Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2019 Apr 4;8(14):e00194-19. doi: 10.1128/MRA.00194-19

Draft Genome Sequences of 38 Serratia marcescens Isolates Associated with Acroporid Serratiosis

Nicole C Elledge a,#, Ron I Eytan b,#, Lee J Pinnell a, Reavelyn Pray a, Jessica L Joyner c,d,*, John P Wares c,e, Kathryn P Sutherland f, Erin K Lipp d, Jeffrey W Turner a,
Editor: J Cameron Thrashg
PMCID: PMC6449557  PMID: 30948466

Serratia marcescens is a Gram-negative bacterium causally linked to acroporid serratiosis, a form of white pox disease implicated in the decline of elkhorn corals. We report draft genomes of 38 S. marcescens isolates collected from host and nonhost sources.

ABSTRACT

Serratia marcescens is a Gram-negative bacterium causally linked to acroporid serratiosis, a form of white pox disease implicated in the decline of elkhorn corals. We report draft genomes of 38 S. marcescens isolates collected from host and nonhost sources. The availability of these genomes will aid future analyses of acroporid serratiosis.

ANNOUNCEMENT

Serratia marcescens is a widely distributed Gram-negative bacillus within the Enterobacteriaceae family (1). The species has long been recognized as an important pathogen of humans (1, 2), insects (35), and plants (6). Two ecotypes (pulsed-field gel electrophoresis [PFGE] types PDL100 and PDR60) were identified as causative agents of acroporid serratiosis (a form of white pox disease) in reef-building Acropora palmata corals (7, 8). Given the ecological importance of A. palmata, it is imperative to gain a better understanding of the genetic mechanisms underlying acroporid serratiosis and what sets the PDL100 and PDR60 ecotypes apart from other pathogenic strains.

Thirty-five S. marcescens PDR60 isolates were collected from a range of host (A. palmata) and nonhost (Siderastrea siderea and Solenastrea bournoni corals, corallivorous snail Coralliophila abbreviata, and wastewater) sources throughout the Florida Keys National Marine Sanctuary (Table 1) (810). The WWI31 isolate (obtained from wastewater influent) was virulent against A. palmata but had a novel PFGE pattern (8). The PDL100 isolate was obtained previously from diseased A. palmata in 1999 (7), and the ATCC 13880 isolate was obtained by others from pond water in the Czech Republic and deposited to ATCC in 1961. Starting with glycerol stocks, each isolate was streaked onto Trypticase soy agar plates (37°C overnight), and isolated colonies were grown in lysogeny broth (37°C overnight with shaking). Total DNA for Illumina sequencing was isolated using a Qiagen DNeasy blood and tissue kit (Qiagen, Valencia, CA, USA) per the manufacturer’s instructions. Genomic DNA for PacBio sequencing was isolated using a cetyltrimethylammonium bromide protocol (11). Illumina sequencing libraries were prepared using a PCR-free TrueSeq DNA kit (Illumina, San Diego, CA, USA) and sequenced at Hudson Alpha Institute for Biotechnology (Huntsville, AL, USA) using paired-end chemistry with 250-bp (EL1 and EL119), 150-bp (EL1, EL119, and KS10), or 100-bp (remaining 35 isolates) read lengths. Additionally, six isolates (EL1, EL116, EL119, EL41, EL60, and KS10) were also sequenced on three PacBio single-molecule real-time (SMRT) cells at the Interdisciplinary Center for Biotechnology Research (University of Florida, Gainesville, FL, USA). Adapter sequences and low-quality bases were removed from Illumina reads with TrimGalore! version 0.4.0 (options, -paired and -retain_unpaired) (12). The processed reads were assembled de novo with Velvet version 1.2.10 (options -scaffolding, no; -exp_cov, 80; -cov_cutoff, 10; -min_contig_lgth, 500) (13) using the k-mer sizes listed in Table 1. Hybrid assemblies were constructed with MaSuRCA version 3.2.1 (options, default) (14) using the mean insert sizes and insert size standard deviations calculated with BWA (15). Assembly metrics were determined using QUAST version 5.0.2 (options, default) (16). All genomes were annotated using the National Center for Biotechnology Information (NCBI) Prokaryotic Genome Annotation Pipeline (PGAP) (17).

TABLE 1.

Accession numbers, genome assembly metrics, and sources for the 38 S. marcescens isolatesa

Isolate Accession no. k-mer size No. of contigs N50 value G+C content (%) Genome size (bp) Coverage (×) No. of genes Source
EL1b CP027796 77 2 5,201,691 59.46 5,240,588 776 4,887 S. siderea
EL116b PXZP00000000 51 6 1,493,212 59.47 5,254,956 87 4,958 A. palmata
EL119b PXZQ00000000 77 3 4,696,493 59.45 5,250,706 712 4,895 A. palmata
EL41b PXZR00000000 51 7 1,445,005 59.46 5,263,255 81 4,998 Wastewater influent
EL60b PXZS00000000 51 12 621,937 59.45 5,223,299 317 4,957 A. palmata
KS10b CP027798 77 2 5,199,459 59.45 5,238,337 152 4,882 C. abbreviata
EL3 RCEP00000000 29 300 43,061 59.34 5,261,854 20 5,110 S. siderea
EL6 RCEO00000000 33 386 28,046 59.43 5,272,664 20 5,146 S. siderea
EL84 RCEN00000000 25 221 51,500 59.46 5,178,755 17 5,037 C. abbreviata
EL85 RCEM00000000 27 319 39,739 59.41 5,216,376 19 5,133 C. abbreviata
EL95 RCEL00000000 25 469 24,414 59.39 5,160,448 18 5,238 A. palmata
EL96 RCEK00000000 23 576 18,069 59.32 5,209,705 19 5,321 A. palmata
EL97 RCEJ00000000 25 737 13,342 59.25 5,163,374 22 5,439 A. palmata
EL98 RCEI00000000 29 549 19,346 59.42 5,177,503 24 5,294 A. palmata
EL108 RCEG00000000 45 35 681,033 59.46 5,226,639 39 4,912 S. bournoni
EL109 RCEH00000000 27 424 26,182 59.36 5,274,065 22 5,209 S. bournoni
EL110 RCEF00000000 31 274 39,152 59.43 5,217,630 24 5,075 S. bournoni
EL113 RCEE00000000 25 251 52,631 59.45 5,193,348 19 5,064 A. palmata
EL114 RCED00000000 31 230 47,281 59.45 5,195,401 19 5,054 A. palmata
EL115 RCEC00000000 27 293 42,433 59.38 5,342,905 22 5,108 A. palmata
EL117 RCEB00000000 27 524 20,600 59.34 5,169,891 19 5,302 A. palmata
EL118 RCEA00000000 23 552 18,973 59.30 5,162,774 20 5,292 A. palmata
EL120 RCDZ00000000 23 522 22,383 59.31 5,228,290 21 5,292 A. palmata
EL121 RCDY00000000 23 497 20,434 59.31 5,224,848 18 5,264 A. palmata
EL122 RCDX00000000 23 546 19,553 59.33 5,210,136 20 5,285 A. palmata
KS1 RCDW00000000 31 509 20,965 59.43 5,176,180 29 5,247 C. abbreviata
KS5 RCDV00000000 29 493 20,749 59.41 5,189,506 25 5,266 C. abbreviata
KS9 RCDU00000000 25 372 29,264 59.40 5,165,351 19 5,152 C. abbreviata
KS12 RCDT00000000 31 299 39,028 59.29 5,312,456 21 5,107 C. abbreviata
KS16 RCDS00000000 35 262 42,604 59.46 5,193,145 24 5,037 C. abbreviata
KS23 RCDR00000000 31 194 57,502 59.60 5,172,913 22 4,921 C. abbreviata
KS25 RCDQ00000000 29 213 51,510 59.46 5,207,877 21 5,050 C. abbreviata
KS40 RCDP00000000 29 468 22,926 59.44 5,226,754 25 5,236 C. abbreviata
KS45 RCDO00000000 29 177 34,539 59.38 5,267,350 22 5,011 C. abbreviata
KS65 RCDN00000000 33 301 36,304 59.43 5,211,114 25 5,095 C. abbreviata
WWI31 RCDM00000000 27 324 34,866 59.86 5,127,259 16 5,009 Wastewater influent
PDL100c RCDL00000000 27 494 22,127 59.20 4,963,330 15 5,089 A. palmata
ATCC 13880d RWJO00000000 33 661 13,688 59.54 5,044,366 31 5,238 Pond water
a

All isolates, except the ATCC isolate, were collected in the Florida Keys National Marine Sanctuary (USA).

b

Hybrid assemblies.

c

Deposited to ATCC in 2002.

d

Deposited to ATCC in 1961.

Table 1 shows summaries of the 38 draft genome assemblies. The availability of these genomes will aid in more comprehensive analyses of S. marcescens and acroporid serratiosis.

Data availability.

This whole-genome shotgun project has been deposited in GenBank under the accession numbers listed in Table 1. The raw sequence reads were deposited in the Sequence Read Archive under the BioProject accession numbers PRJNA494152 (nonhybrid assemblies) and PRJNA438529 (hybrid assemblies).

ACKNOWLEDGMENT

This project was funded by NSF-NIH Ecology of Infectious Disease program grants EF1015342 (awarded to Erin K. Lipp and John P. Wares) and EF1015032 (awarded to Kathryn P. Sutherland).

REFERENCES

  • 1.Grimont PAD, Grimont F. 1978. The genus Serratia. Annu Rev Microbiol 32:221–248. doi: 10.1146/annurev.mi.32.100178.001253. [DOI] [PubMed] [Google Scholar]
  • 2.Hejazi A, Falkiner FR. 1997. Serratia marcescens. J Med Microbiol 46:903–912. doi: 10.1099/00222615-46-11-903. [DOI] [PubMed] [Google Scholar]
  • 3.Bell JV, King EG, Hamalle RJ. 1974. Interactions between bollworms, a braconid parasite, and the bacterium Serratia marcescens. Ann Entomol Soc Am 67:712–714. doi: 10.1093/aesa/67.4.712. [DOI] [Google Scholar]
  • 4.Lysenko O. 1985. Non-sporeforming bacteria pathogenic to insects: incidence and mechanisms. Annu Rev Microbiol 39:673–695. doi: 10.1146/annurev.mi.39.100185.003325. [DOI] [PubMed] [Google Scholar]
  • 5.Burritt NL, Foss NJ, Neeno-Eckwall EC, Church JO, Hilger AM, Hildebrand JA, Warshauer DM, Perna NT, Burritt JB. 2016. Sepsis and hemocyte loss in honey bees (Apis mellifera) infected with Serratia marcescens strain sicaria. PLoS One 11:e0167752. doi: 10.1371/journal.pone.0167752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Bruton BD, Mitchell F, Fletcher J, Pair SD, Wayadande A, Melcher U, Brady J, Bextine B, Popham TW. 2003. Serratia marcescens, a phloem-colonizing, squash bug-transmitted bacterium: causal agent of cucurbit yellow vine disease. Plant Dis 87:937–944. doi: 10.1094/PDIS.2003.87.8.937. [DOI] [PubMed] [Google Scholar]
  • 7.Patterson KL, Porter JW, Ritchie KB, Polson SW, Mueller E, Peters EC, Santavy DL, Smith GW. 2002. The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc Natl Acad Sci U S A 99:8725–8730. doi: 10.1073/pnas.092260099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Sutherland KP, Shaban S, Joyner JL, Porter JW, Lipp EK. 2011. Human pathogen shown to cause disease in the threatened elkhorn coral Acropora palmata. PLoS One 6:e23468. doi: 10.1371/journal.pone.0023468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Sutherland KP, Porter JW, Turner JW, Thomas BJ, Looney EE, Luna TP, Meyers MK, Futch JC, Lipp EK. 2010. Human sewage identified as likely source of white pox disease of the threatened Caribbean elkhorn coral, Acropora palmata. Environ Microbiol 12:1122–1131. doi: 10.1111/j.1462-2920.2010.02152.x. [DOI] [PubMed] [Google Scholar]
  • 10.Joyner JL, Sutherland KP, Kemp DW, Berry B, Griffin A, Porter JW, Amador MHB, Noren HKG, Lipp EK. 2015. Systematic analysis of white pox disease in Acropora palmata of the Florida Keys and the role of Serratia marcescens. Appl Environ Microbiol 81:4451–4457. doi: 10.1128/AEM.00116-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Wilson K. 2001. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 56:2.4.1–2.4.5. doi: 10.1002/0471142727.mb0204s56. [DOI] [PubMed] [Google Scholar]
  • 12.Krueger F. 2015. Trim galore. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.
  • 13.Zerbino D, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. doi: 10.1101/gr.074492.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. 2013. The MaSuRCA genome assembler. Bioinformatics 29:2669–2677. doi: 10.1093/bioinformatics/btt476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi: 10.1093/bioinformatics/btp324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi: 10.1093/bioinformatics/btt086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. doi: 10.1093/nar/gkw569. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

This whole-genome shotgun project has been deposited in GenBank under the accession numbers listed in Table 1. The raw sequence reads were deposited in the Sequence Read Archive under the BioProject accession numbers PRJNA494152 (nonhybrid assemblies) and PRJNA438529 (hybrid assemblies).


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES