’Dell et al., (2000) reported that 5-HT2 receptor has convulsant activity, advocating the idea that during the SE a decline in the binding could shield limbic areas [134]. However, the role of 5-HT2 receptors in epileptogenesis needs to be further investigated.
Pentylenetetrazole (PTZ) evoked clonic seizures threshold in mice was reduced by Granisetron (5-HT3 receptor antagonist) alone and in combination with L-arginine. Contrary SR57227 (5-HT3 receptor agonist) exhibited anticonvulsant effect which was enhanced with L-NAME indicating that NO system modulates the action of 5-HT3 receptors during brain excitability [135]. Singh et al., (2009), described a case study involving administration of Ondansetron (5HT3 antagonist) to patients complaining of severe nausea and vomiting in association with a migraine, gastritis and diabetic ketoacidosis emanating in a generalized tonic– clonic seizure even though patients were unlinked parenterally to seizures [136]. Palonosetron (5-HT3 receptor antagonist) induced repeated generalized tonic-clonic seizures in a patient complaining of nausea in postanesthetic recovery unit [137]. Payandemehr et al., (2012) reputed that 5-HT3 receptors conciliate anticonvulsant effects of low dose Citalopram (SSRI) alone and in combination with mCPBG (5-HT3 receptor agonist) against PTZ induced convulsions in mice, while corresponding higher doses of citalopram producedproconvulsive effects. Further Tropisetron (5-HT3 receptor antagonist) prevented the anticonvulsive properties of low dose Citalopram [138]. Bahremand et al., (2011) also revealed the anticonvulsant effect of low dose citalopram, which was augmented with morphine and 1-(m-chlorophenyl)-biguanide (mCPBG, a 5-HT3 receptor agonist) against clonic seizures induced by PTZ in male NMRI mice. The anticonvulsant effect was prevented with Tropisetron (5-HT3 receptor antagonist). High doses of citalopram were pro convulsant while morphine, mCPBG and tropisetron failed to alter such effect [139]. Intrahippocampal perfusions of Citalopram failed to prevent seizures at 0.5 µM, while the anticonvulsant effect was evident at 1 µM, mediated through 5-HT1A receptors [140]. Thus the anticonvulsant effect of Citalopram is dose-dependent, mediated in part by 5-HT3 & 5-HT1A receptors, which indicate 5-HT1A & 5-HT3 ought to be the most relevant in the process of epileptogenesis and maintenance of epilepsy (Tables 1-6, 9).
Table 1.
Drug and Category | Dose | Pharmacological Effect | Refs. |
---|---|---|---|
Citalopram (SSRI) | 0.5 & 1 mg/kg | Increased the seizure threshold (Anticonvulsant effect) | [138] |
Citalopram (SSRI) | 25 & 50 mg/kg | Reduced the seizure threshold (Proconvulsive effects) | [138] |
meta-Chlorophenylbiguanidine (5-HT3 receptor agonist) |
10 mg/kg | Increased the seizure threshold (Anticonvulsant effect) |
[138] |
Citalopram (SSRI) + meta-Chlorophenylbiguanidine (5-HT3 receptor agonist) |
0.1 & 10 mg/kg + 1 & 5 mg/kg |
meta-Chlorophenylbiguanidine augmented antiseizure effect of Citalopram in a dose dependent manner. | [138] |
Tropisetron (5-HT3 receptor antagonist) | 5 & 10 mg/kg | Reduced the seizure threshold (Proconvulsant effect). | [138] |
Citalopram (SSRI) + Tropisetron (5-HT3 receptor antagonist) |
1 & 10 mg/kg + 1 & 2 mg/kg |
Tropisetron prevented the anticonvulsive properties of Citalopram | [138] |
WAY-100635 (5HT1A antagonist) | 0.6 mg/kg | Reduced the seizure threshold (Proconvulsant effect) | [138] |
Citalopram (SSRI) + WAY 100635 (5HT1A antagonist) |
1 mg/kg + 0.3 & 0.6 mg/kg |
WAY 100635 failed to influence the anticonvulsant effect of Citalopram | [138] |
SR57227 (5-HT3 channel/receptor agonist) |
5 mg/kg | No effect | [135] |
SR57227 (5-HT3 receptor agonist) |
10 mg/kg | Increased the seizure threshold (Anticonvulsant effect) |
[135] |
Granisetron (5-HT3 receptor antagonist) |
3 mg/kg | No effect | [135] |
Granisetron (5-HT3 receptor antagonist) |
10 mg/kg | Reduced the seizure threshold (Proconvulsant effect) | [135] |
L-Arginine | 50 & 75 mg/kg | No effect | [135] |
L-Arginine | 100 mg/kg | Reduced the seizure threshold (Proconvulsive effect) | [135] |
L-NAME | 10, 20 & 60 mg/kg | No effect | [135] |
L-NAME | 100 mg/kg | Increased the seizure threshold (Anticonvulsive effect) |
[135] |
SR57227 (5-HT3 agonist) + L-NAME |
10 + 60 mg/kg | Increased the seizure threshold (Anticonvulsive effect) |
[135] |
Granisetron + L-arginine | 3 + 75 mg/kg | Reduced the seizure threshold (Proconvulsive action) | [135] |
Fluoxetine (SSRI) | 20 mg/kg | Increased both the rate and duration of survival, demonstrating protective effect against seizures. | [128] |
Norfluoxetine (metabolite of fluoxetine) |
20mg/kg | Increased both the rate and duration of survival, demonstrating protective effect against seizures. | [128] |
1-(m-chlorophenyl)-piperazine (mCPP) (5-HT2C/2B receptor-preferring agonist) |
2.5-7 mg/kg | Protection against myoclonic and/or tonic seizures. (Anticonvulsive effect) | [129] |
1-[5-(2-thienylmethoxy)-1H-3-indoyl]propan-2-amine hydrochloride (BW-723C86) (5-HT2B receptor agonist) |
3-30 mg/kg | No effect on the threshold for generalized seizures | [129] |
Citalopram (SSRI) | 0.5 & 1 mg/kg | Increased the threshold for clonic convulsions (Anticonvulsive effect) | [139] |
Citalopram (SSRI) | 50 mg/kg | Proconvulsant effect | [139] |
Morphine | 1 mg/kg | Anticonvulsant effect | [139] |
Drug and Category | Dose | Pharmacological Effect | Refs. |
Morphine | ≥30 mg/kg | Proconvulsant effect | [139] |
Citalopram (SSRI) + Morphine | 0.1 & 0.5 mg/kg + 0.1 & 0.5 mg/kg |
Morphine had additive effects on the anticonvulsive properties of citalopram | [139] |
mCPBG (a 5-HT3 receptor agonist) | 1& 5 mg/kg | No effect | [139] |
mCPBG (a 5-HT3 receptor agonist) + Citalopram (SSRI) + Morphine | (1& 5 mg/kg) + (1 & 0.5 mg/kg) + 0.1 mg/kg |
mCPBG augmented additive anticonvulsant effect of Morphine in combination with Citalopram | [139] |
Tropisetron (a 5-HT3 receptor antagonist) | 0.25 & 2 mg/kg | No effect | [139] |
Tropisetron (a 5-HT3 receptor antagonist) + Citalopram (SSRI) + Morphine | 0.25 & 2 mg/kg + 1 & 0.5 mg/kg + (0.5 mg/kg) |
Tropisetron prevented additive anticonvulsant effect of Morphine in combination with Citalopram | [139] |
Citalopram (SSRI) + Morphine | 50 mg/kg + 0.1 & 0.5 mg/kg |
Morphine could not alter proconvulsive properties of high dose Citalopram. | [139] |
mCPBG (a 5-HT3 receptor agonist) + Citalopram (SSRI) + Morphine + | 5 mg/kg + 50 mg/kg + 0.1 & 0.5 mg/kg | Morphine & mCPBG could not alter proconvulsive properties of high dose Citalopram | [139] |
Tropisetron (a 5-HT3 receptor antagonist) + Citalopram (SSRI) + Morphine | 2 mg/kg + 50 mg/kg + 0.1 & 0.5 mg/kg | Morphine and Tropisetron could not alter proconvulsive properties of high dose Citalopram | [139] |
Fluoxetine (SSRI) | 10.0 mg/kg | Reduced the seizure threshold (Proconvulsive effect) | [160] |
Fluoxetine (SSRI) | 15 mg/kg | Increased the threshold for clonic convulsions (Anticonvulsive effect) | [158] |
Table 6.
Drug and Category | Dose | Pharmacological Effect | Refs. |
---|---|---|---|
5-HT2C/2B receptor-preferring agonist 1-(m-chlorophenyl)-piperazine (mCPP) | 2.5-7 mg/kg | Weakly elevated seizure threshold in the mouse (but not the rat) electroshock test |
[129] |
5-HT2B receptor agonist 1-[5-(2-thienylmethoxy)-1H-3-indoyl]propan-2-amine hydrochloride (BW-723C86) | 3-30 mg/kg | No effect on the threshold for generalized seizures | [129] |
Table 9.
Drug and Category | Dose | Pharmacological Effect | Refs. |
---|---|---|---|
Ondansetron | 4 mg | GTCS was observed in two females and one male. | [136] |
Polonosetron | 0.075 mg | GTCS was developed in female patient. | [137] |
L-5-hydroxytryptophan (L-5-HTP) + Carbidopa |
1600 + 400 mg/day | Effective in decreasing the severity of myoclonus secondary to cerebral hypoxia in some but not all patients. | [148] |
Doxepin (TCA) | 5-400 mg/day | Reduction in seizure frequency in epileptic patients | [200] |
3.2. Serotonergic Drugs and Epilepsy
The reduction in brain 5-HT along with the destruction of serotonergic terminals leads to increased neuronal excitability/reduction of seizure threshold in experimental animal models [141]. The administration of 5-HT receptor agonists or reuptake inhibitors tends to inhibit limbic and generalized seizures [142-144]. Wada et al., (1992) recited that 5-HTP (the serotonin precursor) has a potent antiepileptic action as regards to hippocampal and lateral geniculate nucleus-kindled seizures, implying that the serotonergic system is entangled in the abolishment of epileptic activity in these brain areas [145]. In addition, patients with myoclonus had low cerebrospinal levels of 5-Hydroxyindoleacetic acid (5-HIAA; the main metabolite of serotonin) indicating that some forms of myoclonus might be pertinent to a dearth of brain serotonin [146]. Related studies have corroborated that 5-HTP was effective in reducing the severity of myoclonic seizures in several patients [147, 148]. Naffah-Mazzacoratti et al., (1996) observed an escalation in the 5-HT and 5-HIAA content of spiking tissue collected from patients with complex partial seizures indifferent to current anticonvulsants. These authors hypothesized that these changes could be a compensatory effect, trying to block the tissue hyperexcitability [149].
In line with this, several serotonergic drugs had been evaluated in epilepsies; fluoxetine (SSRI) in rats was claimed to suppress maximal electroshock- induced seizures [143], PTZ-induced convulsions in mice [150], audiogenic seizures in genetically epilepsy-prone DBA/2J or GEPRs rats [151] and focally elicited limbic motor seizures in rats [143]. Faingold et al., 2011 recited that fluoxetine (SSRI) reduces the incidence of respiratory arrest (RA) without terminating seizure susceptibility (i.e. seizure induced respiratory arrest (S-IRA) was deterred at doses not reducing tonic seizures), indicating highest degree of selective suppression of S-IRA [152, 153]. The mechanism involves increasing 5-HT availability, leading to enhanced respiratory function in reaction to elevated blood CO2 levels that occur during convulsions [154, 155]. In PILO model of temporal lobe epilepsy (TLE) fluoxetine was able to reduce spontaneous seizures [156]. In addition, fluoxetine when combined with anticonvulsants like Phenytoin, Carbamazepine and Ameltolide had been reported to produce a dose-dependable reduction in their ED50 values, to protect against MES-induced tonic-extensor seizures in mice [157]. Fluoxetine significantly enhanced the anticonvulsive action of sodium valproate but not that of ethosuximide against PTZ-induced clonic convulsions in mice [158]. Further, unblind, open level add-on trial in 17 patients having a complex partial seizure with and without secondary generalization reputed anticonvulsant properties of Fluoxetine (complete disappearance of daily seizure in 6 patients and 30% reduction in seizure activity in 11 patients) [159]. Contrary, fluoxetine (10.0 mg/kg) enhanced the pro-convulsive effect of PTZ (50.0 mg/kg) but inhibited PTZ-stimulated c-Fos expression in some regions of the hippocampus without altering PTZ brain concentration denoting that this phenomenon was not allied to the pharmacokinetic interaction [160]. Further preliminary result from an observational study reported an increase in ictal activity in a patient with epilepsy following SSRI co-medication [161]. Hence critical monitoring of dose during fluoxetine therapy is essential for sustained anti-epileptic effects.
Fluoxamine (SSRI) completely suppressed seizure-begot respiratory arrest (S-IRA) and Tonic Hind Limb Extension (THLE) while other audiogenic seizure (AGSz) behaviors (wild running and/or clonus) remained unaffected [152]. Paroxetine (another SSRI) exhibited the same response at higher doses but with an adjourned (24 h) onset and considerable toxicity (including mydriasis, jerking and shivering) [152]. Venlafaxine (selective norepinephrine serotonin reuptake inhibitor; SNRI) significantly reduced the incidence of S-IRA and THLE while other audiogenic seizure (AGSz) behaviors (wild running and/or clonus) remained unaffected. However, interestingly Venlafaxine displayed a U-shaped dose-effect relationship, which may be fraternal to the dual effects of this drug on both 5-HT and NA levels [162] Cyproheptadine (nonselective serotonin antagonist) significantly increased the incidence of seizure-incited respiratory arrest (S-IRA) and tonic seizures in DBA/1 mice [152]. The 5-HT7 receptors are urged to play a role in mediating these effects of SSRIs, and these receptors are also involved in the central control of respiration (Tables 7, 8).
3.3. Serotonin and Neuroprotection
The eventual motive of neuroprotective strategies is to restrain the severity of initial damage and to improve neurological outcome and, hence the quality of life. It is surprising that given the realm of conditions subjugated under the term epilepsy, each with diverse, acquired or genetic origins and distinct behavioral manifestations, electrographic signatures, pharmacological profiles and histopathologies, no single animal model of epilepsy fully represents this disease [163]. Hence a substantially limited number of rodent models have emerged as the primary choices for most investigations involving neuroprotection. Repinotan (5-HT1A receptor agonist) is reported to afford neuroprotection against permanent middle cerebral artery occlusion (pMCA-O), transient middle cerebral artery occlusion (tMCA-O) and traumatic brain injury (acute subdural hematoma, aSDH) models. The proposed mechanism involves activation of 5-HT1A GPCR-coupled inwardly rectifying K+ channels manifesting as hyperpolarization, which in turn emanates in the reduction of neuronal firing and inhibition of glutamate release. Repinotan also affects neuronal death by annihilating protein Bcl-2, serotonergic glial growth factor S-100β and Nerve Growth Factor. It also suppresses the activity of caspase-3 through MAPK and PKCα; this effect may also accord to its neuroprotective efficacy [164]. These effects were blocked by WAY 100635 (5-HT1A receptor antagonist), thereby confirming the neuroprotective properties of 5-HT1A receptors [164]. Marco et al., (2011) reported that a high-affinity and potent 5-HT1AR agonist (2-{6-[(3,4-dihydro-2H-chromen-2-ylmethyl)amino]hexyl}-tetrahydro-1Hpyrrolo [1,2c]imidazole-1,3(2H)-dione) exhibits neuroprotective effect, which was validated using neurotoxicity assays in primary cell cultures from rat hippocampus and in the MCAO model of focal cerebral ischemia in rats [165]. Li et al., (2010) recited neuroprotective effect of fluoxetine against 3,4-methylenedioxymethamphetamine (MDMA) induced reduction in serotonin transporter (SERT; a reliable marker for accessing the integrity of serotonergic neurons) in rat brain as examined with N,N-dimethyl-2-(2-amino-4-[18F]-fluorophenylthio) benzylamine (4-[18F]-ADAM; a SERT radioligand) and micro positron emission tomography (micro-PET) analysis. The mechanism probably involved inhibition of the SERT interaction with MDMA and its neurotoxic metabolites [166]. Sanchez et al., (2001) reputed that 2 and 4 days pre or concurrent administration of fluoxetine with MDMA provides complete protection against MDMA induced loss of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in cortex, hippocampus and striatum of rats, while Fluvoxamine (SSRI) provides neuroprotection only upon concurrent administration, however both drugs failed to alter MDMA-induced acute hyperthermia [167]. Choi et al., (2015) reported dose-dependent neuroprotective potential of Duloxetine (serotonin/norepinephrine reuptake inhibitor) against KA-induced neuronal death in the hippocampal CA3 region (mediated via reducing TNF-α and IL-1β levels) without any noticeable effect on seizure behavior [168]. 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) prevented neuronal loss in CA1 subfield and reduction in CA1 BDNF immunoreactivity against global ischemia in the gerbil hippocampus [169]. Bay R 1531 (5-HT1A-receptor agonist) and ipsapirone (5-HT1A-receptor partial agonist) exhibited 100% & 53% neuroprotection in the CA1 area of the hippocampus from ischemic damage in the model of transient global ischemia in the Mongolian gerbil [170] (Table 10).
Table 10.
Drug and Category | Dose | Pharmacological Effect | Refs. |
---|---|---|---|
Fluoxetine (SSRI) | 5 mg/kg | Prevented MDMA-induced loss of serotonin transporters in rat brain (Neuroprotective effect) | [166] |
Fluoxetine (SSRI) | 10 mg/kg | Fluoxetine administered concurrently with MDMA or given 2 and 4 days earlier provided complete protection, and significant protection when given 7 days earlier against MDMA induced neurotoxicity | [167] |
Fluoxamine (SSRI) | 15 mg/kg | Fluvoxamine only produced neuroprotection against MDMA induced neurotoxicity when administered concurrently | [167] |
Duloxetine (serotonin/norepinephrine reuptake inhibitor) | 10, 20 & 40 mg/kg | Duloxetine exhibited dose dependent neuroprotection against Kainic acid (KA)-induced neuronal death in the hippocampal CA3 region | [168] |
(8-OH-DPAT) 8-hydroxy-2-(di-n-propylamino)tetralin |
1 mg/kg | (8-OH-DPAT) prevented the neuronal loss in CA1 subfield induced by transient global ischemia | [169] |
Ipsapirone (5-HT1A-receptor partial agonist) |
3 mg/kg | Ipsapirone protected 53% of pyramidal neurons in the CA1 area of the hippocampus from ischemic damage in Mongolian gerbil model of transient global ischemia | [170] |
Bay R 1531 (5-HT1A-receptor agonist) |
3 mg/kg | Bay R 1531 showed a powerful neuroprotective effect with 100% preservation of neurons in the CA1 area of the hippocampus (Model Used: Ischemic damage model of transient global ischemia in the Mongolian gerbil) | [170] |
Repinotan (5-HT1A receptor agonist) | 1 - 10 µg/kg | Neuroprotection against Permanent middle cerebral artery occlusion (pMCA-O) | [164] |
Repinotan (5-HT1A receptor agonist) | 1, 10 & 100 µg/kg/h | Neuroprotection against Transient middle cerebral artery occlusion (tMCA-O) | [164] |
Repinotan (5-HT1A receptor agonist) | 10 - 100 µg/kg | Neuroprotection against Traumatic brain injury (acute subdural hematoma, aSDH) |
[164] |
WAY 100635 (5-HT1A receptor antagonist) | Abolished neuroprotection of Repinotan | [164] |
4. INTERACTION BETWEEN ESTROGEN AND SEROTONIN
In the adult nervous system, excitatory type of neurotransmission is represented by basic structural elements of neuroplasticity i.e. dendritic spines [171-173]. In the hippocampus and cortex, estrogen had been reported to expand dendritic spines [174-177]. In order to find out the exact relationship between spine proliferation and role of ERβ, serotonin neurons of macaques were deeply investigated and further it was reported that they possess the exclusive expression of ERβ [178-181]. Ovarian steroids favor the proliferation of dendritic spine on serotonin neurons thus profoundly affect the transmission of a neuronal signal in serotonergic functions [182]. The proliferation of dendritic spines on serotonergic neurons is supported by estrogen but in menopausal age women ovaries fail to produce estrogen, as a result, gene expression mediated by estrogen for serotonergic support is also reduced, leading to atrophy and shrinkage of dendritic spines on serotonin neurons [182]. Organizational activity exhibited by steroid hormones in the development stage of the brain and activational effects of these hormones which come in adulthood stage, directly affect serotonergic neurotransmission in the brain. The sexual differentiation of serotonergic system i.e. differences in the densities of 5-HT innervations to many brain regions is disparate among males and females that is virtually brought about by estrogen. During adulthood, reproductive cycle shows fluctuations in the level of estrogen and progesterone thereby affecting 5-HT neurotransmission [183]. Serum estradiol levels in women of reproductive age have been shown to correlate positively with blood levels of serotonin [184]. Serotonin has been observed to be diminished in postmenopausal women and that it is replenished by ERT to premenopausal levels [184]. The increase in the concentration of 5-HT is bought by estrogen via; increasing the production of hydroxylase (TPH) and inhibiting the gene expression for serotonin reuptake transporter (SERT) [185-189]. Estrogen and tryptophan (the precursor of serotonin) both bind to plasma albumin, the estrogen competing with the same site makes more of tryptophan available to the CNS [190]. The allocation and density of 5-HT receptor subtype and SERT in the brain are also invoked by estrogen [191]. Ovariectomy abates tryptophan hydroxylase (TPH) level as well as mRNA in the raphe of macaques and in the hypothalamus of guinea pig but is replenished by administration of estrogen [192].
Estrogens prompt upsurge in the 5-HT2A receptor density in areas of the brain such as anterior frontal, cingulate and primary olfactory cortex and in the nucleus accumbens, involved with mood, mental state, cognition, emotion and behavior, which describe the differences in the incidences of schizophrenia, in males and females mediated by estrogen via 5-HT2A receptors [193]. Benmansour et al., (2014) utilized In vivo chronoamperometry to examine the hippocampal CA3 region of ovariectomized (OVX) rats for 5-HT clearance upon local application of estradiol or selective agonists for ERα (PPT) or ERβ agonist (DPN) and the possible signaling mechanisms involved therein were also investigated. Further the receptors involved in slowing of 5-HT clearance upon fluoxamine administration were elucidated. The results revealed that stimulation of ERβ by estradiol or DPN (ERβ agonist) induces slowing of 5-HT clearance which is mediated by inhibition of MAPK/ERK1/2 but not of PI3K/Akt signaling pathways. TrkB, and IGF-1 receptors were also involved in exhibition of such effect. However stimulation of ERα with estradiol- or PPT (ERα agonist) inhibited fluvoxamine-mediated slowing of 5-HT clearance, which was halted after inhibition of MAPK/ERK1/2 or PI3K/Akt signaling pathways. Further, IGF-1 receptor, metabotropic glutamate receptor 1, but not with TrkB, was implicated in the said effect. This study clarifies that estrogen exhibits diverse effects on SERT function mediated by ER subtypes transducing through different signaling pathways [194]. Serotonin expresses many of metabotropic effects through BDNF and because of significant influence of estrogens on BDNF, role of estrogens not only in development but also in functioning of serotonergic receptors is well comprehended. Estrogen in the presence of progesterone downregulates E2α receptors (ERα) and upregulates E2β receptors (ERβ) [195]. Activation of E2α receptors (ERα) increases 5HT1A receptors by nuclear factor kappa B (NFkB), while E2β receptors (ERβ) activation increases 5HT2A receptors [196, 197].
Sumner et al., (1999) reported that estrogen proliferates expression of 5-HT(2A)R mRNA and SERT mRNA in the DRN and the densities of 5-HT(2A)R and SERT binding sites in the forebrain by cytoplasmic estradiol receptors, confirmed with administration of tamoxifene, a selective estrogen receptor modulator (agonist/antagonist), which reversed estrogenic effects. Tamoxifene acts as a pure estrogen antagonist in relation to serotonergic mechanisms in brain, and had no effect per se on serotonergic gene expression or the density of binding sites [198]. Genistein (phytoestrogen) was reported to exhibit anti-convulsant property against pentylenetetrazole-induced seizures in ovariectomized mice, while the effect was abolished by administration of fulvestrant (an estrogen receptor antagonist) and tropisetron (5-HT3 receptor antagonist). On the contrary co-administration of low non effective dose of Genistein with m-chlorophenylbiguanide (5-HT3 receptor agonist) potentiated anti-seizure effect, which suggests involvement of estrogenic/serotonergic systems in the anticonvulsant properties of Genistein [199]. Thus estrogens also act through nonspecific type of receptors, as of neurotransmitter ion channels, precisely affecting neurotransmission in the nervous system (Table 11).
Table 11.
Drug and Category | Dose | Pharmacological Effect | Refs. |
---|---|---|---|
Genistein (Phytoestrogen) | 10 mg/kg | Increased the seizure threshold (Anticonvulsant effect) | [199] |
Genistein (Phytoestrogen) + Fulvestrant | 10 + 1 mg/kg | Fulvestrant reversed the effect of Genistein | [199] |
Genistein (Phytoestrogen) + Tropisetron (5HT3 antagonist) | 10 + 10 mg/kg | Tropisetron eliminated the anticonvulsant effect of Genistein | [199] |
Genistein (Phytoestrogen) + m-chlorophenylbiguanide (5-HT3 receptor agonist) |
1 + 5 mg/kg | Increased the seizure threshold (Anticonvulsant effect) | [199] |
CONCLUSION
Human epilepsies beset a comprehensive array of clinical, behavioral and electrical ostentations. Correspondingly, studies of this neurological disorder have brought forward wide range of antiepileptic drugs, yet about 20-30% of patients continue to experience seizures. Nonetheless anticipated clinical benefits of estrogens as promising candidates for prevention of seizure induced neuronal damage (via enhancement of NPY levels, antioxidant potential and upregulation of prosurvival molecule; Bcl-2) and serotonergic agonists/reuptake inhibitors as propitious agents regulating abnormality in ionic conductance (e.g. SSRIs, 5HT3 agonists and 5-HT1A agonists protect against seizures), could further be exploited as combinatorial salubrious strategy, planted by the certitude that estrogens promote release of BDNF which promotes development and functioning of serotonergic neurons, escalate production of hydroxylase (TPH; the rate limiting enzyme for serotonin production) and also inhibits gene expression for serotonin reuptake transporter (SERT). The concept is further strengthened by pharmacological studies emphasizing anticonvulsant properties of Genistein (phytoestrogen; SERM). The said characteristics of Genistein are transposed with Fulvestrant (estrogen receptor antagonist) and Tropisetron (5HT3 antagonist). Hence 5-HT3 receptors interlink estrogenic and serotonergic pathways and could well be exploited for combinatorial drug therapy against epileptogenesis.
HIGHLIGHTS
Estradiol increases excitatory (glutamatergic) transmission, facilitates long-term potentiation (LTP) and induces dendritic spine growth resulting in a net excitatory effect.
Estrogen not only modulates neuronal function through ERα and ERβ receptors but also tends to act via nongenomic mechanisms.
SSRIs (Citalopram, Fluoxetine), 5HT3 agonists (meta-Chlorophenylbiguanide) and 5-HT1A agonists (Buspirone) escalate seizure threshold.
SSRIs (Fluoxetine, Fluoxamine) and SNRIs (Venlafaxine) suppress seizure induced respiratory arrest and THLE, accordingly, these drugs might castoff SUDEP. The 5-HT7 receptors are stated to play a role in conferring these effects of SSRIs as these receptors are also inculpated in the pivotal control of respiration.
5HT3 antagonists (Tropisetron) and 5-HT1A antagonists (WAY 100635) plunge anticonvulsant threshold.
5HT1A antagonist (WAY 100635) failed to influence anticonvulsive properties of SSRIs (citalopram), while 5HT3 antagonists (Tropisetron) descent the same i.e anticonvulsive properties of SSRIs are conciliated through 5-HT3 receptors.
5HT2C/2B agonist weakly elevated seizure threshold, while 5-HT2B agonist had no such effect, indicating less relevancy of 5HT2C/2B and 5-HT2B receptors in seizure states.
5-HT1A receptor mediates neuroprotective properties of Repinotan via incitement of G protein-coupled inwardly rectifying K+ channels culminating in hyperpolarization and suppression of glutamate release.
Genistein (phytoestrogen; SERM) inflates seizure threshold which is reversed with Fulvestrant (estrogen receptor antagonist) and Tropisetron (5 HT3 antagonist).
5-HT3 receptors interlink estrogenic and serotonergic pathways, and could be exploited for combinatorial drug therapy against epileptogenesis.
5-HT1A and 5-HT3 receptors are ought to be the most potential targets for seizure-induced neurodegeneration and recurrent hypersynchronous neuronal activity, while 5-HT7 receptors that for seizure-induced respiratory arrest.
Table 2.
Drug and Category | Dose | Pharmacological Effect | Refs. |
---|---|---|---|
Buspirone (5HT1A agonist) |
5 mg/kg | Protected against seizures (Anticonvulsive effect) | [124] |
5,7-DHT (5,7-dihydroxytryptamine) |
0.2 µl stereotaxically Injected | Aggravated status epilepticus (SE) and spontaneously occurring seizures. (Proconvulsant effect) | [115] |
Fluoxetine (SSRI) | 20 mg/kg | Reduced the frequency of spontaneous motor seizures. (Anticonvulsive effect) | [156] |
Citalopram (serotonin re-uptake blocker) |
0.5 µM (intrahippocampal perfusions) |
Failed to prevent seizures | [140] |
Citalopram (serotonin re-uptake blocker) |
1 µM (intrahippocampal perfusions) |
Anticonvulsant action, mediated through 5-HT1A receptors. | [140] |
Table 3.
Drug and Category | Dose | Pharmacological Effect | Refs. |
---|---|---|---|
Fluoxetine (SSRI) | 15 mg/kg | Decreased audiogenic seizures in 33% of GEPR-9s | [117] |
5-Hydroxytryptophan (immediate synthetic precursor of serotonin) | 12.5 mg/kg | No effect | [117] |
Fluoxetine (SSRI) + 5-Hydroxytryptophan (immediate synthetic precursor of serotonin) |
15 + 12.5 mg/kg | Decreased audiogenic seizures in 83% of GEPR-9s | [117] |
Fluoxetine (SSRI) | 15 mg/kg | No effect on audiogenic seizures in GEPR-9s | [119] |
Pindolol (5-HT receptor antagonist) | 10 mg/kg | No effect of audiogenic seizures in GEPR-9s | [119] |
Fluoxetine (SSRI) + Pindolol (5-HT receptor antagonist) |
15 + 10 mg/kg | Substantial reduction in seizure severity (i.e audiogenic seizure severity scores in GEPR-9s) (5-HT1A receptor antagonist Pindolol enhances the ability of fluoxetine to increase extracellular 5-HT in brain) |
[119] |
(±) LY 206130 (5-HT1A receptor antagonist) |
5 mg/kg | Ineffective in suppressing audiogenic seizures in GEPR-9s | [119] |
Fluoxetine + (±) LY 206130 | 15 + 5 mg/kg | Conspicuous reduction in seizure severity (i.e audiogenic seizure severity scores in GEPR-9s) |
[119] |
Paracholorophenyl alanine + Fluoxetine + (-) LY 206130 | 100 + 15 + 5 mg/kg | Ineffective in preventing seizures (This treatment was found to be highly effective in depleting brain 5-HT) | [119] |
Fluoxetine (SSRI) + 5-hydroxytryptophan (immediate synthetic precursor of serotonin) |
15 mg/kg + 12.5, 25 & 50 mg/kg |
The severity of audiogenic seizures was decreased dose-dependently (The antiseizure effect was potentiated) | [144] |
Table 4.
Drug and Category | Dose | Pharmacological Effect | Refs. |
---|---|---|---|
Serotonin | 20 μM | Inhibited epileptiform bursts induced by single presynaptic stimuli in the presence of Bicuculline | [121] |
Serotonin + MDL 72222 (5-HT 3 receptor subtype antagonist) | 20 µM + 30 µM | Serotonin produced a similar inhibition of the Bicuculline -evoked bursts (membrane hyperpolarization) | [121] |
Serotonin + Ketanserin (5-HT 2 antagonist) | 20 µM + 3 µM | Serotonin produced inhibition of the Bicuculline evoked bursts | [121] |
8-OH-DPAT (5-HT1A agonist) |
20 µM | Mimicked serotonin in completely blocking the burst of action potentials evoked in the presence of Bicuculline | [121] |
Fluoxetine | 5, 10 & 20 mg/kg | Dose-dependent protection from clonic motor seizures (50% protection occurring after the 5-mg/kg dose) |
[143] |
Table 5.
Drug and Category | Dose | Pharmacological Effect | Refs. |
---|---|---|---|
8-OH-DPAT ((±)-8-hydroxy-2-(di-n-propylamino) tetralin) | 1 & 3 mg/kg | Increased the doses of picrotoxin producing running/bouncing clonus, tonic hindlimb extension and death in stressed and unstressed mice, respectively (Anticonvulsant effect) | [123] |
WAY-100635 (a selective agonist and antagonist of 5-HT1A receptors), + 8-OH-DPAT ((±)-8-hydroxy-2-(di-n-propylamino) tetralin) |
0.3 mg/kg + 3 mg/kg |
Pre-treatment with WAY (0.3 mg/kg) prevented the anticonvulsant effect of 8-OH-DPAT (3 mg/kg) | [123] |
DOI (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane) | 2.5 mg/kg | Failed to affect seizure threshold for picrotoxin | [123] |
ketanserin (a 5-HT2A/2C receptor agonist and antagonist) | 1 mg/kg | Failed to affect seizure threshold for picrotoxin | [123] |
Table 7.
Drug and Category | Dose | Pharmacological Effect | Refs. |
---|---|---|---|
Fluvoxamine (SSRI) | 60, 70 & 80 mg/kg | Completely suppressed seizure-induced respiratory arrest (S-IRA) and Tonic Hind Limb Extension (THLE) |
[152] |
Fluvoxamine (SSRI) | 55 mg/kg | Completely suppressed seizure-induced respiratory arrest (S-IRA) but not THLE |
[152] |
Paroxetine (SSRI) | 50-100 mg/kg | Ineffective in reducing S-IRA | [152] |
Paroxetine (SSRI) | 120 mg/kg | Reduced S-IRA but with a delayed (24 h) onset | [152] |
Venlafaxine (serotonin–norepinephrine reuptake inhibitor) | 50 & 75 mg/kg | Reduced S-IRA incidence | [152] |
Venlafaxine (serotonin–norepinephrine reuptake inhibitor) | 25 & 100 mg/kg | Not effective in reducing S-IRA incidence | [152] |
AS-19 (selective 5-HT7 agonist) | 5–60 mg/kg | Totally ineffective in reducing S-IRA | [152] |
AS-19 (selective 5-HT7 agonist) | 60 mg/kg | Proconvulsant and Toxic effect | [152] |
Cyproheptadine (nonselective 5-HT antagonist) | 2 mg/kg | Greater incidence of S-IRA | [152] |
Fluoxetine (SSRI) | 15 & 25 mg/kg | No significant effect | [153] |
Fluoxetine (SSRI) | 45 & 70 mg/kg | Reduced the incidence of respiratory arrest following audiogenic seizures | [153] |
Table 8.
ACKNOWLEDGEMENTS
Declared none.
CONSENT FOR PUBLICATION
Not applicable.
CONFLICT OF INTEREST
The authors declare no conflict of interest, financial or otherwise.
REFERENCES
- 1.Goldenberg M.M. Overview of drugs used for epilepsy and seizures: Etiology, diagnosis, and treatment. P&T. 2010;35(7):392–415. [PMID: 20689626]. [PMC free article] [PubMed] [Google Scholar]
- 2.Fisher R.S., van Emde Boas W., Blume W., Elger C., Genton P., Lee P., Engel J., Jr Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46(4):470–472. doi: 10.1111/j.0013-9580.2005.66104.x. [http://dx.doi.org/10.1111/j.0013-9580.2005.66104.x]. [PMID: 15816939]. [DOI] [PubMed] [Google Scholar]
- 3.Bromfield E.B., Cavazos J.E., Sirven J.I. 2006 Chapter 2, Clinical Epilepsy. Available from: https:// www.ncbi.nlm.nih.gov/books/NBK2511.
- 4.Liu S., Yu W., Lü Y. The causes of new-onset epilepsy and seizures in the elderly. Neuropsychiatr. Dis. Treat. 2016;12:1425–1434. doi: 10.2147/NDT.S107905. [http://dx.doi.org/10.2147/NDT.S107905]. [PMID: 27382285]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Singh A., Trevick S. The epidemiology of global epilepsy. Neurol. Clin. 2016;34(4):837–847. doi: 10.1016/j.ncl.2016.06.015. [http://dx.doi.org/10.1016/j.ncl. 2016.06.015]. [PMID: 27719996]. [DOI] [PubMed] [Google Scholar]
- 6.Bhalla D., Lotfalinezhad E., Timalsina U., Kapoor S., Kumar K.S., Abdelrahman A., Giagante B., Tripathi M., Srivastava K., Irmansyah I. A comprehensive review of epilepsy in the Arab world. Seizure. 2016;34:54–59. doi: 10.1016/j.seizure.2015.12.002. [http://dx.doi.org/10.1016/ j.seizure.2015.12.002]. [PMID: 26724591]. [DOI] [PubMed] [Google Scholar]
- 7.Mølgaard-Nielsen D., Hviid A. Newer-generation antiepileptic drugs and the risk of major birth defects. JAMA. 2011;305(19):1996–2002. doi: 10.1001/jama.2011.624. [http://dx.doi.org/10.1001/jama.2011.624]. [PMID: 21586715]. [DOI] [PubMed] [Google Scholar]
- 8.Laxer K.D., Trinka E., Hirsch L.J., Cendes F., Langfitt J., Delanty N., Resnick T., Benbadis S.R. The consequences of refractory epilepsy and its treatment. Epilepsy Behav. 2014;37:59–70. doi: 10.1016/j.yebeh.2014.05.031. [http://dx.doi.org/10.1016/j.yebeh.2014.05.031]. [PMID: 24980390]. [DOI] [PubMed] [Google Scholar]
- 9.Dluzen D.E., McDermott J.L. Neuroprotective role of estrogen upon methamphetamine and related neurotoxins within the nigrostriatal dopaminergic system. Ann. N. Y. Acad. Sci. 2000;914:112–126. doi: 10.1111/j.1749-6632.2000.tb05189.x. [http://dx.doi.org/10.1111/j.1749-6632.2000.tb05189.x]. [PMID: 11085314]. [DOI] [PubMed] [Google Scholar]
- 10.Velísková J. The role of estrogens in seizures and epilepsy: The bad guys or the good guys? Neuroscience. 2006;138(3):837–844. doi: 10.1016/j.neuroscience.2005.07.005. [http://dx.doi.org/10.1016/j.neuroscience.2005.07.005]. [PMID: 16310960]. [DOI] [PubMed] [Google Scholar]
- 11.Toran-Allerand C.D., Miranda R.C., Bentham W.D., Sohrabji F., Brown T.J., Hochberg R.B., MacLusky N.J. Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain. Proc. Natl. Acad. Sci. USA. 1992;89(10):4668–4672. doi: 10.1073/pnas.89.10.4668. [http://dx.doi.org/10.1073/pnas.89.10.4668]. [PMID: 1316615]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Gritti I., Mainville L., Jones B.E. Codistribution of GABA- with acetylcholine-synthesizing neurons in the basal forebrain of the rat. J. Comp. Neurol. 1993;329(4):438–457. doi: 10.1002/cne.903290403. [http://dx.doi.org/10. 1002/cne.903290403]. [PMID: 8454735]. [DOI] [PubMed] [Google Scholar]
- 13.Leranth C., Shanabrough M., Horvath T.L. Estrogen receptor-alpha in the raphe serotonergic and supramammillary area calretinin-containing neurons of the female rat. Exp. Brain Res. 1999;128(3):417–420. doi: 10.1007/s002210050863. [http://dx.doi.org/10.1007/s002210050863]. [PMID: 10501815]. [DOI] [PubMed] [Google Scholar]
- 14.Weiland N.G., Orikasa C., Hayashi S., McEwen B.S. Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats. J. Comp. Neurol. 1997;388(4):603–612. doi: 10.1002/(sici)1096-9861(19971201)388:4<603::aid-cne8>3.0.co;2-6. [http://dx.doi.org/10.1002/(SICI)1096-9861 (19971201)388:4<603:AID-CNE8>3.0.CO;2-6]. [PMID: 9388019]. [DOI] [PubMed] [Google Scholar]
- 15.Azcoitia I., Sierra A., Garcia-Segura L.M. Neuroprotective effects of estradiol in the adult rat hippocampus: interaction with insulin-like growth factor-I signalling. J. Neurosci. Res. 1999;58(6):815–822. doi: 10.1002/(sici)1097-4547(19991215)58:6<815::aid-jnr8>3.0.co;2-r. [http://dx.doi.org/10.1002/(SICI)1097-4547(19991215) 58:6<815:AID-JNR8>3.0.CO;2-R]. [PMID: 10583912]. [DOI] [PubMed] [Google Scholar]
- 16.Birge S.J. HRT and cognition: What the evidence shows. OBG Manage. 2000;12(10):40–59. [Google Scholar]
- 17.McEwen B.S., Alves S.E. Estrogen actions in the central nervous system. Endocr. Rev. 1999;20(3):279–307. doi: 10.1210/edrv.20.3.0365. [PMID: 10368772]. [DOI] [PubMed] [Google Scholar]
- 18.Pfaff D.W., Ogawa S., Kia K., Vasudevan N., Krebs C., Frohlich J., Kow L.M. Genetic mechanisms in neural and hormonal controls over female reproductive behaviours. In: Pfaff D.W., Arnold A. P., Etgen A. M., Fahrbach S. E., Rubin R. T., editors. In: Hormones, Brain and Behavior. 3. Vol.47. San Diego Academic Press; 2002. pp. 441–510. [Google Scholar]
- 19.Heldring N., Pike A., Andersson S., Matthews J., Cheng G., Hartman J., Tujague M., Ström A., Treuter E., Warner M., Gustafsson J.A. Estrogen receptors: How do they signal and what are their targets. Physiol. Rev. 2007;87(3):905–931. doi: 10.1152/physrev.00026.2006. [http://dx. doi.org/10.1152/physrev.00026.2006]. [PMID: 17615392]. [DOI] [PubMed] [Google Scholar]
- 20.Kuiper G.G.J.M., Shughrue P.J., Merchenthaler I., Gustafsson J.A. The estrogen receptor beta subtype: A novel mediator of estrogen action in neuroendocrine systems. Front. Neuroendocrinol. 1998;19(4):253–286. doi: 10.1006/frne.1998.0170. [http://dx.doi.org/10.1006/frne.1998.0170]. [PMID: 9799586]. [DOI] [PubMed] [Google Scholar]
- 21.Kalita K., Szymczak S., Kaczmarek L. Non-nuclear estrogen receptor beta and alpha in the hippocampus of male and female rats. Hippocampus. 2005;15(3):404–412. doi: 10.1002/hipo.20066. [http://dx.doi.org/10. 1002/hipo.20066]. [PMID: 15669092]. [DOI] [PubMed] [Google Scholar]
- 22.Milner T.A., Ayoola K., Drake C.T., Herrick S.P., Tabori N.E., McEwen B.S., Warrier S., Alves S.E. Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation. J. Comp. Neurol. 2005;491(2):81–95. doi: 10.1002/cne.20724. [http://dx.doi. org/10.1002/cne.20724]. [PMID: 16127691]. [DOI] [PubMed] [Google Scholar]
- 23.Maruyama K., Endoh H., Sasaki-Iwaoka H., Kanou H., Shimaya E., Hashimoto S., Kato S., Kawashima H. A novel isoform of rat estrogen receptor beta with 18 amino acid insertion in the ligand binding domain as a putative dominant negative regular of estrogen action. Biochem. Biophys. Res. Commun. 1998;246(1):142–147. doi: 10.1006/bbrc.1998.8590. [http://dx.doi.org/10.1006/bbrc.1998.8590]. [PMID: 9600083]. [DOI] [PubMed] [Google Scholar]
- 24.Mukai H., Tsurugizawa T., Murakami G., Kominami S., Ishii H., Ogiue-Ikeda M., Takata N., Tanabe N., Furukawa A., Hojo Y., Ooishi Y., Morrison J.H., Janssen W.G., Rose J.A., Chambon P., Kato S., Izumi S., Yamazaki T., Kimoto T., Kawato S. Rapid modulation of long-term depression and spinogenesis via synaptic estrogen receptors in hippocampal principal neurons. J. Neurochem. 2007;100(4):950–967. doi: 10.1111/j.1471-4159.2006.04264.x. [http://dx.doi.org/10.1111/ j.1471-4159.2006.04264.x]. [PMID: 17266735]. [DOI] [PubMed] [Google Scholar]
- 25.Kelly M.J., Wagner E.J. Estrogen modulation of G-protein-coupled receptors. Trends Endocrinol. Metab. 1999;10(9):369–374. doi: 10.1016/s1043-2760(99)00190-3. [http://dx.doi.org/10.1016/S1043-2760(99)00190-3]. [PMID: 10511696]. [DOI] [PubMed] [Google Scholar]
- 26.Brinton R.D. Cellular and molecular mechanisms of estrogen regulation of memory function and neuroprotection against Alzheimer’s disease: recent insights and remaining challenges. Learn. Mem. 2001;8(3):121–133. doi: 10.1101/lm.39601. [http://dx.doi.org/10.1101/lm.39601]. [PMID: 11390632]. [DOI] [PubMed] [Google Scholar]
- 27.Kelly M.J., Levin E.R. Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol. Metab. 2001;12(4):152–156. doi: 10.1016/s1043-2760(01)00377-0. [http://dx.doi.org/10.1016/S1043-2760(01)00377-0]. [PMID: 11295570]. [DOI] [PubMed] [Google Scholar]
- 28.Lee S.J., McEwen B.S. Neurotrophic and neuroprotective actions of estrogens and their therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 2001;41:569–591. doi: 10.1146/annurev.pharmtox.41.1.569. [http://dx.doi.org/10.1146/ annurev.pharmtox.41.1.569]. [PMID: 11264469]. [DOI] [PubMed] [Google Scholar]
- 29.Lange S.C., Julien R.M. Re-evaluation of estrogen-induced cortical and thalamic paroxysmal EEG activity in the cat. Electroencephalogr. Clin. Neurophysiol. 1978;44(1):94–103. doi: 10.1016/0013-4694(78)90108-6. [http://dx. doi.org/10.1016/0013-4694(78)90108-6]. [PMID: 74330]. [DOI] [PubMed] [Google Scholar]
- 30.Foy M.R., Xu J., Xie X., Brinton R.D., Thompson R.F., Berger T.W. 17β-estradiol enhances NMDA receptor-mediated EPSPs and long-term potentiation. J. Neurophysiol. 1999;81(2):925–929. doi: 10.1152/jn.1999.81.2.925. [http://dx.doi.org/10.1152/jn.1999.81.2.925]. [PMID: 10036289]. [DOI] [PubMed] [Google Scholar]
- 31.Smith C.C., McMahon L.L. Estrogen-induced increase in the magnitude of long-term potentiation occurs only when the ratio of NMDA transmission to AMPA transmission is increased. J. Neurosci. 2005;25(34):7780–7791. doi: 10.1523/JNEUROSCI.0762-05.2005. [http://dx.doi.org/10.1523/ JNEUROSCI.0762-05.2005]. [PMID: 16120779]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Woolley C.S. Estrogen-mediated structural and functional synaptic plasticity in the female rat hippocampus. Horm. Behav. 1998;34(2):140–148. doi: 10.1006/hbeh.1998.1466. [http://dx.doi.org/10.1006/hbeh.1998.1466]. [PMID: 9799624]. [DOI] [PubMed] [Google Scholar]
- 33.Weiland N.G. Estradiol selectively regulates agonist binding sites on the N-methyl-D-aspartate receptor complex in the CA1 region of the hippocampus. Endocrinology. 1992;131(2):662–668. doi: 10.1210/endo.131.2.1353442. [PMID: 1353442]. [DOI] [PubMed] [Google Scholar]
- 34.Rudick C.N., Woolley C.S. Estrogen regulates functional inhibition of hippocampal CA1 pyramidal cells in the adult female rat. J. Neurosci. 2001;21(17):6532–6543. doi: 10.1523/JNEUROSCI.21-17-06532.2001. [http://dx.doi.org/10.1523/ JNEUROSCI.21-17-06532.2001]. [PMID: 11517242]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Ledoux V.A., Woolley C.S. Evidence that disinhibition is associated with a decrease in number of vesicles available for release at inhibitory synapses. J. Neurosci. 2005;25(4):971–976. doi: 10.1523/JNEUROSCI.3489-04.2005. [http://dx. doi.org/10.1523/JNEUROSCI.3489-04.2005]. [PMID: 15673678]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Quigg M., Smithson S.D., Fowler K.M., Sursal T., Herzog A.G. Laterality and location influence catamenial seizure expression in women with partial epilepsy. Neurology. 2009;73(3):223–227. doi: 10.1212/WNL.0b013e3181ae7adf. [http://dx.doi.org/10.1212/WNL.0b013e3181ae7adf]. [PMID: 19620611]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Kang H., Schuman E.M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science. 1995;267(5204):1658–1662. doi: 10.1126/science.7886457. [http://dx.doi.org/10.1126/ science.7886457]. [PMID: 7886457]. [DOI] [PubMed] [Google Scholar]
- 38.Scharfman H.E. Hyperexcitability in combined entorhinal/hippocampal slices of adult rat after exposure to brain-derived neurotrophic factor. J. Neurophysiol. 1997;78(2):1082–1095. doi: 10.1152/jn.1997.78.2.1082. [http://dx.doi.org/10.1152/jn.1997.78.2.1082]. [PMID: 9307136]. [DOI] [PubMed] [Google Scholar]
- 39.Scharfman H.E. In: BDNF and the dentate gyrus mossy fibers: Implications for epilepsy. Synaptic Plasticity and Transynaptic Signaling; Stanton, P.K.; Bramham, Cr. Scharfman H.E., editor. New York: Springer; 2005. pp. 201–220. [http://dx.doi.org/10.1007/0-387-25443-9_13] [Google Scholar]
- 40.Korte M., Kang H., Bonhoeffer T., Schuman E. A role for BDNF in the late-phase of hippocampal long-term potentiation. Neuropharmacology. 1998;37(4-5):553–559. doi: 10.1016/s0028-3908(98)00035-5. [http://dx.doi.org/10. 1016/S0028-3908(98)00035-5]. [PMID: 9704996]. [DOI] [PubMed] [Google Scholar]
- 41.Patterson S.L., Abel T., Deuel T.A., Martin K.C., Rose J.C., Kandel E.R. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron. 1996;16(6):1137–1145. doi: 10.1016/s0896-6273(00)80140-3. [http://dx.doi.org/10.1016/S0896-6273(00)80140-3]. [PMID: 8663990]. [DOI] [PubMed] [Google Scholar]
- 42.Huang Y.Z., Pan E., Xiong Z.Q., McNamara J.O. Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron. 2008;57(4):546–558. doi: 10.1016/j.neuron.2007.11.026. [http://dx. doi.org/10.1016/j.neuron.2007.11.026]. [PMID: 18304484]. [DOI] [PubMed] [Google Scholar]
- 43.Patterson S.L., Grover L.M., Schwartzkroin P.A., Bothwell M. Neurotrophin expression in rat hippocampal slices: A stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron. 1992;9(6):1081–1088. doi: 10.1016/0896-6273(92)90067-n. [http://dx.doi.org/ 10.1016/0896-6273(92)90067-N]. [PMID: 1463608]. [DOI] [PubMed] [Google Scholar]
- 44.Chapleau C.A., Larimore J.L., Theibert A., Pozzo-Miller L. Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: Fundamental roles in neurodevelopmental disorders associated with mental retardation and autism. J. Neurodev. Disord. 2009;1(3):185–196. doi: 10.1007/s11689-009-9027-6. [http://dx.doi.org/10.1007/ s11689-009-9027-6]. [PMID: 19966931]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Danzer S.C., Crooks K.R., Lo D.C., McNamara J.O. Increased expression of brain-derived neurotrophic factor induces formation of basal dendrites and axonal branching in dentate granule cells in hippocampal explant cultures. J. Neurosci. 2002;22(22):9754–9763. doi: 10.1523/JNEUROSCI.22-22-09754.2002. [http://dx.doi.org/10.1523/JNEUROSCI.22-22-09754.2002]. [PMID: 12427830]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Sutula T., Cascino G., Cavazos J., Parada I., Ramirez L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann. Neurol. 1989;26(3):321–330. doi: 10.1002/ana.410260303. [http://dx.doi.org/10.1002/ana. 410260303]. [PMID: 2508534]. [DOI] [PubMed] [Google Scholar]
- 47.Represa A., Robain O., Tremblay E., Ben-Ari Y. Hippocampal plasticity in childhood epilepsy. Neurosci. Lett. 1989;99(3):351–355. doi: 10.1016/0304-3940(89)90472-2. [http://dx.doi.org/10.1016/0304-3940(89)90472-2]. [PMID: 2542848]. [DOI] [PubMed] [Google Scholar]
- 48.Babb T.L., Kupfer W.R., Pretorius J.K., Crandall P.H., Levesque M.F. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience. 1991;42(2):351–363. doi: 10.1016/0306-4522(91)90380-7. [http:// dx.doi.org/10.1016/0306-4522(91)90380-7]. [PMID: 1716744]. [DOI] [PubMed] [Google Scholar]
- 49.Houser C.R. Morphological changes in the dentate gyrus in human temporal lobe epilepsy. Epilepsy Res. Suppl. 1992;7:223–234. [PMID: 1466768]. [PubMed] [Google Scholar]
- 50.Franck J.E., Pokorny J., Kunkel D.D., Schwartzkroin P.A. Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus. Epilepsia. 1995;36(6):543–558. doi: 10.1111/j.1528-1157.1995.tb02566.x. [http://dx.doi.org/10.1111/j.1528-1157.1995.tb02566.x]. [PMID: 7555966]. [DOI] [PubMed] [Google Scholar]
- 51.Tanaka T., Saito H., Matsuki N. Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus. J. Neurosci. 1997;17(9):2959–2966. doi: 10.1523/JNEUROSCI.17-09-02959.1997. [http://dx.doi.org/ 10.1523/JNEUROSCI.17-09-02959.1997]. [PMID: 9096132]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Rocca W.A., Grossardt B.R., Shuster L.T. Oophorectomy, menopause, estrogen treatment, and cognitive aging: clinical evidence for a window of opportunity. Brain Res. 2011;1379:188–198. doi: 10.1016/j.brainres.2010.10.031. [http:// dx.doi.org/10.1016/j.brainres.2010.10.031]. [PMID: 20965156]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Yi K.D., Perez E., Yang S., Liu R., Covey D.F., Simpkins J.W. The assessment of non-feminizing estrogens for use in neuroprotection. Brain Res. 2011;1379:61–70. doi: 10.1016/j.brainres.2010.11.058. [http://dx.doi.org/10.1016/j. brainres.2010.11.058]. [PMID: 21111714]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Ciriza I., Carrero P., Azcoitia I., Lundeen S.G., Garcia-Segura L.M. Selective estrogen receptor modulators protect hippocampal neurons from kainic acid excitotoxicity: Differences with the effect of estradiol. J. Neurobiol. 2004;61(2):209–221. doi: 10.1002/neu.20043. [http://dx.doi.org/ 10.1002/neu.20043]. [PMID: 15389604]. [DOI] [PubMed] [Google Scholar]
- 55.Dubal D.B., Rau S.W., Shughrue P.J., Zhu H., Yu J., Cashion A.B., Suzuki S., Gerhold L.M., Bottner M.B., Dubal S.B., Merchanthaler I., Kindy M.S., Wise P.M. Differential modulation of estrogen receptors (ERs) in ischemic brain injury: a role for ERalpha in estradiol-mediated protection against delayed cell death. Endocrinology. 2006;147(6):3076–3084. doi: 10.1210/en.2005-1177. [http://dx.doi.org/10. 1210/en.2005-1177]. [PMID: 16527848]. [DOI] [PubMed] [Google Scholar]
- 56.Garcia-Segura L.M. Aromatase in the brain: not just for reproduction anymore. J. Neuroendocrinol. 2008;20(6):705–712. doi: 10.1111/j.1365-2826.2008.01713.x. [http:// dx.doi.org/10.1111/j.1365-2826.2008.01713.x]. [PMID: 18601693]. [DOI] [PubMed] [Google Scholar]
- 57.Nilsson B.O., Olde B., Leeb-Lundberg L.M. G protein-coupled oestrogen receptor 1 (GPER1)/GPR30: A new player in cardiovascular and metabolic oestrogenic signalling. Br. J. Pharmacol. 2011;163(6):1131–1139. doi: 10.1111/j.1476-5381.2011.01235.x. [http://dx.doi.org/10.1111/j.1476-5381. 2011.01235.x]. [PMID: 21250980]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Qiu J., Rønnekleiv O.K., Kelly M.J. Modulation of hypothalamic neuronal activity through a novel G-protein-coupled estrogen membrane receptor. Steroids. 2008;73(9-10):985–991. doi: 10.1016/j.steroids.2007.11.008. [http://dx. doi.org/10.1016/j.steroids.2007.11.008]. [PMID: 18342349]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Xu H., Qin S., Carrasco G.A., Dai Y., Filardo E.J., Prossnitz E.R., Battaglia G., Doncarlos L.L., Muma N.A. Extra-nuclear estrogen receptor GPR30 regulates serotonin function in rat hypothalamus. Neuroscience. 2009;158(4):1599–1607. doi: 10.1016/j.neuroscience.2008.11.028. [http://dx.doi. org/10.1016/j.neuroscience.2008.11.028]. [PMID: 19095043]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Lebesgue D., Chevaleyre V., Zukin R.S., Etgen A.M. Estradiol rescues neurons from global ischemia-induced cell death: Multiple cellular pathways of neuroprotection. Steroids. 2009;74(7):555–561. doi: 10.1016/j.steroids.2009.01.003. [http://dx.doi.org/10.1016/j.steroids.2009.01.003]. [PMID: 19428444]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Hammond R., Gibbs R.B. GPR30 is positioned to mediate estrogen effects on basal forebrain cholinergic neurons and cognitive performance. Brain Res. 2011;1379:53–60. doi: 10.1016/j.brainres.2010.11.098. [http://dx.doi.org/ 10.1016/j.brainres.2010.11.098]. [PMID: 21138734]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Hammond R., Nelson D., Gibbs R.B. GPR30 co-localizes with cholinergic neurons in the basal forebrain and enhances potassium-stimulated acetylcholine release in the hippocampus. Psychoneuroendocrinology. 2011;36(2):182–192. doi: 10.1016/j.psyneuen.2010.07.007. [http://dx.doi.org/10. 1016/j.psyneuen.2010.07.007]. [PMID: 20696528]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Garcia-Segura L.M., Sanz A., Mendez P. Cross-talk between IGF-I and estradiol in the brain: focus on neuroprotection. Neuroendocrinology. 2006;84(4):275–279. doi: 10.1159/000097485. [http://dx.doi.org/10. 1159/000097485]. [PMID: 17124377]. [DOI] [PubMed] [Google Scholar]
- 64.Varea O., Arevalo M.A., Garrido J.J., Garcia-Segura L.M., Wandosell F., Mendez P. Interaction of estrogen receptors with insulin-like growth factor-I and Wnt signaling in the nervous system. Steroids. 2010;75(8-9):565–569. doi: 10.1016/j.steroids.2009.09.006. [http://dx.doi.org/10.1016/ j.steroids.2009.09.006]. [PMID: 19778547]. [DOI] [PubMed] [Google Scholar]
- 65.Mathern G.W., Price G., Rosales C., Pretorius J.K., Lozada A., Mendoza D. Anoxia during kainate status epilepticus shortens behavioral convulsions but generates hippocampal neuron loss and supragranular mossy fiber sprouting. Epilepsy Res. 1998;30(2):133–151. doi: 10.1016/s0920-1211(97)00103-4. [http://dx.doi.org/10.1016/S0920-1211(97)00103-4]. [PMID: 9600545]. [DOI] [PubMed] [Google Scholar]
- 66.Moshe S.L. Brain injury with prolonged seizures in children and adults. J. Child. Neurol. 1998;13(Suppl. 1):S3–6. doi: 10.1177/0883073898013001021. discussion S30-32. [DOI] [PubMed] [Google Scholar]
- 67.Salmenperä T., Kälviäinen R., Partanen K., Pitkänen A. Hippocampal and amygdaloid damage in partial epilepsy: A cross-sectional MRI study of 241 patients. Epilepsy Res. 2001;46(1):69–82. doi: 10.1016/s0920-1211(01)00258-3. [http://dx.doi.org/10.1016/S0920-1211(01)00258-3]. [PMID: 11395291]. [DOI] [PubMed] [Google Scholar]
- 68.Tasch E., Cendes F., Li L.M., Dubeau F., Andermann F., Arnold D.L. Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy. Ann. Neurol. 1999;45(5):568–576. doi: 10.1002/1531-8249(199905)45:5<568::aid-ana4>3.0.co;2-p. [http://dx.doi.org/10.1002/1531-8249(199905)45:5 <568:AID-ANA4>3.0.CO;2-P]. [PMID: 10319878]. [DOI] [PubMed] [Google Scholar]
- 69.Velísková J., Velísek L., Galanopoulou A.S., Sperber E.F. Neuroprotective effects of estrogens on hippocampal cells in adult female rats after status epilepticus. Epilepsia. 2000;41(Suppl. 6):S30–S35. doi: 10.1111/j.1528-1157.2000.tb01553.x. [http://dx.doi.org/10.1111/j.1528-1157.2000.tb01553.x]. [PMID: 10999516]. [DOI] [PubMed] [Google Scholar]
- 70.Epsztein J., Crepel V., Represa A. 2009. Role of Kainate Receptors in Glutamatergic Synaptic Transmission: Implications for Acute and Chronic Seizure Generation; Encyclopedia of Basic Epilepsy Research; pp. 449–456. [Google Scholar]
- 71.Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience. 1985;14(2):375–403. doi: 10.1016/0306-4522(85)90299-4. [http://dx.doi.org/10.1016/ 0306-4522(85)90299-4]. [PMID: 2859548]. [DOI] [PubMed] [Google Scholar]
- 72.Turski L., Cavalheiro E.A., Sieklucka-Dziuba M., Ikonomidou-Turski C., Czuczwar S.J., Turski W.A. Seizures produced by pilocarpine: neuropathological sequelae and activity of glutamate decarboxylase in the rat forebrain. Brain Res. 1986;398(1):37–48. doi: 10.1016/0006-8993(86)91247-3. [http://dx.doi.org/10.1016/0006-8993(86)91247-3]. [PMID: 3801899]. [DOI] [PubMed] [Google Scholar]
- 73.de Lanerolle N.C., Kim J.H., Robbins R.J., Spencer D.D. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res. 1989;495(2):387–395. doi: 10.1016/0006-8993(89)90234-5. [http://dx.doi.org/10. 1016/0006-8993(89)90234-5]. [PMID: 2569920]. [DOI] [PubMed] [Google Scholar]
- 74.Dubal D.B., Shughrue P.J., Wilson M.E., Merchenthaler I., Wise P.M. Estradiol modulates bcl-2 in cerebral ischemia: A potential role for estrogen receptors. J. Neurosci. 1999;19(15):6385–6393. doi: 10.1523/JNEUROSCI.19-15-06385.1999. [http://dx.doi.org/10.1523/JNEUROSCI.19-15-06385.1999]. [PMID: 10414967]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Harms C., Lautenschlager M., Bergk A., Katchanov J., Freyer D., Kapinya K., Herwig U., Megow D., Dirnagl U., Weber J.R., Hörtnagl H. Differential mechanisms of neuroprotection by 17 β-estradiol in apoptotic versus necrotic neurodegeneration. J. Neurosci. 2001;21(8):2600–2609. doi: 10.1523/JNEUROSCI.21-08-02600.2001. [http://dx.doi.org/10.1523/ JNEUROSCI.21-08-02600.2001]. [PMID: 11306613]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Pike C.J. Estrogen modulates neuronal Bcl-xL expression and beta-amyloid-induced apoptosis: relevance to Alzheimer’s disease. J. Neurochem. 1999;72(4):1552–1563. doi: 10.1046/j.1471-4159.1999.721552.x. [http://dx.doi.org/10.1046/ j.1471-4159.1999.721552.x]. [PMID: 10098861]. [DOI] [PubMed] [Google Scholar]
- 77.Behl C., Widmann M., Trapp T., Holsboer F. 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem. Biophys. Res. Commun. 1995;216(2):473–482. doi: 10.1006/bbrc.1995.2647. [http:// dx.doi.org/10.1006/bbrc.1995.2647]. [PMID: 7488136]. [DOI] [PubMed] [Google Scholar]
- 78.Azcoitia I., Sierra A., Garcia-Segura L.M. Estradiol prevents kainic acid-induced neuronal loss in the rat dentate gyrus. Neuroreport. 1998;9(13):3075–3079. doi: 10.1097/00001756-199809140-00029. [http://dx.doi.org/10.1097/00001756-199809140-00029]. [PMID: 9804319]. [DOI] [PubMed] [Google Scholar]
- 79.Velísková J. Estrogens and epilepsy: why are we so excited? Neuroscientist. 2007;13(1):77–88. doi: 10.1177/1073858406295827. [http://dx.doi.org/10.1177/ 1073858406295827]. [PMID: 17229977]. [DOI] [PubMed] [Google Scholar]
- 80.Velísková J., Velísek L. Beta-estradiol increases dentate gyrus inhibition in female rats via augmentation of hilar neuropeptide Y. J. Neurosci. 2007;27(22):6054–6063. doi: 10.1523/JNEUROSCI.0366-07.2007. [http://dx.doi.org/10.1523/ JNEUROSCI.0366-07.2007]. [PMID: 17537977]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Ledoux V.A., Smejkalova T., May R.M., Cooke B.M., Woolley C.S. Estradiol facilitates the release of neuropeptide Y to suppress hippocampus-dependent seizures. J. Neurosci. 2009;29(5):1457–1468. doi: 10.1523/JNEUROSCI.4688-08.2009. [http://dx.doi.org/10.1523/JNEUROSCI.4688-08.2009]. [PMID: 19193892]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Barnea A., Roberts J., Croll S.D. Continuous exposure to brain-derived neurotrophic factor is required for persistent activation of TrkB receptor, the ERK signaling pathway, and the induction of neuropeptide Y production in cortical cultures. Brain Res. 2004;1020(1-2):106–117. doi: 10.1016/j.brainres.2004.06.018. [http://dx.doi.org/10.1016/j.brainres.2004. 06.018]. [PMID: 15312792]. [DOI] [PubMed] [Google Scholar]
- 83.Croll S.D., Wiegand S.J., Anderson K.D., Lindsay R.M., Nawa H. Regulation of neuropeptides in adult rat forebrain by the neurotrophins BDNF and NGF. Eur. J. Neurosci. 1994;6(8):1343–1353. doi: 10.1111/j.1460-9568.1994.tb00325.x. [http://dx.doi.org/10.1111/j.1460-9568.1994.tb00325.x]. [PMID: 7981876]. [DOI] [PubMed] [Google Scholar]
- 84.Nawa H., Bessho Y., Carnahan J., Nakanishi S., Mizuno K. Regulation of neuropeptide expression in cultured cerebral cortical neurons by brain-derived neurotrophic factor. J. Neurochem. 1993;60(2):772–775. doi: 10.1111/j.1471-4159.1993.tb03216.x. [http://dx.doi.org/10.1111/j.1471-4159.1993. tb03216.x]. [PMID: 8093484]. [DOI] [PubMed] [Google Scholar]
- 85.Wirth M.J., Patz S., Wahle P. Transcellular induction of neuropeptide Y expression by NT4 and BDNF. Proc. Natl. Acad. Sci. USA. 2005;102(8):3064–3069. doi: 10.1073/pnas.0404712102. [http://dx.doi.org/10.1073/pnas. 0404712102]. [PMID: 15703301]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Velíšková J., Desantis K.A. Sex and hormonal influences on seizures and epilepsy. Horm. Behav. 2013;63(2):267–277. doi: 10.1016/j.yhbeh.2012.03.018. [http:// dx.doi.org/10.1016/j.yhbeh.2012.03.018]. [PMID: 22504305]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Hoffman G.E., Moore N., Fiskum G., Murphy A.Z. Ovarian steroid modulation of seizure severity and hippocampal cell death after kainic acid treatment. Exp. Neurol. 2003;182(1):124–134. doi: 10.1016/s0014-4886(03)00104-3. [http://dx.doi.org/10.1016/S0014-4886(03)00104-3]. [PMID: 12821382]. [DOI] [PubMed] [Google Scholar]
- 88.Schauwecker P.E., Wood R.I., Lorenzana A. Neuroprotection against excitotoxic brain injury in mice after ovarian steroid depletion. Brain Res. 2009;1265:37–46. doi: 10.1016/j.brainres.2009.02.023. [http://dx.doi.org/10.1016/ j.brainres.2009.02.023]. [PMID: 19236850]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Reibel S., André V., Chassagnon S., André G., Marescaux C., Nehlig A., Depaulis A. Neuroprotective effects of chronic estradiol benzoate treatment on hippocampal cell loss induced by status epilepticus in the female rat. Neurosci. Lett. 2000;281(2-3):79–82. doi: 10.1016/s0304-3940(00)00784-9. [http://dx.doi.org/10.1016/S0304-3940(00)00784-9]. [PMID: 10704747]. [DOI] [PubMed] [Google Scholar]
- 90.Guille C., Spencer S., Cavus I., Epperson C.N. The role of sex steroids in catamenial epilepsy and premenstrual dysphoric disorder: implications for diagnosis and treatment. Epilepsy Behav. 2008;13(1):12–24. doi: 10.1016/j.yebeh.2008.02.004. [http://dx.doi.org/10.1016/j.yebeh.2008.02.004]. [PMID: 18346939]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Herzog A.G. Catamenial epilepsy: definition, prevalence pathophysiology and treatment. Seizure. 2008;17(2):151–159. doi: 10.1016/j.seizure.2007.11.014. [http://dx. doi.org/10.1016/j.seizure.2007.11.014]. [PMID: 18164632]. [DOI] [PubMed] [Google Scholar]
- 92.Herzog A.G., Klein P., Ransil B.J. Three patterns of catamenial epilepsy. Epilepsia. 1997;38(10):1082–1088. doi: 10.1111/j.1528-1157.1997.tb01197.x. [http://dx.doi.org/10. 1111/j.1528-1157.1997.tb01197.x]. [PMID: 9579954]. [DOI] [PubMed] [Google Scholar]
- 93.Logothetis J., Harner R., Morrell F., Torres F. The role of estrogens in catamenial exacerbation of epilepsy. Neurology. 1959;9(5):352–360. doi: 10.1212/wnl.9.5.352. [http://dx.doi.org/10.1212/WNL.9.5.352]. [PMID: 13657294]. [DOI] [PubMed] [Google Scholar]
- 94.Harden C.L. Hormone replacement therapy: Will it affect seizure control and AED levels? Seizure. 2008;17(2):176–180. doi: 10.1016/j.seizure.2007.11.026. [http://dx. doi.org/10.1016/j.seizure.2007.11.026]. [PMID: 18187348]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Harden C.L., Leppik I. Optimizing therapy of seizures in women who use oral contraceptives. Neurology. 2006;67(12) Suppl. 4:S56–S58. doi: 10.1212/wnl.67.12_suppl_4.s56. [http://dx.doi.org/10.1212/WNL.67.12_suppl_4.S56]. [PMID: 17190925]. [DOI] [PubMed] [Google Scholar]
- 96.Rossouw J.E., Anderson G.L., Prentice R.L., LaCroix A.Z., Kooperberg C., Stefanick M.L., Jackson R.D., Beresford S.A., Howard B.V., Johnson K.C., Kotchen J.M., Ockene J. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–333. doi: 10.1001/jama.288.3.321. [http://dx. doi.org/10.1001/jama.288.3.321]. [PMID: 12117397]. [DOI] [PubMed] [Google Scholar]
- 97.Scharfman H.E., Goodman J.H., Rigoulot M.A., Berger R.E., Walling S.G., Mercurio T.C., Stormes K., Maclusky N.J. Seizure susceptibility in intact and ovariectomized female rats treated with the convulsant pilocarpine. Exp. Neurol. 2005;196(1):73–86. doi: 10.1016/j.expneurol.2005.07.007. [http:// dx.doi.org/10.1016/j.expneurol.2005.07.007]. [PMID: 16084511]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Scharfman H.E., Malthankar-Phatak G.H., Friedman D., Pearce P., McCloskey D.P., Harden C.L., Maclusky N.J. A rat model of epilepsy in women: a tool to study physiological interactions between endocrine systems and seizures. Endocrinology. 2009;150(9):4437–4442. doi: 10.1210/en.2009-0135. [http://dx.doi.org/10.1210/en.2009-0135]. [PMID: 19443573]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Erspamer V., Asero B. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydro- xytryptamine. Nature. 1952;169(4306):800–801. doi: 10.1038/169800b0. [http://dx.doi. org/10.1038/169800b0]. [PMID: 14941051]. [DOI] [PubMed] [Google Scholar]
- 100.Filip M., Bader M. Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. Pharmacol. Rep. 2009;61(5):761–777. doi: 10.1016/s1734-1140(09)70132-x. [http://dx.doi.org/10.1016/S1734-1140(09)70132-X]. [PMID: 19903999]. [DOI] [PubMed] [Google Scholar]
- 101.Nordquist N., Oreland L. Serotonin, genetic variability, behaviour, and psychiatric disorders--a review. Ups. J. Med. Sci. 2010;115(1):2–10. doi: 10.3109/03009730903573246. [http://dx.doi.org/10.3109/03009730903573246]. [PMID: 20187845]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Martinowich K., Lu B. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology. 2008;33(1):73–83. doi: 10.1038/sj.npp.1301571. [http://dx.doi.org/10.1038/sj.npp.1301571]. [PMID: 17882234]. [DOI] [PubMed] [Google Scholar]
- 103.Siever L.J. Neurobiology of aggression and violence. Am. J. Psychiatry. 2008;165(4):429–442. doi: 10.1176/appi.ajp.2008.07111774. [http://dx.doi.org/10.1176/appi. ajp.2008.07111774]. [PMID: 18346997]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Waters K. Serotonin in the sudden infant death syndrome. Drug News Perspect. 2010;23(9):537–548. doi: 10.1358/dnp.2010.23.9.1453626. [http://dx.doi.org/10.1358/ dnp.2010.23.9.1453626]. [PMID: 21152449]. [DOI] [PubMed] [Google Scholar]
- 105.Barnes N.M., Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38(8):1083–1152. doi: 10.1016/s0028-3908(99)00010-6. [http://dx. doi.org/10.1016/S0028-3908(99)00010-6]. [PMID: 10462127]. [DOI] [PubMed] [Google Scholar]
- 106.Hoyer D., Clarke D.E., Fozrd J.R., Harting P.R., Mylecharance E.J., Saxena P.R., Humpherey P.P.A. VII. international Union of Pharmacology of receptors for 5-hydroxytryptamine (serotonin). Pharmacol. Rev. 1994;46:157–203. [PMID: 7938165]. [PubMed] [Google Scholar]
- 107.Hoyer D., Hannon J.P., Martin G.R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 2002;71(4):533–554. doi: 10.1016/s0091-3057(01)00746-8. [http://dx.doi.org/10.1016/S0091-3057(01)00746-8]. [PMID: 11888546]. [DOI] [PubMed] [Google Scholar]
- 108.Nichols D.E., Nichols C.D. Serotonin receptors. Chem. Rev. 2008;108(5):1614–1641. doi: 10.1021/cr078224o. [http://dx.doi.org/10.1021/cr078224o]. [PMID: 18476671]. [DOI] [PubMed] [Google Scholar]
- 109.Hannon J., Hoyer D. Molecular biology of 5-HT receptors. Behav. Brain Res. 2008;195(1):198–213. doi: 10.1016/j.bbr.2008.03.020. [http://dx.doi.org/10.1016/ j.bbr.2008.03.020]. [PMID: 18571247]. [DOI] [PubMed] [Google Scholar]
- 110.Collingridge G.L., Olsen R.W., Peters J., Spedding M. A nomenclature for ligand-gated ion channels. Neuropharmacology. 2009;56(1):2–5. doi: 10.1016/j.neuropharm.2008.06.063. [http://dx.doi.org/10.1016/j.neuropharm.2008. 06.063]. [PMID: 18655795]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Sugden K., Tichopad A., Khan N., Craig I.W., D’Souza U.M. Genes within the serotonergic system are differentially expressed in human brain. BMC Neurosci. 2009;10:50. doi: 10.1186/1471-2202-10-50. [http://dx.doi.org/10. 1186/1471-2202-10-50]. [PMID: 19445671]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Lesch K.P., Mössner R. Genetically driven variation in serotonin uptake: is there a link to affective spectrum, neurodevelopmental, and neurodegenerative disorders? Biol. Psychiatry. 1998;44(3):179–192. doi: 10.1016/s0006-3223(98)00121-8. [http://dx.doi.org/10.1016/S0006-3223(98)00121-8]. [PMID: 9693390]. [DOI] [PubMed] [Google Scholar]
- 113.Tripathi P.P., Di Giovannantonio L.G., Viegi A., Wurst W., Simeone A., Bozzi Y. Serotonin hyperinnervation abolishes seizure susceptibility in Otx2 conditional mutant mice. J. Neurosci. 2008;28(37):9271–9276. doi: 10.1523/JNEUROSCI.2208-08.2008. [http://dx.doi.org/10.1523/JNEUROSCI. 2208-08.2008]. [PMID: 18784307]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Lin W.H., Huang H.P., Lin M.X., Chen S.G., Lv X.C., Che C.H., Lin J.L. Seizure-induced 5-HT release and chronic impairment of serotonergic function in rats. Neurosci. Lett. 2013;534:1–6. doi: 10.1016/j.neulet.2012.12.007. [http://dx.doi.org/10.1016/j.neulet.2012.12.007]. [PMID: 23276638]. [DOI] [PubMed] [Google Scholar]
- 115.Trindade-Filho E.M., de Castro-Neto E.F., de A Carvalho R., Lima E., Scorza F.A., Amado D., Naffah-Mazzacoratti Mda.G., Cavalheiro E.A. Serotonin depletion effects on the pilocarpine model of epilepsy. Epilepsy Res. 2008;82(2-3):194–199. doi: 10.1016/j.eplepsyres.2008.08.010. [http:// dx.doi.org/10.1016/j.eplepsyres.2008.08.010]. [PMID: 18845420]. [DOI] [PubMed] [Google Scholar]
- 116.Okada M., Kaneko S., Hirano T., Ishida M., Kondo T., Otani K., Fukushima Y. Effects of zonisamide on extracellular levels of monoamine and its metabolite, and on Ca2+ dependent dopamine release. Epilepsy Res. 1992;13(2):113–119. doi: 10.1016/0920-1211(92)90066-3. [http://dx.doi.org/10. 1016/0920-1211(92)90066-3]. [PMID: 1464296]. [DOI] [PubMed] [Google Scholar]
- 117.Dailey J.W., Yan Q.S., Adams-Curtis L.E., Ryu J.R., Ko K.H., Mishra P.K., Jobe P.C. Neurochemical correlates of antiepileptic drugs in the genetically epilepsy-prone rat (GEPR). Life Sci. 1996;58(4):259–266. doi: 10.1016/0024-3205(95)02286-4. [http://dx.doi.org/10.1016/0024-3205(95)02286-4]. [PMID: 8538363]. [DOI] [PubMed] [Google Scholar]
- 118.Ahmad S., Fowler L.J., Whitton P.S. Lamotrigine, carbamazepine and phenytoin differentially alter extracellular levels of 5-hydroxytryptamine, dopamine and amino acids. Epilepsy Res. 2005;63(2-3):141–149. doi: 10.1016/j.eplepsyres.2005.02.002. [http://dx.doi.org/10.1016/j.eplepsyres. 2005.02.002]. [PMID: 15777732]. [DOI] [PubMed] [Google Scholar]
- 119.Browning R.A., Wood A.V., Merrill M.A., Dailey J.W., Jobe P.C. Enhancement of the anticonvulsant effect of fluoxetine following blockade of 5-HT1A receptors. Eur. J. Pharmacol. 1997;336(1):1–6. doi: 10.1016/s0014-2999(97)01215-6. [http://dx.doi.org/10.1016/S0014-2999(97)01215-6]. [PMID: 9384247]. [DOI] [PubMed] [Google Scholar]
- 120.Statnick M.A., Maring-Smith M.L., Clough R.W., Wang C., Dailey J.W., Jobe P.C., Browning R.A. Effect of 5,7-dihydro- xytryptamine on audiogenic seizures in genetically epilepsy-prone rats. Life Sci. 1996;59(21):1763–1771. doi: 10.1016/0024-3205(96)00519-x. [http://dx.doi.org/10.1016/ 0024-3205(96)00519-X]. [PMID: 8937503]. [DOI] [PubMed] [Google Scholar]
- 121.Salgado D., Alkadhi K.A. Inhibition of epileptiform activity by serotonin in rat CA1 neurons. Brain Res. 1995;669(2):176–182. doi: 10.1016/0006-8993(94)01235-a. [http://dx.doi.org/10.1016/0006-8993(94)01235-A]. [PMID: 7712172]. [DOI] [PubMed] [Google Scholar]
- 122.Clinckers R., Smolders I., Meurs A., Ebinger G., Michotte Y. Anticonvulsant action of GBR-12909 and citalopram against acute experimentally induced limbic seizures. Neuropharmacology. 2004;47(7):1053–1061. doi: 10.1016/j.neuropharm.2004.07.032. [http://dx.doi.org/10.1016/j.neuropharm. 2004.07.032]. [PMID: 15555639]. [DOI] [PubMed] [Google Scholar]
- 123.Pericić D., Lazić J., Jazvinsćak Jembrek M., Svob Strac D. Stimulation of 5-HT 1A receptors increases the seizure threshold for picrotoxin in mice. Eur. J. Pharmacol. 2005;527(1-3):105–110. doi: 10.1016/j.ejphar.2005.10.021. [http://dx.doi.org/10.1016/j.ejphar.2005.10.021]. [PMID: 16313900]. [DOI] [PubMed] [Google Scholar]
- 124.de Freitas R.L., Santos I.M., de Souza G.F., Tomé A.R., Saldanha G.B., de Freitas R.M. Oxidative stress in rat hippocampus caused by pilocarpine-induced seizures is reversed by buspirone. Brain Res. Bull. 2010;81(4-5):505–509. doi: 10.1016/j.brainresbull.2009.09.014. [http://dx.doi.org/10. 1016/j.brainresbull.2009.09.014]. [PMID: 19800952]. [DOI] [PubMed] [Google Scholar]
- 125.Sarnyai Z., Sibille E.L., Pavlides C., Fenster R.J., McEwen B.S., Toth M. Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc. Natl. Acad. Sci. USA. 2000;97(26):14731–14736. doi: 10.1073/pnas.97.26.14731. [http://dx.doi.org/10.1073/pnas.97.26.14731]. [PMID: 11121072]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Parsons L.H., Kerr T.M., Tecott L.H. 5-HT(1A) receptor mutant mice exhibit enhanced tonic, stress-induced and fluoxetine-induced serotonergic neurotransmission. J. Neurochem. 2001;77(2):607–617. doi: 10.1046/j.1471-4159.2001.00254.x. [http://dx.doi.org/10.1046/j.1471-4159.2001.00254.x]. [PMID: 11299323]. [DOI] [PubMed] [Google Scholar]
- 127.Gidal B.E. Serotonin and epilepsy: the story continues. Epilepsy Curr. 2013;13(6):289–290. doi: 10.5698/1535-7597-13.6.289. [http://dx.doi.org/10.5698/1535-7597-13.6.289]. [PMID: 24348131]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Kecskeméti V., Rusznák Z., Riba P., Pál B., Wagner R., Harasztosi C., Nánási P.P., Szûcs G. Norfluoxetine and fluoxetine have similar anticonvulsant and Ca2+ channel blocking potencies. Brain Res. Bull. 2005;67(1-2):126–132. doi: 10.1016/j.brainresbull.2005.06.027. [http://dx.doi.org/10. 1016/j.brainresbull.2005.06.027]. [PMID: 16140171]. [DOI] [PubMed] [Google Scholar]
- 129.Upton N., Stean T., Middlemiss D., Blackburn T., Kennett G. Studies on the role of 5-HT2C and 5-HT2B receptors in regulating generalised seizure threshold in rodents. Eur. J. Pharmacol. 1998;359(1):33–40. doi: 10.1016/s0014-2999(98)00621-9. [http://dx.doi.org/10.1016/S0014-2999(98)00621-9]. [PMID: 9831290]. [DOI] [PubMed] [Google Scholar]
- 130.Tecott L.H., Sun L.M., Akana S.F., Strack A.M., Lowenstein D.H., Dallman M.F., Julius D. Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature. 1995;374(6522):542–546. doi: 10.1038/374542a0. [http://dx.doi.org/10.1038/374542a0]. [PMID: 7700379]. [DOI] [PubMed] [Google Scholar]
- 131.Brennan T.J., Seeley W.W., Kilgard M., Schreiner C.E., Tecott L.H. Sound-induced seizures in serotonin 5-HT2c receptor mutant mice. Nat. Genet. 1997;16(4):387–390. doi: 10.1038/ng0897-387. [http://dx.doi.org/10.1038/ ng0897-387]. [PMID: 9241279]. [DOI] [PubMed] [Google Scholar]
- 132.Applegate C.D., Tecott L.H. Global increases in seizure susceptibility in mice lacking 5-HT2C receptors: A behavioral analysis. Exp. Neurol. 1998;154(2):522–530. doi: 10.1006/exnr.1998.6901. [http://dx.doi.org/10.1006/ exnr.1998.6901]. [PMID: 9878187]. [DOI] [PubMed] [Google Scholar]
- 133.Mendes de Freitas R., Aguiar L.M.V., Vasconcelos S.M.M., Sousa F.C.F., Viana G.S.B., Fonteles M.M.F. Modifications in muscarinic, dopaminergic and serotonergic receptors concentrations in the hippocampus and striatum of epileptic rats. Life Sci. 2005;78(3):253–258. doi: 10.1016/j.lfs.2005.04.045. [http://dx.doi.org/10.1016/j.lfs.2005.04.045]. [PMID: 16137708]. [DOI] [PubMed] [Google Scholar]
- 134.O’Dell L.E., Kreifeldt M.J., George F.R., Ritz M.C. The role of serotonin(2) receptors in mediating cocaine-induced convulsions. Pharmacol. Biochem. Behav. 2000;65(4):677–681. doi: 10.1016/s0091-3057(99)00253-1. [http://dx. doi.org/10.1016/S0091-3057(99)00253-1]. [PMID: 10764922]. [DOI] [PubMed] [Google Scholar]
- 135.Gholipour T., Ghasemi M., Riazi K., Ghaffarpour M., Dehpour A.R. Seizure susceptibility alteration through 5-HT(3) receptor: modulation by nitric oxide. Seizure. 2010;19(1):17–22. doi: 10.1016/j.seizure.2009.10.006. [http://dx. doi.org/10.1016/j.seizure.2009.10.006]. [PMID: 19942458]. [DOI] [PubMed] [Google Scholar]
- 136.Singh N.N., Rai A., Selhorst J.B., Acharya J.N. Ondansetron and seizures. Epilepsia. 2009;50(12):2663–2666. doi: 10.1111/j.1528-1167.2009.02139.x. [http://dx.doi.org/10. 1111/j.1528-1167.2009.02139.x]. [PMID: 19490041]. [DOI] [PubMed] [Google Scholar]
- 137.Park P.G., Shin H.Y., Kang H., Jung Y.H., Woo Y.C., Kim J.Y., Koo G.H., Park S.G., Baek C.W. Seizure developed after palonosetron intravenous injection during recovery from general anesthesia -A case report-. Korean J. Anesthesiol. 2012;63(2):173–176. doi: 10.4097/kjae.2012.63.2.173. [http://dx.doi.org/10.4097/kjae.2012.63.2.173]. [PMID: 22949988]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Payandemehr B., Bahremand A., Rahimian R., Ziai P., Amouzegar A., Sharifzadeh M., Dehpour A.R. 5-HT(3) receptor mediates the dose-dependent effects of citalopram on pentylenetetrazole-induced clonic seizure in mice: involvement of nitric oxide. Epilepsy Res. 2012;101(3):217–227. doi: 10.1016/j.eplepsyres.2012.04.004. [http://dx.doi.org/10.1016/ j.eplepsyres.2012.04.004]. [PMID: 22578701]. [DOI] [PubMed] [Google Scholar]
- 139.Bahremand A., Payandemehr B., Rahimian R., Ziai P., Pourmand N., Loloee S., Ebrahimi A., Ghasemi A., Fakhfouri G., Ghasemi M., Dehpour A.R. The role of 5-HT(3) receptors in the additive anticonvulsant effects of citalopram and morphine on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav. 2011;21(2):122–127. doi: 10.1016/j.yebeh.2011.03.010. [http://dx.doi.org/10.1016/j.yebeh.2011.03. 010]. [PMID: 21531632]. [DOI] [PubMed] [Google Scholar]
- 140.Clinckers R., Smolders I., Meurs A., Ebinger G., Michotte Y. Anticonvulsant action of GBR-12909 and citalopram against acute experimentally induced limbic seizures. Neuropharmacology. 2004;47(7):1053–1061. doi: 10.1016/j.neuropharm.2004.07.032. [http://dx.doi.org/10.1016/j.neuropharm. 2004.07.032]. [PMID: 15555639]. [DOI] [PubMed] [Google Scholar]
- 141.Bagdy G., Kecskemeti V., Riba P., Jakus R. Serotonin and epilepsy. J. Neurochem. 2007;100(4):857–873. doi: 10.1111/j.1471-4159.2006.04277.x. [http://dx.doi.org/10. 1111/j.1471-4159.2006.04277.x]. [PMID: 17212700]. [DOI] [PubMed] [Google Scholar]
- 142.Löscher W. Genetic animal models of epilepsy as a unique resource for the evaluation of anticonvulsant drugs. A review. Methods Find. Exp. Clin. Pharmacol. 1984;6(9):531–547. [PMID: 6439966]. [PubMed] [Google Scholar]
- 143.Prendiville S., Gale K. Anticonvulsant effect of fluoxetine on focally evoked limbic motor seizures in rats. Epilepsia. 1993;34(2):381–384. doi: 10.1111/j.1528-1157.1993.tb02425.x. [http://dx.doi.org/10.1111/j.1528-1157.1993.tb02425.x]. [PMID: 8384110]. [DOI] [PubMed] [Google Scholar]
- 144.Yan Q.S., Jobe P.C., Cheong J.H., Ko K.H., Dailey J.W. Role of serotonin in the anticonvulsant effect of fluoxetine in genetically epilepsy-prone rats. Naunyn Schmiedebergs Arch. Pharmacol. 1994;350(2):149–152. doi: 10.1007/BF00241089. [http://dx.doi.org/10.1007/BF00241089]. [PMID: 7527501]. [DOI] [PubMed] [Google Scholar]
- 145.Wada Y., Hasegawa H., Nakamura M., Yamaguchi N. Serotonergic inhibition of limbic and thalamic seizures in cats. Neuropsychobiology. 1992;25(2):87–90. doi: 10.1159/000118813. [http://dx.doi.org/10.1159/000118813]. [PMID: 1625780]. [DOI] [PubMed] [Google Scholar]
- 146.Pranzatelli M.R., Tate E., Huang Y., Haas R.H., Bodensteiner J., Ashwal S., Franz D. Neuropharmacology of progressive myoclonus epilepsy: response to 5-hydroxy-L-tryptophan. Epilepsia. 1995;36(8):783–791. doi: 10.1111/j.1528-1157.1995.tb01615.x. [http://dx.doi.org/10.1111/j.1528-1157.1995. tb01615.x]. [PMID: 7543407]. [DOI] [PubMed] [Google Scholar]
- 147.Van Woert M.H., Rosenbaum D., Howieson J., Bowers M.B., Jr Long-term therapy of myoclonus and other neurologic disorders with L-5-hydroxytryptophan and carbidopa. N. Engl. J. Med. 1977;296(2):70–75. doi: 10.1056/NEJM197701132960203. [http://dx.doi.org/10.1056/NEJM197701132960203]. [PMID: 401457]. [DOI] [PubMed] [Google Scholar]
- 148.Thal L.J., Sharpless N.S., Wolfson L., Katzman R. Treatment of myoclonus with L-5-hydroxytryptophan and carbidopa: Clinical, electrophysiological, and biochemical observations. Ann. Neurol. 1980;7(6):570–576. doi: 10.1002/ana.410070611. [http://dx.doi.org/10.1002/ana.410070611]. [PMID: 6969054]. [DOI] [PubMed] [Google Scholar]
- 149.Naffah-Mazzacoratti M.G., Amado D., Cukiert A., Gronich G., Marino R., Calderazzo L., Cavalheiro E.A. Monoamines and their metabolites in cerebrospinal fluid and temporal cortex of epileptic patients. Epilepsy Res. 1996;25(2):133–137. doi: 10.1016/0920-1211(96)00030-7. [http://dx. doi.org/10.1016/0920-1211(96)00030-7]. [PMID: 8884171]. [DOI] [PubMed] [Google Scholar]
- 150.Magyar J., Rusznák Z., Harasztosi C., Körtvély A., Pacher P., Bányász T., Pankucsi C., Kovács L., Szûcs G., Nánási P.P., Kecskeméti V. Differential effects of fluoxetine enantiomers in mammalian neural and cardiac tissues. Int. J. Mol. Med. 2003;11(4):535–542. [PMID: 12632110]. [PubMed] [Google Scholar]
- 151.Dailey J.W., Yan Q.S., Mishra P.K., Burger R.L., Jobe P.C. Effects of fluoxetine on convulsions and on brain serotonin as detected by microdialysis in genetically epilepsy-prone rats. J. Pharmacol. Exp. Ther. 1992;260(2):533–540. [PMID: 1738103]. [PubMed] [Google Scholar]
- 152.Faingold C.L., Kommajosyula S.P., Long X., Plath K., Randall M. Serotonin and sudden death: differential effects of serotonergic drugs on seizure-induced respiratory arrest in DBA/1 mice. Epilepsy Behav. 2014;37:198–203. doi: 10.1016/j.yebeh.2014.06.028. [http://dx.doi.org/10.1016/j.yebeh.2014.06.028]. [PMID: 25064738]. [DOI] [PubMed] [Google Scholar]
- 153.Faingold C.L., Tupal S., Randall M. Prevention of seizure-induced sudden death in a chronic SUDEP model by semichronic administration of a selective serotonin reuptake inhibitor. Epilepsy Behav. 2011;22(2):186–190. doi: 10.1016/j.yebeh.2011.06.015. [http://dx.doi.org/10.1016/j.yebeh. 2011.06.015]. [PMID: 21783426]. [DOI] [PubMed] [Google Scholar]
- 154.Hodges M.R., Richerson G.B. The role of medullary serotonin (5-HT) neurons in respiratory control: Contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation. J. Appl. Physiol. 2010;108(5):1425–1432. doi: 10.1152/japplphysiol.01270.2009. [http://dx.doi.org/10.1152/japplphysiol. 01270.2009]. [PMID: 20133432]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Benarroch E.E. Brainstem respiratory control: Substrates of respiratory failure of multiple system atrophy. Mov. Disord. 2007;22(2):155–161. doi: 10.1002/mds.21236. [http://dx.doi.org/10.1002/mds.21236]. [PMID: 17133520]. [DOI] [PubMed] [Google Scholar]
- 156.Borowicz K.K., Piskorska B., Stępniak B., Czuczwar S.J. Effects of fluoxetine on the anticonvulsant action of valproate and ethosuximide in mouse model of myoclonic convulsions. Ann. Agric. Environ. Med. 2012;19(3):487–490. [PMID: 23020044]. [PubMed] [Google Scholar]
- 157.Leander J.D. Fluoxetine, a selective serotonin-uptake inhibitor, enhances the anticonvulsant effects of phenytoin, carbamazepine, and ameltolide (LY201116). Epilepsia. 1992;33(3):573–576. doi: 10.1111/j.1528-1157.1992.tb01712.x. [http://dx.doi.org/10.1111/j.1528-1157.1992.tb01712.x]. [PMID: 1534297]. [DOI] [PubMed] [Google Scholar]
- 158.Borowicz K.K., Piskorska B., Stępniak B., Czuczwar S.J. Effects of fluoxetine on the anticonvulsant action of valproate and ethosuximide in mouse model of myoclonic convulsions. Ann. Agric. Environ. Med. 2012;19(3):487–490. [PMID: 23020044]. [PubMed] [Google Scholar]
- 159.Favale E., Rubino V., Mainardi P., Lunardi G., Albano C. Anticonvulsant effect of fluoxetine in humans. Neurology. 1995;45(10):1926–1927. doi: 10.1212/wnl.45.10.1926. [http://dx.doi.org/10.1212/WNL.45.10.1926]. [PMID: 7477995]. [DOI] [PubMed] [Google Scholar]
- 160.Zienowicz M., Wisłowska A., Lehner M., Taracha E., Skórzewska A., Maciejak P., Płaźnik A. The effect of fluoxetine in a model of chemically induced seizures--behavioral and immunocytochemical study. Neurosci. Lett. 2005;373(3):226–231. doi: 10.1016/j.neulet.2004.10.009. [http://dx.doi.org/10.1016/j.neulet.2004.10.009]. [PMID: 15619548]. [DOI] [PubMed] [Google Scholar]
- 161.Dobesberger J., Ristic A.J., Walser G., Höfler J., Unterberger I., Trinka E. Selective serotonin reuptake inhibitors prolong seizures - preliminary results from an observational study. Clin. Neurol. Neurosurg. 2014;120:89–92. doi: 10.1016/j.clineuro.2014.02.023. [http://dx.doi.org/10.1016/j.clineuro. 2014.02.023]. [PMID: 24731583]. [DOI] [PubMed] [Google Scholar]
- 162.Bradley A.J., Lenox-Smith A.J. Does adding noradrenaline reuptake inhibition to selective serotonin reuptake inhibition improve efficacy in patients with depression? A systematic review of meta-analyses and large randomised pragmatic trials. J. Psychopharmacol. (Oxford) 2013;27(8):740–758. doi: 10.1177/0269881113494937. [http://dx.doi.org/10.1177/ 0269881113494937]. [PMID: 23832963]. [DOI] [PubMed] [Google Scholar]
- 163.Grone B.P., Baraban S.C. Animal models in epilepsy research: legacies and new directions. Nat. Neurosci. 2015;18(3):339–343. doi: 10.1038/nn.3934. [http://dx.doi.org/10.1038/nn.3934]. [PMID: 25710835]. [DOI] [PubMed] [Google Scholar]
- 164.Berends A.C., Luiten P.G., Nyakas C. A review of the neuroprotective properties of the 5-HT1A receptor agonist repinotan HCl (BAYx3702) in ischemic stroke. CNS Drug Rev. 2005;11(4):379–402. doi: 10.1111/j.1527-3458.2005.tb00055.x. [http://dx.doi.org/10.1111/j.1527-3458.2005.tb00055.x]. [PMID: 16614737]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Marco I., Valhondo M., Martín-Fontecha M., Vázquez-Villa H., Del Río J., Planas A., Sagredo O., Ramos J.A., Torrecillas I.R., Pardo L., Frechilla D., Benhamú B. López-Rodríguez, M.L. New serotonin 5-HT(1A) receptor agonists with neuroprotective effect against ischemic cell damage. J. Med. Chem. 2011;54(23):7986–7999. doi: 10.1021/jm2007886. [http://dx.doi.org/10.1021/jm2007886]. [PMID: 22029386]. [DOI] [PubMed] [Google Scholar]
- 166.Li I.H., Huang W.S., Shiue C.Y., Huang Y.Y., Liu R.S., Chyueh S.C., Hu S.H., Liao M.H., Shen L.H., Liu J.C., Ma K.H. Study on the neuroprotective effect of fluoxetine against MDMA-induced neurotoxicity on the serotonin transporter in rat brain using micro-PET. Neuroimage. 2010;49(2):1259–1270. doi: 10.1016/j.neuroimage.2009.07.072. [http://dx.doi.org/10.1016/j.neuroimage.2009.07.072]. [PMID: 19682588]. [DOI] [PubMed] [Google Scholar]
- 167.Sanchez V., Camarero J., Esteban B., Peter M.J., Green A.R., Colado M.I. The mechanisms involved in the long-lasting neuroprotective effect of fluoxetine against MDMA (‘ecstasy’)-induced degeneration of 5-HT nerve endings in rat brain. Br. J. Pharmacol. 2001;134(1):46–57. doi: 10.1038/sj.bjp.0704230. [http://dx.doi.org/10.1038/sj.bjp.0704230]. [PMID: 11522596]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168.Choi H.S., Park J.H., Ahn J.H., Hong S., Cho J.H., Won M.H., Lee C.H. The anti-inflammatory activity of duloxetine, a serotonin/norepinephrine reuptake inhibitor, prevents kainic acid-induced hippocampal neuronal death in mice. J. Neurol. Sci. 2015;358(1-2):390–397. doi: 10.1016/j.jns.2015.10.001. [http://dx.doi.org/10.1016/j.jns.2015.10.001]. [PMID: 26453128]. [DOI] [PubMed] [Google Scholar]
- 169.Salazar-Colocho P., Del Río J., Frechilla D. Neuroprotective effects of serotonin 5-HT 1A receptor activation against ischemic cell damage in gerbil hippocampus: Involvement of NMDA receptor NR1 subunit and BDNF. Brain Res. 2008;1199:159–166. doi: 10.1016/j.brainres.2007.12.032. [http:// dx.doi.org/10.1016/j.brainres.2007.12.032]. [PMID: 18269931]. [DOI] [PubMed] [Google Scholar]
- 170.Bode-Greuel K.M., Klisch J., Horváth E., Glaser T., Traber J. Effects of 5-hydroxytryptamine1A-receptor agonists on hippocampal damage after transient forebrain ischemia in the Mongolian gerbil. Stroke. 1990;21(12) Suppl.:IV164–IV166. [PMID: 2148036]. [PubMed] [Google Scholar]
- 171.Ethell I.M., Pasquale E.B. Molecular mechanisms of dendritic spine development and remodeling. Prog. Neurobiol. 2005;75(3):161–205. doi: 10.1016/j.pneurobio.2005.02.003. [http://dx.doi.org/10.1016/j.pneurobio.2005.02.003]. [PMID: 15882774]. [DOI] [PubMed] [Google Scholar]
- 172.Butler A.K., Uryu K., Chesselet M.F. A role for N-methyl-D-aspartate receptors in the regulation of synaptogenesis and expression of the polysialylated form of the neural cell adhesion molecule in the developing striatum. Dev. Neurosci. 1998;20(2-3):253–262. doi: 10.1159/000017319. [http://dx.doi.org/10.1159/000017319]. [PMID: 9691199]. [DOI] [PubMed] [Google Scholar]
- 173.McKinney R.A., Capogna M., Dürr R., Gähwiler B.H., Thompson S.M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat. Neurosci. 1999;2(1):44–49. doi: 10.1038/4548. [http://dx.doi.org/10.1038/4548]. [PMID: 10195179]. [DOI] [PubMed] [Google Scholar]
- 174.Cooke B.M., Woolley C.S. Gonadal hormone modulation of dendrites in the mammalian CNS. J. Neurobiol. 2005;64(1):34–46. doi: 10.1002/neu.20143. [http://dx.doi.org/10.1002/neu.20143]. [PMID: 15884004]. [DOI] [PubMed] [Google Scholar]
- 175.Hao J., Janssen W.G., Tang Y., Roberts J.A., McKay H., Lasley B., Allen P.B., Greengard P., Rapp P.R., Kordower J.H., Hof P.R., Morrison J.H. Estrogen increases the number of spinophilin-immunoreactive spines in the hippocampus of young and aged female rhesus monkeys. J. Comp. Neurol. 2003;465(4):540–550. doi: 10.1002/cne.10837. [http://dx.doi.org/10.1002/cne.10837]. [PMID: 12975814]. [DOI] [PubMed] [Google Scholar]
- 176.Hao J., Rapp P.R., Leffler A.E., Leffler S.R., Janssen W.G., Lou W., McKay H., Roberts J.A., Wearne S.L., Hof P.R., Morrison J.H. Estrogen alters spine number and morphology in prefrontal cortex of aged female rhesus monkeys. J. Neurosci. 2006;26(9):2571–2578. doi: 10.1523/JNEUROSCI.3440-05.2006. [http://dx.doi.org/10.1523/JNEUROSCI.3440-05.2006]. [PMID: 16510735]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 177.Murphy D.D., Cole N.B., Segal M. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons. Proc. Natl. Acad. Sci. USA. 1998;95(19):11412–11417. doi: 10.1073/pnas.95.19.11412. [http://dx.doi.org/10.1073/pnas.95.19.11412]. [PMID: 9736750]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 178.Liu F., Day M., Muñiz L.C., Bitran D., Arias R., Revilla-Sanchez R., Grauer S., Zhang G., Kelley C., Pulito V., Sung A., Mervis R.F., Navarra R., Hirst W.D., Reinhart P.H., Marquis K.L., Moss S.J., Pangalos M.N., Brandon N.J. Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory. Nat. Neurosci. 2008;11(3):334–343. doi: 10.1038/nn2057. [http://dx.doi.org/10.1038/nn2057]. [PMID: 18297067]. [DOI] [PubMed] [Google Scholar]
- 179.Srivastava D.P., Woolfrey K.M., Liu F., Brandon N.J., Penzes P. Estrogen receptor ß activity modulates synaptic signaling and structure. J. Neurosci. 2010;30(40):13454–13460. doi: 10.1523/JNEUROSCI.3264-10.2010. [http://dx.doi. org/10.1523/JNEUROSCI.3264-10.2010]. [PMID: 20926671]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 180.Gundlah C., Kohama S.G., Mirkes S.J., Garyfallou V.T., Urbanski H.F., Bethea C.L. Distribution of estrogen receptor beta (ERbeta) mRNA in hypothalamus, midbrain and temporal lobe of spayed macaque: continued expression with hormone replacement. Brain Res. Mol. Brain Res. 2000;76(2):191–204. doi: 10.1016/s0006-8993(99)02475-0. [http://dx. doi.org/10.1016/S0006-8993(99)02475-0]. [PMID: 10762694]. [DOI] [PubMed] [Google Scholar]
- 181.Gundlah C., Lu N.Z., Mirkes S.J., Bethea C.L. Estrogen receptor beta (ERbeta) mRNA and protein in serotonin neurons of macaques. Brain Res. Mol. Brain Res. 2001;91(1-2):14–22. doi: 10.1016/s0169-328x(01)00108-5. [http:// dx.doi.org/10.1016/S0169-328X(01)00108-5]. [PMID: 11457488]. [DOI] [PubMed] [Google Scholar]
- 182.Bethea C.L., Reddy A.P. Effect of ovarian hormones on genes promoting dendritic spines in laser-captured serotonin neurons from macaques. Mol. Psychiatry. 2010;15(10):1034–1044. doi: 10.1038/mp.2009.78. [http://dx.doi.org/10.1038/mp.2009.78]. [PMID: 19687787]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Maswood S., Truitt W., Hotema M., Caldarola-Pastuszka M., Uphouse L. Estrous cycle modulation of extracellular serotonin in mediobasal hypothalamus: role of the serotonin transporter and terminal autoreceptors. Brain Res. 1999;831(1-2):146–154. doi: 10.1016/s0006-8993(99)01439-0. [http:// dx.doi.org/10.1016/S0006-8993(99)01439-0]. [PMID: 10411994]. [DOI] [PubMed] [Google Scholar]
- 184.Gonzales G.F., Carrillo C. Blood serotonin levels in postmenopausal women: effects of age and serum oestradiol levels. Maturitas. 1993;17(1):23–29. doi: 10.1016/0378-5122(93)90120-7. [http://dx.doi.org/10.1016/0378-5122(93) 90120-7]. [PMID: 8412840]. [DOI] [PubMed] [Google Scholar]
- 185.Bethea C.L., Mirkes S.J., Shively C.A., Adams M.R. Steroid regulation of tryptophan hydroxylase protein in the dorsal raphe of macaques. Biol. Psychiatry. 2000;47(6):562–576. doi: 10.1016/s0006-3223(99)00156-0. [http://dx. doi.org/10.1016/S0006-3223(99)00156-0]. [PMID: 10715363]. [DOI] [PubMed] [Google Scholar]
- 186.Blum I., Vered Y., Lifshitz A., Harel D., Blum M., Nordenberg Y., Harsat A., Sulkes J., Gabbay U., Graff E. The effect of estrogen replacement therapy on plasma serotonin and catecholamines of postmenopausal women. Isr. J. Med. Sci. 1996;32(12):1158–1162. [PMID: 9007144]. [PubMed] [Google Scholar]
- 187.Sze J.Y., Victor M., Loer C., Shi Y., Ruvkun G. Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature. 2000;403(6769):560–564. doi: 10.1038/35000609. [http://dx.doi. org/10.1038/35000609]. [PMID: 10676966]. [DOI] [PubMed] [Google Scholar]
- 188.Pecins-Thompson M., Brown N.A., Bethea C.L. Regulation of serotonin re-uptake transporter mRNA expression by ovarian steroids in rhesus macaques. Brain Res. Mol. Brain Res. 1998;53(1-2):120–129. doi: 10.1016/s0169-328x(97)00286-6. [http://dx.doi.org/10.1016/S0169-328X(97)00286-6]. [PMID: 9473622]. [DOI] [PubMed] [Google Scholar]
- 189.Ofir R., Tamir S., Khatib S., Vaya J. Inhibition of serotonin re-uptake by licorice constituents. J. Mol. Neurosci. 2003;20(2):135–140. doi: 10.1385/JMN:20:2:135. [http://dx.doi.org/10.1385/JMN:20:2:135]. [PMID: 12794307]. [DOI] [PubMed] [Google Scholar]
- 190.Sherwin B. In: Menopause, early aging and elderly women. Psychopharmacology and Women: Sex, Gender and Hormones; Jensvold, M.F.; Halbriech, U. Hamilton J.A., editor. Washington, DC: American Psychiatric Press; 1996. pp. 225–237. [Google Scholar]
- 191.McQueen J.K., Wilson H., Fink G. Estradiol-17 beta increases serotonin transporter (SERT) mRNA levels and the density of SERT-binding sites in female rat brain. Brain Res. Mol. Brain Res. 1997;45(1):13–23. doi: 10.1016/s0169-328x(96)00233-1. [http://dx.doi.org/10.1016/S0169-328X(96) 00233-1]. [PMID: 9105666]. [DOI] [PubMed] [Google Scholar]
- 192.Pecins-Thompson M., Brown N.A., Kohama S.G., Bethea C.L. Ovarian steroid regulation of tryptophan hydroxylase mRNA expression in rhesus macaques. J. Neurosci. 1996;16(21):7021–7029. doi: 10.1523/JNEUROSCI.16-21-07021.1996. [http://dx.doi.org/10.1523/JNEUROSCI.16-21-07021.1996]. [PMID: 8824338]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 193.Fink G., Sumner B.E., Rosie R., Grace O., Quinn J.P. Estrogen control of central neurotransmission: effect on mood, mental state, and memory. Cell. Mol. Neurobiol. 1996;16(3):325–344. doi: 10.1007/BF02088099. [http://dx.doi.org/10.1007/BF02088099]. [PMID: 8818400]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 194.Benmansour S., Privratsky A.A., Adeniji O.S., Frazer A. Signaling mechanisms involved in the acute effects of estradiol on 5-HT clearance. Int. J. Neuropsychopharmacol. 2014;17(5):765–777. doi: 10.1017/S146114571300165X. [http://dx.doi.org/10.1017/S146114571300165X]. [PMID: 24423185]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 195.Cheng G., Li Y., Omoto Y., Wang Y., Berg T., Nord M., Vihko P., Warner M., Piao Y.S., Gustafsson J.A. Differential regulation of estrogen receptor (ER)alpha and ERbeta in primate mammary gland. J. Clin. Endocrinol. Metab. 2005;90(1):435–444. doi: 10.1210/jc.2004-0861. [http://dx.doi.org/10.1210/jc.2004-0861]. [PMID: 15507513]. [DOI] [PubMed] [Google Scholar]
- 196.Wissink S., van der Burg B., Katzenellenbogen B.S., van der Saag P.T. Synergistic activation of the serotonin-1A receptor by nuclear factor-kappa B and estrogen. Mol. Endocrinol. 2001;15(4):543–552. doi: 10.1210/mend.15.4.0629. [PMID: 11266506]. [DOI] [PubMed] [Google Scholar]
- 197.Ostlund H., Keller E., Hurd Y.L. Estrogen receptor gene expression in relation to neuropsychiatric disorders. Ann. N. Y. Acad. Sci. 2003;1007:54–63. doi: 10.1196/annals.1286.006. [http://dx.doi.org/10.1196/annals.1286.006]. [PMID: 14993040]. [DOI] [PubMed] [Google Scholar]
- 198.Sumner B.E., Grant K.E., Rosie R., Hegele-Hartung C., Fritzemeier K.H., Fink G. Effects of tamoxifen on serotonin transporter and 5-hydroxytryptamine(2A) receptor binding sites and mRNA levels in the brain of ovariectomized rats with or without acute estradiol replacement. Brain Res. Mol. Brain Res. 1999;73(1-2):119–128. doi: 10.1016/s0169-328x(99)00243-0. [http://dx.doi.org/10.1016/S0169-328X(99)00243-0]. [PMID: 10581405]. [DOI] [PubMed] [Google Scholar]
- 199.Amiri G.S., Mohammad J.R., Algazo M., Rahimi N., Alshaib H., Dehpour A.R. Genistein modulation of seizure: involvement of estrogen and serotonin receptors. J. Nat. Med. 2017;71(3):537–544. doi: 10.1007/s11418-017-1088-3. [http://dx.doi.org/10.1007/s11418-017-1088-3]. [PMID: 28439683]. [DOI] [PubMed] [Google Scholar]
- 200.Ojemann L.M., Friel P.N., Trejo W.J., Dudley D.L. Effect of doxepin on seizure frequency in depressed epileptic patients. Neurology. 1983;33(5):646–648. doi: 10.1212/wnl.33.5.646. [http://dx.doi.org/10.1212/WNL. 33.5.646]. [PMID: 6682502]. [DOI] [PubMed] [Google Scholar]