Abstract
Sensory features are highly prevalent among children with autism spectrum disorders (ASD) and have been shown to cluster into four patterns of response, including hyperresponsiveness, hyporesponsiveness, enhanced perception, and sensory interests, repetitions and seeking behaviors. Given the lack of large-scale research on the differential effects of sensory response patterns on children’s participation in specific activities, this study investigated the extent to which sensory response patterns impacted six dimensions of children’s activity participation as measured by the Home and Community Activities Scale among a large, national sample of school aged children with ASD (n = 674). Using mixed model regression, results showed that sensory response patterns differentially impacted dimensions of activity participation, and associations were moderated by a number of child characteristics.
Keywords: Sensory processing, Autism, Participation
Introduction
Children with autism spectrum disorders (ASD) have been shown to participate in activities less frequently and with less variety as compared to children with typical development as well as other developmental disabilities (Hilton et al. 2008; LeVesser and Berg 2011; Marquenie et al. 2011; Orsmond et al. 2004; Potvin et al. 2012). Participation in everyday activities provides children with learning opportunities across contexts as well as provides avenues to practice and develop skills (Dunst et al. 2006; Humphry and Wakeford 2006). The limited activity participation among children with ASD likely has cascading effects on overall development, with fewer opportunities to practice and develop skills compounding and perpetuating their limitations.
Research has uncovered a number of child factors that contribute to decreased activity participation among children with ASD. For example, participation in social activities is inversely related to language ability and adaptive functioning in ASD (Orsmond et al. 2013; Shattuck et al. 2011). Further, cognition has been found negatively related to activity participation in children with developmental disabilities (Rosenberg et al. 2013; Wuang and Su 2012; Zingerevich and Patricia 2009) as well as in typical development (Rosenberg et al. 2011). In addition to such child characteristics, emerging evidence points to how sensory features, or unusual responses to sensory stimuli, contribute to the participation of children with ASD across a range of contexts (e.g., Hilton et al. 2007; Hochhauser and Engel-Yeger 2010; Reynolds et al. 2011). However, given the ubiquity and variability of sensory features across individuals with ASD, a large-scale investigation on the impact sensory features have on activity participation is needed. Such knowledge would increase our understanding of the impact of sensory response patterns on specific activities, potentially contributing to the design of intervention approaches aimed at increased activity participation.
Research suggests that sensory features cluster into four patterns of response in ASD, which include hyperresponsiveness (HYPER), hyporesponsiveness (HYPO), enhanced perception (EP) and sensory interests, repetitions and seeking behaviors (SIRS) (Ausderau et al. 2014b). HYPER is a sensitive or avoidant response to sensory stimuli (e.g., react negatively to touch) (Baranek et al. 2007; Schoen et al. 2008). HYPO is a lack of or delayed response to sensory stimuli (e.g., slow reaction to pain) (Ben-Sasson et al. 2009; Watson et al. 2011). SIRS is characterized by a fascination with or craving of sensory stimulation which is intense and may be repetitive in nature (e.g., fascination with lights) (Ben-Sasson et al. 2007; Liss et al. 2006). EP is characterized by superior acuity in the awareness of specific sensory stimuli and focus on specific elements of stimuli (e.g., superior ability to recognize auditory stimuli) (Mottron et al. 2009).
The behavioral presentation of sensory features is variable across individuals and sensory response patterns often co-occur in ASD (Ausderau et al. 2014a; Baranek et al. 2006; Ben-Sasson et al. 2009; Lane et al. 2014), which complicates their measurement. Sensory features in ASD are frequently measured using parent-report instruments (e.g., Sensory Profile, Dunn 1999; Short Sensory Profile, McIntosh et al. 1999; Sensory Processing Measure, Parham, Ecker, Miller Kuhaneck, Henry, and Glennon 2007) to capture the variability of children’s responses across contexts. Behavioral assessments have also been developed to more directly measure specific sensory response patterns (e.g., Sensory Over-Responsivity Scales Assessment, Schoen et al. 2008; Sensory Processing Assessment, Baranek 1999). It may be that different activities elicit specific sensory responses from children with ASD. For example, a child may demonstrate aversion (i.e., HYPER) during a painting activity, while not responding to his or her name (i.e., HYPO) during a social activity.
Sensory features in ASD have been linked with decreased activity participation in qualitative reports and studies using small samples using parent report measures (e.g., Bagby et al. 2012; Dickie et al. 2009; Schaaf et al. 2011), with findings consistently pointing to the negative impact of sensory sensitivities and sensory seeking. Research suggests that increased sensory sensitivities contribute to a lack of activity participation in the community (e.g., visiting restaurants or parks) (Hochhauser and Engel-Yeger 2010; Larson 2006; LeVesser and Berg 2011), with caregivers of children with ASD reporting that they often restrict activities to the home environment (Schaaf et al. 2011). The lack of community participation may be due to the unpredictability of sensory stimuli in such environments, and adults with ASD have reported that they preferred expected and predictable sensory input due to sensory sensitivities (Ashburner et al. 2013). Additionally, other studies found that sensory sensitivities and sensory seeking is associated with decreased social, school, and activity competence among school-aged children with ASD (Ashburner et al. 2008; Reynolds et al. 2011). Although the aforementioned studies provide evidence of the ways in which children’s sensory features impact participation, the extent to which specific sensory response patterns differentially impact activities remains unknown.
Study Aims
This study investigated the extent to which sensory response patterns (HYPER, HYPO, EP, SIRS) impacted the frequency of activity participation among school aged children with ASD. We also examined the moderating role of child factors (i.e., autism severity, chronological age, developmental age) on the associations between sensory response patterns and activity participation. We hypothesized that increased HYPER, HYPO, and SIRS would negatively impact children’s activity participation. Additionally, we hypothesized that chronological age and developmental age would be positively related to activity participation, whereas autism severity would be negatively related to activity participation. As previous research has not examined the impact of EP on children’s activity participation, we explored this relationship.
Methods
Procedure
Participants for this study (n = 674) were a subset of those recruited for a NICHD federally funded longitudinal study (n = 1307) using online survey methods. Participants were recruited through various autism advocacy organizations in the United States. The primary source of recruitment was the Interactive Autism Network (IAN), an online research registry for caregivers of children with ASD. Participants were also recruited through a university research registry and autism organizations (e.g., advocacy and parent groups), primarily via online methods such as listservs and Facebook. The larger study was longitudinal and collected data at two time points approximately 1 year apart using Qualtrics online survey software (Qualtrics Labs 2011). Data for the current analysis were drawn from the second time point, with the exception of the measure of autism severity (see “Measures” section). This study was approved by the University’s Institutional Review Board.
Participants
The current study survey response from 674 caregivers of school-aged children with ASD ages 5–12 years (mean 106.18 mos.; SD 25.92 mos.). Diagnoses of ASD were reported by parents; IAN authenticated the parent-report ASD diagnosis for a subset of individuals in their registry and showed a high level of corroboration (98 %) between parent reported and professional documentation of a diagnosis (Daniels et al. 2012). Exclusionary criteria were as follows: co-morbid conditions of ASD, such as Fragile X Syndrome; significant visual or hearing impairments; other developmental disabilities due to a genetic disorder or syndrome; physical impairments; psychiatric conditions such as schizophrenia; or seizure activity within the last 12 months. Consistent with study aims, the inclusion and exclusion criteria were developed to examine the effect of sensory response patterns on activity participation, which led to excluding children with primary sensory impairments and co-occurring conditions. Children with ASD often have multiple diagnoses that may have additional impact on their activity participation (Levy et al. 2010), and should be a focus in future research. Demographic information on the sample is shown in Table 1.
Table 1.
Sample demographics
Demographic variable | N (%) |
---|---|
Child gender | |
Male | 561 (83.2) |
Female | 113 (16.8) |
Child race/ethnicity | |
Caucasian | 578 (85.8) |
African-American | 16 (2.4) |
Hispanic | 51 (7.6) |
Asian | 7 (1.0) |
Other | 87 (12.9) |
Diagnostic category | |
Autism/autistic disorder | 342 (50.7) |
Asperger’s syndrome | 150 (22.3) |
PDD-NOS | 121 (18.0) |
Multiple ASD diagnoses | 61 (9.0) |
Respondent | |
Mother | 646 (95.8) |
Father | 23 (3.4) |
Grandmother | 2 (.3) |
Other primary | 3 (.4) |
Annual income | |
<$20,000 | 41 (6.1) |
$20,000–$39,999 | 99 (14.7) |
$40,000–$59,999 | 98 (14.5) |
$60,000–$79,999 | 106 (15.7) |
$80,000–$99,999 | 85 (12.6) |
$100,000 or more | 175 (26.0) |
Unknown | 70 (10.4) |
Autism severity mean (SD) | 106.94 (27.53) |
Developmental age mean (SD) | 62.44 mos. (25.84) |
Chronological age mean (SD) | 106.18 mos. (25.92) |
Measures
Home and Community Activities Scale (HCAS; Adapter from Dunst et al. 2000)
The HCAS is based on research by Dunst et al. (2000), in which 3300 children with or at-risk for developmental disabilities (DD) were surveyed to determine the settings of naturally occurring learning opportunities. The original version of the HCAS included a likert response scale (‘Not at All’ to ‘Always’) of how each activity was a setting in which a child learned or displayed a desired behavior. The current study used an adapted response scale, which measured the frequency of participation across 83 activities on a scale from never (0), monthly (1), weekly (2), to daily (3). An exploratory factor analytic study (Little et al. 2014) demonstrated that the HCAS measured six factors of activity participation, including: (1) Parent–Child Household Activities; (2) Community Activities; (3) Outdoor Activities; (4) Neighborhood-Social Activities; (5) Routine Errands; and (6) Faith-based Activities (see Table 2).
Table 2.
Descriptive statistics and example items
Study variables | Mean (SD) range | Example items |
---|---|---|
Parent–child household activities | 2.947 (.454) | Picking up toys |
1.50–3.857 | Adult/child play times | |
Community activities | 1.534 (.274) | Children’s festivals |
1.00–3.19 | Community celebrations | |
Routine errands | 2.473 (.580) | Doing errands |
1.00–4.00 | Going shopping | |
Neighborhood-social activities | 1.911 (.477) | Swimming |
1.00–3.571 | Having friends over to play | |
Outdoor activities | 1.575 (.457) | Hiking |
1.00–3.400 | Doing yard work | |
Faith-based activities | 1.834 (.777) | Going to church |
1.00–3.75 | Religious activities | |
Hyperresponsiveness* | −.181 (.951) | React sensitively to unexpected/loud sounds |
−2.394 to 2.620 | Dislike being in water | |
Hyporesponsiveness* | −.249 (.934) | Slow to react to pain |
−1.842 to 3.453 | Ignore or tune out loud noises | |
Enhanced perception* | −.134 (.903) | Notice minor changes in visual appearance of other people |
−2.313 to 2.691 | Notices smells before other people do | |
Sensory interests, repetitions, and seeking* | −.286 (.961) | Seem fascinated with sounds |
−2.277 to 2.316 | Stare at objects that spin or move |
Descriptives for sensory response pattern scores are based on factor scores
Sensory Experiences Questionnaire Version 3.0 (SEQ 3.0; Baranek 2009)
The SEQ 3.0 is a 105-item caregiver report tool that characterizes sensory features in children ages 2–12 years with ASD and/or DD. Ninety-seven items on the SEQ 3.0 measure the frequency of child responses to various sensory stimuli in the context of functional activities and daily routines using a 5-point Likert scale (i.e., 1 = almost never to 5 = almost always). Previous studies have shown good reliability and validity for earlier versions of the SEQ (1.0, 2.1) (Baranek et al. 2006; Boyd et al. 2010; Little et al. 2011; Watson et al. 2011). A confirmatory factor analysis on the SEQ 3.0 with a large national ASD sample (N = 1307) indicated good model fit [Chi square = 16, 724.18 (3984)**, RMSEA = .051; SRMR = .07] for 4 sensory response patterns (i.e., HYPER, HYPO, EP, SIRS) controlling for modality and social context (Ausderau et al. 2014b).
Social Responsiveness Scale (SRS; Constantino and Gruber 2005a, b)
The SRS is a 64-item caregiver report quantitative measure of autistic traits in children. The SRS has been found to have a single factor structure (Constantino et al. 2004) and convergent validity with the Autism Diagnostic Interview-Revised (Lord et al. 1999). The SRS data used for the current study were drawn from the first point of data collection, approximately 1 year prior to the collection of other measures. The SRS has demonstrated excellent test–retest reliability (0.88 over 3 months; 0.83 over 27 months) (Constantino et al. 2003), providing strong evidence of the stability of the SRS score for use in the current study.
Vineland Adaptive Behavior Scales-II (VABS-2; Sparrow et al. 2005)
The VABS-II assesses the adaptive behavior of individuals from birth to adulthood, and measures daily living skills, socialization, and motor skills. The current study used the caregiver/parent rating form of the VABS-II Developmental age was derived from the average age equivalent across each of the domains (i.e., communication, daily living skills, socialization) with the exclusion of the motor subscale.
Covariates
In order to address the moderating role of child factors on the associations between sensory response patterns and activity participation, the following were included as covariates in the analysis: autism severity, chronological age, and developmental age. The SRS total raw score was used as a continuous variable to measure autism severity. Chronological Age was calculated from the child’s date of birth to the time of testing. For developmental age, we used the Adaptive Functioning Age Equivalent score from the VABS-II score. Previous research in samples of children with disabilities suggests that the VABS-II Age Equivalent demonstrates high concurrent validity with other cognitive measures, such as the Bayley Scales of Infant Development-III (Scattone et al. 2011) as well as the Kaufman Assessment Battery for Children-II (Kaufman 2004) (Delaney et al. 2013). Moreover, the VABS-II Age Equivalent has been argued as sensitive for use in samples of children with ASD (e.g., Matson 2008). In addition, the use of the VABS-II Age Equivalent score is not dependent on a child’s chronological age, allowing us to examine both the impact of a child’s developmental age as well as chronological age on activity participation.
Data Analysis
SAS 9.2 (SAS Institute Inc 2008) was used to analyze data. We adopted a multivariate modeling strategy to test the relationships of sensory features to HCAS subscale scores Hierarchical linear regression (HLM), also referred to as mixed model regression, was used to test these patterns (Littell et al. 2006). We treated the six subscales of the HCAS as repeated measurements within child. Independent variables included sensory response patterns (HYPER, HYPO, EP, SIRS), covariates included autism severity, chronological age, and developmental age, and dependent variables were HCAS factors (Parent–Child Household Activities Community Activities, Routine Errands, Neighborhood Social Activities, Outdoor Activities, Faith-based Activities). Additionally, we included interactions of the sensory response pattern scores with the multivariate effect for HCAS scores. These interactions provided tests of whether the sensory response pattern scores had differential effects across the HCAS subscales.
The repeated measurement of each participant introduces within-subject dependence into the model. Subscale responses were nested within individuals resulting in a two level model with subscale at level one and child at level two (Raudenbush and Bryk 2002). The use of HLM enabled us to account this nesting (Burchinal and Applebaum 1991; Raudenbush and Bryk 2002). Specifically, we included random intercepts in the model to provide estimates of within subject covariance of HCAS scores. We used the Benjamini–Hochberg procedure (Benjamini and Hochberg 1995) to correct for multiple follow up comparisons.
Results
Descriptive Statistics
The means and standard deviations for sensory response pattern scores and HCAS dimensions are shown in Table 2 (see Table 1 for child characteristic descriptives). For sensory response pattern scores, higher scores indicate more sensory symptoms (poorer functioning). Similarly, higher scores on the autism severity measure indicate more symptoms (poorer functioning), whereas higher scores on the HCAS dimensions indicate more frequent participation (better functioning).
Solution for Fixed Effects
Tests of model effects are shown in Table 3 and reflect the final model with the removal of non-significant two and three way interactions. The reference category for the test of differences across subscales was the Parent–Child Household Activities score (unless otherwise specified below). Significant main effects were found for EP, autism severity, chronological age, and developmental age. The effect of HYPO, HYPER, and SIRS varied by HCAS factor. We then used follow up comparisons of each HCAS factor using the Benjamini-Hochberg procedure.
Table 3.
Tests of model effects
Effect | DF | F value | Pr < F |
---|---|---|---|
Intercept | 5,3350 | 836.34 | <.0001 |
EP | 1,666 | 9.14 | 0.0026 |
HYPO | 1,666 | 1.08 | 0.3002 |
HYPER | 1,666 | 5.48 | 0.0195 |
SIRS | 1,666 | 0.45 | 0.5008 |
Autism severity | 1,666 | 10.68 | 0.0011 |
Chronological age | 1666 | 7.27 | 0.0072 |
Developmental age | 1,666 | 31.63 | <.0001 |
HYPO*HCAS | 5,3350 | 2.48 | 0.0301 |
HYPER*HCAS | 5,3350 | 4.89 | 0.0002 |
SIRS*HCAS | 5,3350 | 1.02 | 0.403 |
Results of fixed effects and interaction terms of sensory response patterns and child characteristics on HCAS outcomes
Child Characteristics
Child characteristics that were found to impact activity participation included autism severity, chronological age, and developmental age. Autism severity had a significant, negative main effect on each of the six HCAS dimensions [F(1666) = 10.98, p < .01]. Chronological age demonstrated a positive main effect on activity participation, such that older children participate more frequently in activities [F(1666) = 7.27, p <.01]. Similarly, children with more advanced developmental ages participated more frequently in activities [F(1666) = 31.63, p <.001].
Enhanced Perception
EP positively impacted all dimensions of activity participation [F(1666) = 9.14, p <.001], regardless of child characteristics and other sensory response patterns. These findings suggest that EP supported participation across activity dimensions for children with ASD.
Hyperresponsiveness by HCAS Dimension
HYPER demonstrated a significant interaction with HCAS dimensions (see Table 3), controlling for child characteristics and other sensory response patterns, such that the effect of HYPER was dependent on the activity dimension. As compared to Parent–Child Activities, HYPER had a negative effect on Neighborhood-Social Activities [t(1,3350) = −2.80, p < .01). In additional follow-up comparisons, children with increased HYPER scores participated less frequently in Community Activities [t(1,3350) = −3.06, p < .01], Routine Errands [t(1,3350) = −3.27, p < .01], and Neighborhood-Social Activities[t(1,3350) = −4.27, p < .001) as compared to Outdoor Activities.
Hyporesponsiveness by HCAS Dimension
Findings showed a significant interaction between HYPO and HCAS Dimension (see Table 3), such that the effect of HYPO was contingent on the activity dimension. As compared to Parent–Child Activities, children with increased HYPO participated more frequently in Community Activities [t(13,350) = 3.07, p < .01] and Neighborhood-Social Activities [t(13,350) = 2.26, p < .05].
Sensory Interests, Repetitions, and Seeking by HCAS Dimension
Follow-up comparison tests of the interaction between SIRS and HCAS dimensions demonstrated one significant difference. Children with increased SIRS scores engaged in more frequent Parent–Child Activities than Outdoor Activities (t[53,350] = −2.08, p <.05).
Discussion
This study investigated the impact of sensory response patterns on six dimensions of activity participation among a large sample of school-aged children with ASD. Novel findings suggest that child characteristics and sensory response patterns differentially impacted the frequency of child participation in different types of activities. Aligned with our hypotheses, autism severity was negatively related to activity participation whereas chronological age and developmental age were positively related to activity participation. Higher functioning and older, developmentally more mature children participated more frequently in activities. Older and higher functioning children may have increased opportunities to engage in activities that occur outside of the home and in the community, such as school or social functions. Moreover, children with increased autism severity likely experience fewer opportunities for participation, as their symptoms may be perceived to interfere with activities. This aligns with previous research that showed caregivers structure child’s activity participation around their symptoms of autism (DeGrace 2004), which persists into adolescence (Orsmond and Kuo 2011). A further explanation may be that older, higher functioning children with ASD may have more opportunities to participate in activities, which allow them chances to practice skills. This is likely a transactional effect; children that are afforded opportunities to engage in activities build on skills that promote their participation.
Enhanced perception was found to support children’s participation in activities across contexts; that is, children with higher scores in enhanced perception participated more frequently in all activities. Emerging evidence from research with adults with ASD suggests that enhanced perception occurs across modalities, including auditory (Bonnnel et al. 2003; Mottron et al. 2000), visual (Mottron et al. 2009), and tactile (Cascio et al. 2008; Tommerdahl et al. 2007) stimuli. Theorists have suggested that enhanced perception is associated with a cognitive style of processing (Baron-Cohen et al. 2009). Strengths in local processing may contribute to the ability (or super-ability) among individuals to recognize patterns and details (Mottron et al. 2006), which perhaps has some advantages in certain activities. Moreover, enhanced perception may be associated with hyper-attention to details (Baron-Cohen et al. 2009) or difficulty with disengagement of attention (e.g., Landry and Bryson 2004), which may contribute to successful completion of some cognitive tasks. It may be, then, that enhanced perception is somewhat protective or facilitatory of children’s participation in some home and community activities. The ability to over-focus on the elements of activities, and the accompanying style of over-systemizing, may allow the child to have systematic ways of engagement in or completion of tasks. For example, certain activities may be reinforced by children’s over focus on particular elements of the tasks, such as completing puzzles or art activities/drawing.
These findings align with one previous study on the hyper-attention to detail among children with ASD. Liss and colleagues (2006) found that individuals that demonstrated over-focused attention were reported to have higher adaptive skills as compared to other children with ASD, which may be related to the ability of children with enhanced perception to increasingly participate in home and community activities. Thus, our results are congruent with other literature suggesting that enhanced perception may reflect a unique processing style or an overfocus on detail that has advantages for perceiving and interpreting environmental stimuli in ways that contribute to increased frequency of participation in some activities; however, we acknowledge that the HCAS does not assess the quality of this activity participation.
As predicted, hyperresponsiveness demonstrated a significant, negative effect on activity participation. However, this effect varied based on activity dimensions. Increased hyperresponsiveness was inversely related to activity participation outside the home, specifically Neighborhood-Social Activities, Community Activities, and Routine Errands, as compared to Parent–Child Activities. It may be that the sensory stimuli in these settings are unpredictable and not easily controlled by caregivers, such as the sensory stimuli (e.g., noise) within the home, whereas Parent–Child Activities may be more routinized and controlled, mitigating the aversive effects of stimuli.
These results align with and extend findings from previous phenomenological accounts and small sample correlational research on ways in which hyperresponsiveness limits children’s activity participation (Ashburner et al. 2008; Bagby et al. 2012; Brown and Dunn 2010; Dickie et al. 2009). For example, previous studies in ASD and other DD suggest that caregivers of children with more hyperresponsiveness experience difficulty in orchestrating activities for their child (Baraneketal.2002; Larson 2010; Schaaf et al. 2011). Such studies, however, have not discriminated the types of activities that are difficult for families to pursue given their children’s hyperresponsiveness. The stress experienced by families is perceived to outweigh the benefits of participation (DeGrace 2004), and necessitates caregiver ‘back-up plans’ to prevent meltdowns during community activities (Bagby et al. 2012). Therefore, it is likely that children’s aversive responses to sensory elements of specific activities negatively reinforce caregivers’ efforts to pursue those activities in the future. Moreover, children with limited chances to participate in activities may not develop the learning and coping strategies to counteract their aversions further perpetuating the cycle of limited participation (Baranek et al. 2002). Future research using longitudinal methods could further explore the likely transactions among child, parent and contextual variables over time.
We found that children with increased hyporesponsiveness participated more frequently in activities outside of the home (Community Activities, Neighborhood-Social Activities) versus those in the home. Although this finding was contrary to our hypotheses, it may be that children demonstrating significant hyporesponsiveness appear passive, not initiating activities independently (Baranek et al. 2006; Dunn 2007), and thus, may not resist accompanying the caregiver on community outings such as hiking, going to the zoo, or swimming. This finding extends our understanding of how hyporesponsiveness impacts children’s participation across different activities; however, further investigation is needed.
Although we predicted that sensory interests, repetitions, and seeking behaviors would be negatively related to activity participation, findings showed that children with high levels of these behaviors participated more frequently in activities in the home versus those outdoors. Some research suggests that children may demonstrate sensory interests, repetitions, and seeking behavior in order to modulate anxiety associated with unpredictable sensory stimuli (Boyd et al. 2010; Wood and Gadow 2010), which could limit participation in activities outside the home. Others suggest that some children seek intensive stimuli to increase the salience of those stimuli (Dunn 2007), and have trouble disengaging from particularly stimulating activities (e.g., Landry and Bryson 2004), which perhaps limits their participation to more activities in the home environment. A further alternative explanation is that children with increased sensory interests, repetitions, and seeking behaviors participate less frequently in outdoor activities due to caregivers’ safety concerns outside of the home. High levels of movement seeking among children with ASD are frequently reported (e.g., Ashburner et al. 2013; Tomchek and Dunn 2007), which may pose safety issues outside of the home.
Limitations and Future Directions
This analysis was cross sectional; therefore, the impact of sensory features on activity participation over time requires further study. Ideally, future studies could include observational measures to corroborate the caregiver report data analyzed in this study. The current study did not address the extent to which family and environmental influences on activity participation such as family socioeconomic status and location (i.e., urban, suburban, rural), which is clear need for future investigations. The interpretation that enhanced perception serves an adaptive function, unlike the largely negative impacts of the other sensory response patterns, requires further investigation especially given that research has shown links between enhanced perception and hyperresponsive sensory response patterns (Ausderau et al. 2014b; Baron-Cohen et al. 2009; Liss et al. 2006). Emerging research has identified sensory subtypes in ASD that may better address overlapping sensory response patterns within children (Ausderau et al. 2014a; Lane et al. 2014); thus, future studies are needed to illuminate the extent to which activity participation differs by subtype. Lastly, activity participation, as measured by the HCAS, addresses the frequency of participation across six dimensions, but does not measure the quality of participation, enjoyment of activities, nor level of engagement in solitary activities, which are potentially important variables for future study.
Acknowledgments
Thank you to the families that participated in the study as well as the research team at the Sensory Experiences Project. Thank you to the Interactive Autism Network (IAN) Project at the Kennedy Krieger Institute, Baltimore, Maryland, the University of North Carolina at Chapel Hill Research Registry, and the multiple other autism organizations who assisted in recruitment. Funding for this study was provided by the NICHD (A10–0589-2009–2011) and the American Occupational Therapy Foundation. This study was supported by the National Institute of Child Health and Human Development/National Institutes of Health; A10–0589 (3-R01-HD042168–06S1) and the American Occupational Therapy Foundation. Recruitment was partially supported by the Intellectual and Developmental Disabilities Research Center; P30HD03110.
References
- Ashburner J, Bennett L, Rodger S, & Ziviani J (2013). Understanding the sensory experiences of young people with autism spectrum disorder: A preliminary investigation. Australian Occupational Therapy Journal, 60(3), 171–180. [DOI] [PubMed] [Google Scholar]
- Ashburner J, Ziviani J, & Rodger S (2008). Sensory processing and classroom, emotional, behavioral, and educational outcomes in children with autism spectrum disorder. American Journal of Occupational Therapy, 62(5), 564–573. [DOI] [PubMed] [Google Scholar]
- Ausderau KK, Furlong M, Sideris J, Bulluck J, Little LM, Watson LR, & Baranek GT (2014a). Sensory subtypes in children with autism spectrum disorder: Latent profile transition analysis using a national survey of sensory features. Journal of Child Psychology and Psychiatry, 55(8), 935–944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ausderau K, Sideris J, Furlong M, Little LM, Bulluck J, & Baranek GT (2014b). National survey of sensory features in children with ASD: Factor structure of the sensory experience questionnaire (3.0). Journal of Autism and Developmental Disorders, 44(4), 915–925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bagby M, Dickie V, & Baranek GT (2012). How sensory experiences in children with and without autism affect family occupations. American Journal of Occupational Therapy, 66, 78–86. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baranek GT (1999). Sensory processing assessment for young children (SPA). Unpublished manuscript, University of North Carolina at Chapel Hill. [Google Scholar]
- Baranek GT (2009). Sensory experiences questionnaire version 3.0.
- Baranek GT, Boyd BA, Poe MD, David FJ, & Watson LR (2007). Hyperresponsive sensory response patterns in young children with autism, developmental delay, and typical development. American Journal on Mental Retardation, 112(4), 233–245. [DOI] [PubMed] [Google Scholar]
- Baranek GT, Chin YH, Hess LMG, Yankee JG, Hatton DD, & Hooper SR (2002). Sensory processing correlates of occupational performance in children with fragile X syndrome: Preliminary findings. American Journal of Occupational Therapy, 56(5), 538–546. [DOI] [PubMed] [Google Scholar]
- Baranek GT, David FJ, Poe MD, Stone WL, & Watson LR (2006). Sensory experiences questionnaire: Discriminating sensory features in young children with autism, developmental delays, and typical development. Journal of Child Psychology and Psychiatry, 47(6), 591–601. doi: 10.1111/j.1469-7610.2005.01546.x. [DOI] [PubMed] [Google Scholar]
- Baron-Cohen S, Ashwin E, Ashwin C, Tavassoli T, & Chakrabarti B (2009). Talent in autism: Hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philosophical Transactions of the Royal Society, 364, 1377–1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benjamini Y, & Hochberg Y (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 289–300. [Google Scholar]
- Ben-Sasson A, Cermak SA, Orsmond GI, Tager-Flusberg H, Carter AS, Kadlec MB, & Dunn W (2007). Extreme sensory modulation behaviors in toddlers with autism spectrum disorders. American Journal of Occupational Therapy, 61(5), 584–592. [DOI] [PubMed] [Google Scholar]
- Ben-Sasson A, Hen L, Fluss R, Cermak SA, Engel-Yeger B, & Gal E (2009). A meta-analysis of sensory modulation symptoms in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 39(1), 1–11. doi: 10.1007/s10803-008-0593-3. [DOI] [PubMed] [Google Scholar]
- Bonnnel A, Mottron L, Peretz I, Trudel M, Gallun E, & Bonnel A (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis. Journal of Cognitive Neuroscience, 15(2), 226–235. [DOI] [PubMed] [Google Scholar]
- Boyd BA, Baranek GT, Sideris J, Poe MD, Watson LR, Patten E, & Miller H (2010). Sensory features and repetitive behaviors in children with autism and developmental delays. Autism Research, 3, 78–87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown NB, & Dunn W (2010). Relationship between context and sensory processing in children with autism. American Journal of Occupational Therapy, 64, 474–483. [DOI] [PubMed] [Google Scholar]
- Burchinal M, & Appelbaum MI (1991). Estimating individual developmental functions: Methods and their assumptions. Child Development, 62(1), 23–43. [Google Scholar]
- Cascio C, McGlone F, Folger S, Tannan V, Baranek G, Pelphrey KA, & Essick G (2008). Tactile perception in adults with autism: A multidimensional psycho-physical study. Journal of Autism and Developmental Disorders, 38, 127–137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, et al. (2003). Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview—Revised. Journal of Autism and Developmental Disorders, 33, 427–433. [DOI] [PubMed] [Google Scholar]
- Constantino JN, & Gruber CP (2005a). Social responsiveness scale (SRS). Los Angeles, CA: Western Psychological Services. [Google Scholar]
- Constantino JN, & Gruber CP (2005b). Social responsiveness scale manual. Los Angeles, CA: Western Psychological Services. [Google Scholar]
- Constantino JN, Gruber CP, Davis S, Hayes S, Passanante N, & Przybeck T (2004). The factor structure of autistic traits. Journal of Child Psychology and Psychiatry, 45(4), 719–726. [DOI] [PubMed] [Google Scholar]
- Daniels AM, Rosenberg RE, Anderson C, Law JK, Marvin AR, & Law PA (2012). Verification of parent-report of child autism spectrum disorder diagnosis to a web-based autism registry. Journal of Autism and Developmental Disorders, 42(2), 257–265. [DOI] [PubMed] [Google Scholar]
- DeGrace BW (2004). The everyday occupation of families with children with autism. American Journal of Occupational Therapy, 58, 543–550. [DOI] [PubMed] [Google Scholar]
- Delaney KA, Rudser KR, Yund BD, Whitley CB, Haslett PA, & Shapiro EG (2013). Methods of neurodevelopmental assessment in children with neurodegenerative disease: Sanfilippo syndrome. JIMD Reports, 13, 129–137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickie VA, Baranek GT, Schultz B, Watson LR, & McComish CS (2009). Parent reports of sensory experiences of preschool children with and without autism: A qualitative study. American Journal of Occupational Therapy, 63(2), 172–181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn W (1999). Sensory profile. San Antonio, TX: The Psychological Corporation. [Google Scholar]
- Dunn W (2007). Supporting children to participate successfully in everyday life by using sensory processing knowledge. Infants and Young Children, 20(2), 84–101. [Google Scholar]
- Dunst CJ, Bruder MB, Trivette CM, & Hamby DW (2006). Everyday activity settings, natural learning environments, and early intervention practices. Journal of Policy and Practice in Intellectual Disabilities, 3, 3–10. [Google Scholar]
- Dunst CJ, Hamby D, Trivette CM, Raab M, & Bruder MB (2000). Everyday family and community life and children’s naturally occurring learning opportunities. Journal of Early Intervention, 23(3), 151–164. [Google Scholar]
- Hilton CL, Crouch MC, & Israel H (2008). Out-of-school participation patterns in children with high-functioning autism spectrum disorders. American Journal of Occupational Therapy, 62(5), 554–563. [DOI] [PubMed] [Google Scholar]
- Hilton C, Graver K, & LaVesser P (2007). Relationship between social competence and sensory processing in children with high functioning autism spectrum disorders. Research in Autism Spectrum Disorders, 1(2), 164–173. [Google Scholar]
- Hochhauser M, & Engel-Yeger B (2010). Sensory processing abilities and their relation to participation in leisure activities among children with high- functioning autism spectrum disorder. Research in Autism Spectrum Disorders, 4, 746–754. [Google Scholar]
- Humphry R, & Wakeford L (2006). An occupation-centered discussion of development and implications for practice. American Journal of Occupational Therapy, 60, 267–358. [DOI] [PubMed] [Google Scholar]
- Kaufman AS (2004). Manual for the Kaufman Assessment Battery for Children–Second Edition (KABC-II), Comprehensive Form. Circle Pines, MN: American Guidance Service. [Google Scholar]
- Landry R, & Bryson SE (2004). Impaired disengagement of attention in young children with autism. Journal of Child Psychology and Psychiatry, 45(6), 1115–1122. [DOI] [PubMed] [Google Scholar]
- Lane AE, Molloy CA, & Bishop SL (2014). Classification of children with autism spectrum disorder by sensory subtype: A case for sensory-based phenotypes. Autism Research, 7(3), 322–333. [DOI] [PubMed] [Google Scholar]
- Larson E (2006). Caregiving and autism: How does children’s propensity for routinization influence participation in family activities? OTJR: Occupational Therapy Journal of Research, 26(2), 69–79. [Google Scholar]
- Larson E (2010). Ever vigilant: Maternal support of participation in daily life for boys with autism. Physical & Occupational Therapy in Pediatrics, 30(1), 16–27. [DOI] [PubMed] [Google Scholar]
- LeVesser P, & Berg C (2011). Participation pattern in preschool children with autism spectrum disorder. Occupational Therapy Journal of Research, 31(1), 33–39. [Google Scholar]
- Levy SE, Giarelli E, Lee LC, Schieve LA, Kirby RS, Cunniff C, & Rice CE (2010). Autism spectrum disorder and co-occurring developmental, psychiatric, and medical conditions among children in multiple populations of the United States. Journal of Developmental and Behavioral Pediatrics, 31(4), 267–275. [DOI] [PubMed] [Google Scholar]
- Liss M, Saulnier C, Fein D, & Kinsbourne M (2006). Sensory and attention abnormalities in autistic spectrum disorders. Autism, 10(2), 155–172. doi: 10.1177/1362361306062021. [DOI] [PubMed] [Google Scholar]
- Littell RC, Milliken GA, Stroup WW, Wolfinger RD, & Schabenberger O (2006). SAS for mixed models (2nd ed.). Cary, NC: SAS Publishing, SAS Institute. [Google Scholar]
- Little LM, Freuler AC, Houser MB, Guckian L, Carbine K, David FJ, & Baranek GT (2011). Psychometric validation of the sensory experiences questionnaire. The American Journal of Occupational Therapy, 65(2), 207–210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Little LM, Sideris J, Ausderau K, & Baranek GT (2014). Activity participation among children with autism spectrum disorder. The American Journal of Occupational Therapy, 68(2), 177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lord C, Rutter M, DiLavore PC, & Risi S (1999). Autism Diagnostic Observation Schedule-WPS (ADOS-WPS). Los Angeles, CA: Western Psychological Services. [Google Scholar]
- Marquenie K, Rodger S, Mangohig K, & Cronin A (2011). Dinnertime and bedtime routines and rituals in families with a young child with an autism spectrum disorder. Australian Journal of Occupational Therapy, 58, 145–154. [DOI] [PubMed] [Google Scholar]
- Matson JL (2008). Clinical assessment and intervention for autism spectrum disorders: Practical resources for the mental health professional. Burlington, MA: Academic Press. [Google Scholar]
- McIntosh DN, Miller LJ, Shyu V, & Dunn W (1999). Overview of the short sensory profile (SSP). The sensory profile: Examiner’s manual, pp. 59–73. [Google Scholar]
- Mottron L, Dawson M, & Soulie`res I (2009). Enhanced perception in savant syndrome: Patterns, structure and creativity. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1522), 1385–1391. doi: 10.1098/rstb.2008.0333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mottron L, Dawson M, Soulieres I, Hubert B, & Burack J (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43. doi: 10.1007/s10803005-0040-7. [DOI] [PubMed] [Google Scholar]
- Mottron L, Peretz I, & Menard E (2000). Local and global processing of music in high-functioning persons with autism: Beyond central coherence? Journal of Child Psychology and Psychiatry, 41(8), 1057–1065. [PubMed] [Google Scholar]
- Orsmond GI, & Kuo HY (2011). The daily lives of adolescents with an autism spectrum disorder Discretionary time use and activity partners. Autism, 15(5), 579–599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orsmond GI, Krauss MW, & Seltzer MM (2004). Peer relationships and social and recreational activities among adolescents and adults with autism. Journal of Autism and Developmental Disorders, 34(3), 245–256. [DOI] [PubMed] [Google Scholar]
- Orsmond GI, Shattuck PT, Cooper BP, Sterzing PR, & Anderson KA (2013). Social participation among young adults with an autism spectrum disorder. Journal of Autism and Developmental Disorders, 43(11), 2710–2719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parham LD, Ecker C, Miller Kuhaneck H, Henry DA, & Glennon TJ (2007). Sensory processing measure (SPM): Manual. Los Angeles: Western Psychological Services. [Google Scholar]
- Potvin M, Snider L, Prelock P, Kehayia, & Wood-Dauphinee S (2012). Recreational participation of children with high functioning autism. Journal of Autism and Developmental Disorders. doi: 10.1007/s10803-012-1589-6. [DOI] [PubMed] [Google Scholar]
- Qualtrics Labs, Inc. software (2011). Version 21269 of the qualtrics research suite. Provo, UT: Qualtrics Labs, Inc; http://www.qualtrics.com. [Google Scholar]
- Raudenbush SW, & Bryk AS (2002). Hierarchical linear models. Newbury Park, CA: Sage. [Google Scholar]
- Reynolds S, Bendixen RM, Lawrence T, & Lane SJ (2011). A pilot study examining activity participation, sensory responsiveness, and competence in children with high functioning autism spectrum disorder. Journal of Autism and Developmental Disorders, 41, 1496–1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg L, Bart O, Ratzon NZ, & Jarus T (2013). Personal and environmental factors predict participation of children with and without mild developmental disabilities. Journal of Child and Family Studies, 22(5), 658–671. [Google Scholar]
- Rosenberg L, Jarus T, Bart O, & Ratzon NZ (2011). Can personal and environmental factors explain dimensions of child participation? Child: Care, Health and Development, 37(2), 266–275. [DOI] [PubMed] [Google Scholar]
- SAS Institute Inc. (2008). SAS 9.2R. Retrieved from SAS Institute Inc. [Google Scholar]
- Scattone D, Raggio DJ, & May W (2011). Comparison of the Vineland adapative behavior scales and the Bayley scales of infant and toddler development. Psychological Reports, 109(2), 626–634. [DOI] [PubMed] [Google Scholar]
- Schaaf RC, Toth-Cohen S, Outten G, Johnson S, & Madrid G (2011). The everyday routines of families of children with autism: Examining the impact of sensory processing difficulties on the family. Autism Research, 15(3), 373–389. [DOI] [PubMed] [Google Scholar]
- Schoen SA, Miller LJ, & Green KE (2008). Pilot study of the sensory over-responsivity scales: Assessment and inventory. American Journal of Occupational Therapy, 62(4), 393–406. [DOI] [PubMed] [Google Scholar]
- Shattuck PT, Orsmond GI, Wagner M, & Cooper BP (2011). Participation in social activities among adolescents with an autism spectrum disorder. PLoS One, 6(11), e27176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sparrow SS, Cicchetti DV, & Balla DA (2005). Vineland adaptive behavior scales: (Vineland II), survey interview form/caregiver rating form. Livonia, MN: Pearson Assessments. [Google Scholar]
- Tomchek SD, & Dunn W (2007). Sensory processing in children with and without autism: A comparative study using the short sensory profile. The American Journal of Occupational Therapy, 61(2), 190–200. [DOI] [PubMed] [Google Scholar]
- Tommerdahl M, Tannan V, Cascio CJ, Baranek GT, & Whitsel BL (2007). Vibrotactile adaptation fails to enhance spatial localization in adults with autism. Brain Research, 1154, 116–123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson LR, Patten E, Baranek GT, Poe M, Boyd BA, Freuler A, & Lorenzi J (2011). Differential associations between sensory response patterns and language, social, and communication measures in children with autism or other developmental disabilities. Journal of Speech, Language, and Hearing Research, 54(6), 1562–1576. doi: 10.1044/1092-4388(2011/10-0029). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wood JJ, & Gadow KD (2010). Exploring the nature and function of anxiety in youth with autism spectrum disorders. Clinical Psychology: Science and Practice, 17(4), 281–292. [Google Scholar]
- Wuang Y, & Su CY (2012). Patterns of participation and enjoyment in adolescents with Down syndrome. Research in Developmental Disabilities, 33(3), 841–848. [DOI] [PubMed] [Google Scholar]
- Zingerevich C, & Patricia DL (2009). The contribution of executive functions to participation in school activities of children with high functioning autism spectrum disorder. Research in Autism Spectrum Disorders, 3(2), 429–437. [Google Scholar]