Abstract
The genus Trichoderma is comprised of many common fungi species that are distributed worldwide across many ecosystems. Trichoderma species are well-known producers of secondary metabolites with a variety of biological activities. Their potential use as biocontrol agents has been known for many years. Several reviews about metabolites from Trichoderma have been published. These reviews are based on their structural type, biological activity, or fungal origin. In this review, we summarize the secondary metabolites per Trichoderma species and elaborate on approximately 390 non-volatile compounds from 20 known species and various unidentified species.
Keywords: bioactivity, metabolites, Trichoderma
1. Introduction
Trichoderma is a genus of fungi of the family Hypocreaceae. It is distributed in soils worldwide across various habitats [1]. Trichoderma is a valuable resource for structurally novel natural products with diverse bioactivities [2]. Among well-studied fungi, Trichoderma species are known for their ability to produce bioactive secondary metabolites, including polyketides, alkaloids, terpenoids, and peptaibols [3]. Many species have been extensively investigated due to their application as biological control agents [4]. In this article, we reviewed the origin, structure, and bioactivity of non-volatile secondary metabolites from Trichoderma spp. and grouped them per species.
2. Results
2.1. Metabolites from Trichoderma arundinaceum
A series of peptaibols were isolated from the scaled-up fermentation of T. arundinaceum MSX70741: three new compounds [prealamethicin F50 (1); Glu(OMe)18-alamethicin F50 (2); and trichobrevin BIII-D (3)], and four known compounds [alamethicin F50 (4); alamethicin II (5); atroviridin J (6); and trichobranchin D-I (7)]. The cytotoxic activity of compounds 2, 3, 4, and 6 were evaluated against a panel of cancer cell lines: HCT 116, DLD-1, HT-29, SW948, Hep-G2, Huh-7, and HeLa. Compound 2 was the most active compound with IC50 values ranging from 2.5 through 6.5 mM. Compound 3 exhibited moderate activity against HCT 116 and HT-29, with IC50 values of 6.8 and 6.7 mM, respectively [3].
2.2. Metabolites from Trichoderma asperellum
Nine compounds were isolated from the fungus T. asperellum: trichodermaerin (8) [5]; 6-amyl alpha-pyrone (9) [6]; aspereline G (10); aspereline H (11); aspereline A (12); aspereline C (13); aspereline D (14); aspereline E (15); and aspereline F (16) [7]. Among them, compounds 10 and 11 were two new peptaibols.
Eight new compounds were isolated from the marine-derived fungus T. asperellum cf44-2: bisabolane sesquiterpene bisabolan-1,10,11-triol (17); norbisabolane sesquiterpene 12-nor-11-acetoxybisabolen-3,6,7-triol (18); two naturally occurring monoterpenes [(7S)-1-hydroxy-3-p-menthen-9-oic acid (19) and (7R)-1-hydroxy-3-p-menthen-9-oic acid (20)]; trichodenone dechlorotrichodenone C (21); chlorine-containing trichodenone 3-hydroxytrichodenone C (22); diketopiperazine methylcordysinin A (23); and oxazole derivative 4-oxazolepropanoic acid (24). Compounds 17, 18, 21 and 22 were evaluated for the inhibition of four marine phytoplankton species (Chattonella marina, Heterosigma akashiwo, Karlodinium veneficum, and Prorocentrum donghaiense) and four marine-derived pathogenic bacteria (Vibrio parahaemolyticus, V. anguillarum, V. harveyi, and V. splendidus). All exhibited growth inhibition of the four phytoplankton species, and compound 18, with IC50 values ranging from 4.2 to 8.5 µg/mL, was more active than the others. Additionally, compounds 17, 18, 21 and 22 showed weak antibacterial activities against the four Vibrio species, with inhibitory zone diameters of 6.2–8.5 mm at 20 µg/disk. Among them, compound 18 had the highest antibacterial activity [8].
From the cultures of T. asperellum dl-34, eighteen compounds were identified: a new diterpenoid, wickerol A (25); a known diterpenoid, harziandione (26); ten known steroids [ergosterol endoperoxide (27); 5α,8α-epidioxyergosta-6,9(11),22-trien-3β-ol (28); 3β,5α,6β-trihydroxyergosta-7,22-diene (29); 3β,5α-dihydroxy-6β-methoxyergosta-7,22-diene (30); 3β,5α,9α-trihydroxyergosta-7,22-dien-6-one (31); (22E,24R)-ergosta-4,6,8,(14),22-tetraen-3-one (32); (22E,24R)-5α,6α-epoxyergosta-8,22-diene-3β,7α-diol (33); ergosta-7,22-dien-3β-ol (34); (22E,24R)-ergosta-5,7,22-trien-3β-ol (35); and β-sitosterol (36)]; two diketopiperazines, [(L)-Pro-(L)-Leu (37) and (L)-4-OH-Pro-(L)-Leu] (38); one nucleotide, adenine nucleoside (39); and three polyketides, [cis-4-hydroxy-6-deoxyscytalone (40); 2,4-dihydroxy-3,6-dimethylbenzaldehyde (41); and dihydrocitrinone (42)]. Most of these compounds were screened for biological activities, only compounds 25 and 26 were toxic to Artemia salina, with LC50 values of 12.0 and 38.2 μg/mL, respectively [9].
2.3. Metabolites from Trichoderma atroviride
Eleven compounds were obtained from the marine-derived fungus T. atroviride: three novel compounds [3-amino-5-hydroxy-5-vinyl-2-cyclopenten-1-one dimer atrichodermone A (43); cyclopentenone derivative atrichodermone B (44), and sesquiterpene atrichodermone C (45) [10]] and eight known compounds [atrichodermone D (46); trichodermone A (47); (5R)5-hydroxy-3-[(methoxycarbonyl)-amino]-5-vinyl-2-cyclopenten-1-one (48); 4H-1,3-dioxin-4-one-2,3,6-trimethyl (49); 1,3-dione-5,5-dimethylcyclohexane (50); 2-enone-3hydroxy-5,5-dimethylcylohex (51) [11]; 6-pentyl-pyran-2-one (52); and 6-pent-1-enyl-pyrane-2-one (53) [1]]. Among these, compounds 43–45 were evaluated for their cytotoxicity against HL60 and U937 cell lines, as well as anti-inflammatory effect against the production of the pro-inflammatory cytokines TNF-α and IL-1β; but none showed notable cytotoxicity or anti-inflammatory activity. Compound 49 significantly inhibited the growth of Helicobacter pylori and Shigella toxin-producing Escherichia coli, and it also induced cell death and cytotoxicity.
Five new compounds were isolated from the marine-derived fungus T. atroviride G20-12: 2-hydroxybutan-3-yl5′-(2″-hydroxy-N-(2‴-oxobutan-3‴-yl)propanamido)butanoate (54); 3-hydroxy-5-(4-hydroxybenzyl)dihydrofuran-2(3H)-one (55) [12]; 4′-(4,5-dimethyl-1,3-dioxolan-2-yl)methyl-phenol (56); (3′-hydroxybutan-2′-yl)5-oxopyrrolidine-2-carboxylate (57) and atroviridetide (58) [13].
Eight compounds were isolated from the solid culture of endophytic fungus T. atroviride S361: a pair of novel N-furanone amide enantiomers [(-)-trichodermadione A (59a) and (+)-trichodermadione A (59b)]; a new cyclohexenone sesquiterpenoid, trichodermadione B (60); and six known compounds [4-(2-formyl-5-(methoxymethyl)-1H-pyrrol-1-yl)butanoic acid (61); 5-methoxymethyl-1H-pyrrole-2-carbaalde-hyde (62); 3-(1-carbaalde)-6-methyl-2H-pyran-2,4(3H)-dione (63); lignoren (64); ascotrichic acid (65); and catenioblin C (66). Compounds 59 and 60 were also evaluated for their cytotoxicity against DU145 and PC3 cell lines, as well as inhibitory effects against the production of NO in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. However, none of them showed notable cytotoxicity or anti-inflammatory activity [14].
The compound 6-pentyl-α-pyrone (67), which was isolated from T. atroviride UST1 and UST2, it was involved in Trichoderma-pathogen interactions on grapevine pruning wounds [15].
2.4. Metabolites from Trichoderma aureoviride
A new compound, koninginin G (68), and a known compound, Koninginin G triacetate (69), were obtained from a strain of T. aureoviride. Compound 68 significantly inhibited the growth of etiolated wheat coleoptiles by 56% at 10−3 M concentration [16].
2.5. Metabolites from Trichoderma brevicompactum
The bioactive compound trichodermin (70) was isolated from the endophytic fungus T. brevicompactum. It displayed significant inhibitory activity on Rhizoctonia solani and Botrytis cinerea, with an EC50 of 0.25 μg/mL and 2.02 μg/mL, respectively. However, a relatively poor inhibitory effect was shown against Colletotrichum lindemuthianum (EC50 = 25.60 μg/mL) [17].
2.6. Metabolites from Trichoderma citrinoviride
Fifteen compounds were isolated from the T. citrinoviride: four new compounds [(R)-vertinolide (71) [1]; trichoderiol C (72); citrinoviric acid (73); and penicillenol D (74)] and twelve known compounds [lignoren (64); trichotetronine (75); bisvertinol (76); spirosorbicillinol A (77); spirosorbicillinol B (78); spirosorbicillinol C (79); trichoderiol A (80); penicillenol B1 (81); penicillenol B2 (82); cyclo-(Leu-Pro) (83); cyclo-(Ile-Pro) (84); and cyclo-(Phe-Pro) (85)] [18]. Among them, compounds 73 and 74 showed moderate cytotoxic effects against the A-375 cell line, with IC50 values of 85.7 and 32.6 μM, respectively.
From T. citrinoviride cf-27, twenty-two metabolites were obtained: a new diterpene, trichocitrin (86), and twenty-one known compounds [ergosterol endoperoxide (27); (22E,24R)-ergosta-4,6,8,(14),22-tetraen-3-one (32); (22E,24R)-ergosta-5,7,22-trien-3β-ol (35); 24-methylenecycloartanol (87); cycloeucalenol (88); citrostadienol (89); euphorbol (90); 24-methylene-lanost-8-en-3β-ol (91); cyclonerodiol (92); (22E,24R)-7β,8β-epoxy-3β,5α,9α-trihydroxyergosta-22-en-6-one (93); nafuredin (94); harzianolide (95); 5-hydroxy-2,3-dimethyl-7-methoxychromone (96); 5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone (97); methyl 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate (98); methyl 2,8-dihydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate (99); stachyline B (100); trans-3,4-dihydro-2,4,8-trihydroxynaphthalen-1(2H)-one (101); pyrazole-3-carboxylic acid (102); pyrrole-2-carboxylic acid (103); and dibutyl phthalate (104)]. Most of the isolated compounds were screened for biological activities, and the results showed that compounds 86 and 94 exhibited 54.1% and 36.7% inhibition, respectively, of P. donghaiense at 100 μg/mL [9].
2.7. Metabolites from Trichoderma cremeum
A new 10-member lactone, cremenolide (105), was isolated from T. cremeum. In vitro tests showed that cremenolide inhibited the radial mycelium growth of Fusarium oxysporum, B. cinerea, and R. solani, and it significantly promoted tomato seedling growth [19].
2.8. Metabolites from Trichoderma gamsii
Two new cytochalasans, trichoderones A (106) and B (107), and three known analogues, aspochalasins D (108), J (109), and I (110), were isolated from the endophytic fungus T. gamsii. Compound 106 possesses an unprecedented 7/6/6/5/5 pentacyclic system, whereas compound 107 contains the rare 6/5/6/6/5 pentacyclic skeleton with a 12-oxatricyclo [6.3.1.02,7] moiety. Compounds 108 and 109 displayed cytotoxic activity against the HeLa cell line [20].
2.9. Metabolites from Trichoderma harzianum
Fourteen compounds were identified from the cultures of T. harzianum R5: ergosterol endoperoxide (27); 5α,8α-epidioxyergosta-6,9(11),22-trien-3β-ol (28); 3β,5α,6β-trihydroxyergosta-7,22-diene (29); adenine nucleoside (39); trichoharzianin (111); 3β-hydroxyergosta-8,24(28)-dien-7-one (112); (22E,24R)-24-methylcholesta-5,22-dien-3β-ol (113); 5,7-dihydroxy-2,3-dimethylchromone (114); (22E,24R)-3β,5α-dihydroxy-ergosta-7,22-dien-6-one (115); 5-hydroxy-2-hydroxymethyl-3-methyl-7-methoxychromone (116); indole-3-carboxaldehyde (117); 3-indol acetic acid (118); 2,4-dimethylbenzene-1,3,5-triol (119); and 5′-o-acetyluracil nucleoside (120). Compound 111 was a new terpenoid that showed significant lethal activity against A. salina, and the LC50 value was 68.6 μg/mL [9].
Five terpenoids [cyclonerodiol (92); wickerol B (121); 15-hydroxyacorenone ((1S,4S,5S)-8-hydroxymethyl-1-isopropyl-4-methyl spiro[4.5]dec-8-en-7-one) (122); epicycloneodiol oxide (123); and cycloneodiol oxide (124)], one lactone [5,6-dihydro-4-methyl-2H-pyran-2-one (125)], and one steroid [demethylincisterol A3 (126)] from T. harzianum R5-1 were studied. Three bacterial strains (V. splendidus, V. arveyi, and V. anguillarum) were tested for resistance to these compounds. Compounds 92, 121, 122, 123, and 124 showed an inhibitory effect on V. anguillarum [21].
Six compounds were isolated from T. harzianum T-4: β-sitosterol (36); palmitic acid (127); 1,8-dihydroxy-3-methylanthraquinone (128); 6-pentyl-2H-pyran-2-one (129); 2(5H)-furanone (130); and stigmasterol (131). While seven were isolated from T. harzianum strain T-5: palmitic acid (127); 6-pentyl-2H-pyran-2-one (129); 1-hydroxy-3-methylanthraquinone (132); δ-decanolactone (133); ergosterol (134); harzianopyridone (135); and 6-methyl-1,3,8-trihydroxyanthraquinone (136). These compounds were screened for antifungal activity; compound 135 was the most active, with an EC50 of 35.9–50.2 mg/mL [22].
Harzianolide (95); 1,8-dihydroxy-3-methylanthraquinone (128); 1-hydroxy-3-methylanthraquinone (132); harzianopyridone (135); T22azaphilone (137); and T39butenolide (138) were obtained from the broth of T. harzianum T22 and T. harzianum T39. In antifungal assays, compounds 135 and 137 inhibited the growth of Leptosphaeria maculans, Phytophthora cinnamomi, and B. cinerea even at low doses (1–10 μg per plug), while high concentrations of compounds 95 and 138 were needed (>100 μg per plug) for inhibition [23].
Six compounds were isolated from T. harzianum dl-36: 5α,8α-epidioxyergosta-6,9(11),22-trien-3β-ol (28); 3β,5α,9α-trihydroxyergosta-7,22-dien-6-one (31); (22E,24R)-ergosta-5,7,22-trien-3β-ol (35); harzianolide (95); (22E,24R)-5α,8β-epidioxyergosta-6,22-dien-3-β-ol (139); and ergosta-7,22-dien-3β,5α,6β-triol (140) [24].
Thirty-two compounds were obtained from T. harzianum: 6-pentyl-pyran-2-one (52); trichodermin (70) [25,26]; cyclonerodiol (92); harzianic acid (141) [27]; 15-hydroxyacorenone (142) [28]; 2460A (143) [29]; trichokindins I–VII (144–150) [30]; trichorozins I–IV (151–154) [31]; octaketide keto diol (155) [32]; oxidized analog (156) [1]; 2-phenylethanol (157); tyrosol (158); 6-n-pentyl-•-pyrone (159) [33]; cyclo-(R-Pro-Gly) (160); cyclo-(R-Pro-R-Ala) (161); cyclo-(S-Pro-R-Va1) (162); cyclo-(4-methyl-R-Pro-S-Nva) (163); cyclo-(R-Pro-R-Leu) (164); cyclo-(R-Pro-R-Phe) (165); cyclo-(4-hydroxyl-S-Pro-S-Leu) (166); uraci (167); p-hydroxylphenylethanol (168); and m-hydroxylphenylacitic acid (169) [34]. Compound 70 exhibited antifungal activity against the mycelial growth of F. oxysporum, C. lindemuthianum, C. gloeosporioides, Thanatephorus cucumeris, R. solani, B. cinerea, and Cochliobolus miyabeanus. It also prevented the spore germination of pathogenic fungi T. cucumeris and R. solani. Compound 141 showed antibiotic activity against Pythium irregulare, Sclerotinia sclerotiorum, and R. solani; and a plant-growth-enhancing effect was observed at low concentrations. The anti-tumor activities of the new compound 143 was demonstrated on CM126 and HT-29 cell lines, with an IC50 of 2.17 × 10−5 mol/L and 1.8 × 10−5 mol/L respectively; and the compound somewhat affected the HT-29 cell cycle at S phase. Seven new peptaibols, compounds 144–150, induced Ca2+-dependent catecholamine secretion from bovine adrenal medullary cells. Compound 159 showed antifungal and antibacterial activity and completely inhibited the growth of fungus Armillaria mellea at a concentration of 200 ppm. Compounds 160–169 were isolated from T. harzianum for the first time.
In addition, compound 6-pentyl-α-pyrone (67) was also found from T. harzianum T77 and SQR-T037. It is used for the control of grapevine trunk diseases [15], and it effectively controlled F. oxysporum and may control Fusarium wilt in cucumber, in continuously cropped soil [35].
2.10. Metabolites from Trichoderma koningii
An unstable antifungal compound, 3-dimethylamino-5-hydroxy-5-vinyl-2-cyclopenten-l-one (170), which was a new cyclopentenone derivative, was obtained from the marine-derived fungus T. koningii [36]. From another marine fungus T. koningii, five new polyketide derivatives, 7-O-methylkoninginin D (171) and trichodermaketones A–D (172–175), together with four known compounds, koninginin A (176); koninginin D (177); koninginin E (178); and koninginin F (179), were identified [36]. Compound 172 showed synergistic antifungal activity against Candida albicans with 0.05 µg/mL ketoconazole [37].
Four compounds were isolated from T. koningii T-8: palmitic acid (127); δ-decanolactone (133); 6-pentyl-α-pyranone (180); and 6-(4-oxopentyl)-2H-pyran-2-one (181). Two compounds, stigmasterol (131) and 6-pentyl-α-pyranone (180), were obtained from T. koningii T-11. These compounds were evaluated for antifungal activity against soilborne pathogenic fungi R. solani, Sclerotium rolfsii, Macrophomina phaseolina, and F. oxysporum. Compounds 180 and 181 exhibited excellent antifungal activity against S. rolfsii [38].
Fourteen metabolites were derived from T. koningii: which included a new sesquiterpene alcohol, tricho-acorenol (182) [39], and thirteen other compounds: cyclonerodiol (92); uracil (167); methyl benzoate (183); cyclo-(L-Pro-L-Leu) (184); 4-hydroxyphenethylalcohol (185); ceramide (186); and trichokonins-V, VI, II, III, Ia, Ib, and IX (187–193) [40,41].
2.11. Metabolites from Trichoderma koningiopsis
Four koninginin compounds were characterized from T. koningiopsis [1]: trikoningin KAV (194); 11-residue lipopeptaibols (195); trikoningin KB I (196); and trikoningin KB II (197).
Five polyketides were isolated from T. koningiopsis YIM PH30002. Their structures were elucidated as konginginin A (198); konginginin B (199); konginginin D (200); konginginin F (201); and konginginin M (202) [42]. Among them, compounds 198–201 showed siderophoric activity. Compound 199 presented higher activity with a maximum tolerable concentration of 300 μg/mL, in the iron (Fe III) acquisition tests. Compounds 198–202 exhibited weak antimicrobial activity against Acinetobacter baumanii, Staphylococcus aureus, F. oxysporum, F. solani and Alternaria panax.
Twenty-four compounds were identified from T. koningiopsis Y10-2 [43]: wickerol A (25); harziandione (26); cyclonerodiol (92); wickerol B (121); epicycloneodiol oxide (123); cycloneodiol oxide (124); koninginin A (176); koninginin D (177); 3-acetyl-6-methyl-2H-pyran-2,4(3H)-dione (203); lutidonecarboxylic acid (204); cyclonertriol (205); 2-hydroxydiplopterol (206); verrucosidin (207); neoechinulin A (208); isoechinulin A (209); echinuline (210); cyclo-trans-4-OH-(D)-Pro-(D)-Phe (211); fructigenine A (212); 3-o-methylviridicatin (213); cyclopenol (214); olemolide (215); ethyl 4-hydroxyphenylacetate (216); 4-hydroxyphenylethanol (217); and m-methoxyphenol (218). A preliminary evaluation on antibacterial and antimicroalgal activities, as well as brine shrimp lethality of some compounds were carried out. The results showed that compound 214 displayed excellent activity against Pseudoalteromonas citrea, V. parahaemolyticus, V. splendidus, V. anguillarum, and V. harveyi, with IC50 values ranging from 8 to 32 μg/mL. Compounds 209, 210, and 212 showed potent inhibitory activity against C. marina, P. donghaiense, H. akashiwo, and K. veneficum, with IC50 values ranging from 0.040 to 12 μg/mL.
2.12. Metabolites from Trichoderma lignorum
Lignoren (64), a new sesquiterpenoid, was first isolated from T. lignorum HKI 0257. It showed moderate antimicrobial activity against Bacillus subtilis ATCC 6633, Mycobacterium smegmatis SG 987, and Pseudomonas aeruginosa K 599/WT [44].
2.13. Metabolites from Trichoderma longibrachiatum
Eight known compounds were identified from the marine-derived endophytic T. longibrachiatum: β-sitosterol (36); ergosterol (134) [33]; sorbicillin (219); ergosterol peroxide (220); cerevisterol (221); 2-anhydromevalonic acid (222); squalene (223) [45]; and ergokonin A (224) [46]. Biological activity indicated that compound 219 exhibited moderate activity against Bacillus brevis, B. subtilis, Sarcina lutea, and Enterobacter dissolvens. Compound 224 exhibited activity against Candida and Aspergillus species but was inactive against Cryptococcus species; and it induced alterations in the hyphal morphology of Aspergillus fumigatus.
Two new tetronic acid derivatives were isolated from T. longibrachiatum Rifai aggr, 5-hydroxyvertinolide (225) and bislongiquinolide (226), which were antagonistic to the fungus Mvcena citricolor [47].
A new sesquiterpene, 10,11-dihydrocyclonerotriol (227), together with two known compounds, catenioblin C (66) and sohirnone A (228), were identified from the endophytic fungus T. longibrachiatum YM311505. Compounds 66, 227 and 228 exhibited antifungal activities against Pyricularia oryzae and C. albicans [48].
Two compounds, trichokonins A (229) and B (230), were obtained from T. longibrachiatum SMF2. Compound 229 exhibited a variety of biological activities: antimicrobial, antiviral, anti-tumor, and inducing plant resistance [49].
2.14. Metabolites from Trichoderma polysporum
A new minor metabolite valinotricin (231) was reported from T. polysporum, along with cyclonerodiol oxide (232) and epi-cyclonerodiol oxide (233) [50]. From another strain of T. polysporum, two antibiotic peptides, trichosporin Bs (234) [51] and trichosporin B-V (235) [52], were obtained.
2.15. Metabolites from Trichoderma reesei
Six compounds were isolated from the marine fungus T. reesei: cyclonerodiol (92); 8,9-dihydroxy-megastigmatrienone (236); harzialactone A (237); 3,6-dibenzylpiperazine-2,5-dione (238); 3-isobutyl-8-hydroxyl-pyrrolopiperazine-2,5-dione (239); and 3-benzyl-8-hydroxyl-pyrrolopiperazine-2,5-dione (240) [53].
2.16. Metabolites from Trichoderma saturnisporum
Fourteen compounds were isolated from T. saturnisporum: bislongiquinolide (226), cerebroside A (241); cerebroside D (242); sorbicillin A (243); sorbicillin B (244); bisvertinolone (245) [54]; and new sorbicillinoid-based saturnispols A–H (246–253) [55]. Among these, compounds 226, 241, 242, and 245 showed the potential for antibacterial activity. Compound 251 exerted significant inhibition against a panel of bacteria strains, including vancomycin-resistant enterococci (VRE), with MIC ranging from 1.63 to 12.9 µg/mL, while compound 253 showed selective effects against VRE and B. subtilis.
2.17. Metabolites from Trichoderma spirale
Two compounds were isolated from the endophytic fungus T. spirale A17: tyrosol (158) and trichodemic acid (254). Compound 254 showed significant inhibitory activity against tumor cells SF-268, MCF-7, and NCI-H460, while compound 158 displayed weak hyperplasia inhibition activity against tumor cells [56].
2.18. Metabolites from Trichoderma virens
Four toxins were isolated from T. virens ITC-4777: gliotoxin (255); dimethyl gliotoxin (256); viridin (257); and viridiol (258). Compound 255 was active against Rhizoctonia bataticola (with ED50 0.03 µg/mL), M. phaseolina (with ED50 1.76 µg/mL), Pythium deharyanum (with ED50 29.38 µg/mL), Pythium aphanidermatum (with ED50 12.02 µg/mL), S. rolfsii (with ED50 2.11 µg/mL), and R. solani (with ED50 3.18 µg/mL) [57].
Twenty-three compounds were identified from T. virens Y13-3: fourteen new compounds [trichorenins A–C (259–261); trichocarotins A–H (262–269); trichocadinin A (270); (3S,6R)-6-(para-hydroxybenzyl)-1,4-dimethyl-3,6-bis(methylthio)piperazine-2,5-dion (271); and dehydroxymethylbis(dethio)bis(methylthio)gliotoxin (272)] and nine known compounds [demethylincisterol A3 (126); CAF-603 (273); 14-hydroxy CAF-603 (274); 7-β-hydroxy CAF-603 (275); trichocaraneA(276); 3[(4′-hydroxyphenyl)methyl]-1,4-dimethyl-3,6-bis(methylthio)piperazine-2,5-dione (277); bis(dethio)bis(methylthio)gliotoxin (278); bisdethiobis(methylthio)-dehydrogliotoxin (279); and chromone (280)] [43]. Bioassays showed that compound 280 could remarkably inhibit Pseudoalternaria citrea with an IC50 value of 8 μg/mL; and compounds 270 and 276 showed potential brine shrimp lethality, with IC50 values of 17 and 21 μg/mL, respectively. In the experiment on growth inhibition of microalgae, compounds 259–261 had significant inhibitory effects on C. marina and K. veneficum, with IC50 values ranging from 0.41 to 1.0 μg/mL. Compounds 264, 265, 266, 269 and 276 showed potent inhibitory activity against C. marina, P. donghaiense, H. akashiwo, and K. veneficum, with IC50 values ranging from 0.24 to 12 µg/mL.
2.19. Metabolites from Trichoderma viride
T. viride is widely used as a fungal antagonist. Twenty-eight compounds have been reported from T. viride: seventeen new antibiotic peptaibols [trichodecenins (281); trichorovins (282); trichocellins (283) [58]; and trichorovins I–XIV (284–297) [59]]; one new pyranone derivative, trichopyrone (298); and ten known compounds [bisvertinol (76); bislongiquinolide (226); trichodermanones A–D (299–302); rezishanone (303); vertinolide (304); trichodimerol (305); and 2-furancarboxylic acid (306)] [60].
2.20. Metabolites from Trichoderma viridescens
Two bioactive compounds were elucidated from T. viridescens TS0404: 6-pentyl-2H-pyran-2-one (129) and α-phenylcinnamic acid (307). Compound 129 had significant inhibitory activity against hyphal growth of Phytophthora capsici, Phytophthora melonis, R. solani, and F. oxysporum (with EC50 115.26, 99.58, 126.46, and 315.75 µg/mL, respectively). The inhibitory effect on P. melonis was the best among them, and hyphal growth was completely inhibited when its concentration reached 300 µg/mL. Similarly, compound 129 had a conspicuous inhibitory effect on the zoosporangial germination of P. capsici and P. melonis, but the inhibitory effect on P. melonis was the most profound; and zoosporangial germination of P. melonis was completely inhibited at 400 µg/mL. In addition, compound 129 had a significant inhibitory effect on the conidial germination of F. oxysporum (with EC50 151.81 µg/mL) and sclerotial germination of R. solani with complete inhibitory concentration 300 µg/mL [61].
2.21. Metabolites from Trichoderma spp.
A novel cyclopentenone, trichoderone (308), and a known compound, cholesta-7,22-diene-3β,5α,6β-triol (309), were identified from a marine Trichoderma sp. Compound 308 displayed potent cytotoxicity against A549, NCI-H460, MCF-7, MDA-MB-435s, HeLa-229, DU-145, and HLF. Compounds 308 and 309 also exhibited bioactivity against HIV protease and Taq DNA polymerase [62].
Four compounds were elucidated from mycelia of Trichoderma sp.: cyclonerodiol (92); 5α,8α-epidioxyergosta-6,22-diem-3β-ol (310); 1-monoolein (311); and methyl elaidate (312). Compound 92 showed weak nematicidal activity against Panagrellus redivivus, with 35.6% mortality at 800 mg/L in 72 h, and antimicrobial activity against Paecilomyces lilacinus, with an inhibition zone of 1.2 cm at 1 mg/disc [63].
One new compound, trichoderol A (313), was isolated from Trichoderma sp. cultures. Compound 313 was evaluated for antibacterial activity against Pseudomonas putida, Nocardia brasiliensis, and Kocuria rhizophila. The results showed compound 313 had antibacterial activity against the three pathogenic bacteria, with a MIC value of 5 μmol/L [64].
Two compounds were obtained from Trichoderma sp.: 6-pentyl-2H-pyran-2-one (129) and harzianic acid (141). Compounds 129 and 141 showed potential to improve plant growth and protect plant health [65].
Nine compounds were isolated from a sponge-derived Trichoderma sp. SCSIO41004: three new polyketides, [trichbenzoisochromen A (314); 5,7-dihydroxy-3-methyl-2-(2-oxopropyl)naphthalene-1,4-dione (315); and 7-acetyl-1,3,6-trihydroxyanthracene-9,10-dione (316)], and six known compounds [ZSU-H85 A (317); 1,3,6-trihydroxy-8-methytanthraquinone (318); 2,5-dimethyl-7-hydroxy-chromone (319); 7-hydroxy-2-(2′S-hydroxypropyl)-5-methylchromone (320); cyclonerotriol (321); and adenosine (322)] [66]. Compound 317 exhibited significant inhibitory activity against EV71 with an IC50 value of 25.7 μM.
Seventeen compounds were obtained from the endophytic fungus Trichoderma sp. 307 [64]: two new sesquiterpenes, microsphaeropsisins B (323) and C (324); two new de-o-methyllasiodiplodins, (3R,7R)-7-hydroxy-de-o-methyllasiodiplodin (325) and (3R)-5-oxo-de-o-methyllasiodiplodin (326); one new metabolite, (3R)-7-oxo-de-o-methyllasiodiplodin (327); and twelve known compounds [microsphaeropsisin (328); (3R)-5-oxolasiodiplodin (329); (3S)-6-oxo-de-o-methyllasiodiplodin (330); (3R)-de-o-methyllasiodiplodin (331); (3R,4R)-4-hydroxy-de-o-methyllasiodiplodin (332); (3R,5R)-5-hydroxy-de-o-methyllasiodiplodin (333); (3R,6R)-6-hydroxy-de-o-methyllasiodiplodin (334); (3R)-lasiodiplodin (335); (3S)-ozoroalide (336); (3S,5R)-5-hydroxylasiodiplodin (337); (E)-9-etheno-lasiodiplodin (338); and (3R)-nordinone (339). The isolated compounds were tested for their α-glucosidase inhibitory activity and cytotoxicity. Only compounds 325 and 326 exhibited potent α-glucosidase inhibitory activity with IC50 values of 25.8 and 54.6 µM, respectively [67].
An active antifungal compound, 2,5-cyclohexadiene-1,4-dione-2,6-bis(1,1-dimethylethyl) (340), was reported from Trichoderma sp. T-33 [68].
Three compounds were separated from Trichoderma sp. KK19L1: 5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone (97); (E)-3-acetylbenzylbut-2-enoate (341); and 1-hydroxy-6-methyl-9,10-anthraquinone (342)]. Compound 341 was a new compound [69].
Six compounds were isolated from Trichoderma sp. 09: methyl hexadecanoate (343); N-2′-hydroxy-3′E-octadecenoyl-1-o-β-D-glucopyranosyl-9-methyl-4E,8E-sphingadiene (344); (4E,8E)-1-o-(β-D-glucopyranosyl)-2-(2′-hydroxyl-(E)-3′-heptadecenoylamideo)-3-hydroxyl-9-methyl-4,8-nonadecadiene (345); ergosta-7,24(28)-diene-3β-ol (346); cholest-4-ene-3-ol (347); and methyl decanoate (348). Primary bioassay showed that compound 344 exhibited moderate inhibitory activity against Fusarium graminearum, Calletotrichum musae, and Penicillium italicum; and compound 345 exhibited moderate inhibitory activity against F. graminearum and C. musae and low inhibitory activity against P. italicum at a concentration of 0.5 μmol/mL [70].
Two unusual pyridines, trichodins A (349) and B (350), together with a known compound, pyridoxatin (351), were extracted from the marine Trichoderma sp. MF106. Compounds 349 and 351 showed antibiotic activities against the clinically relevant microorganism Staphylococcus epidermidis, with IC50 values of 24 μM and 4 μM, respectively [71].
A nematicidal compound, trichodermin (70), was isolated from the ethyl acetate extract of Trichoderma sp. YMF1.02647. Compound 70 killed more than 95% of both Panagrellus redivivus and Caenorhabditis elegans in 72 h at 0.4 g/L [72].
Two new cyclopentenones, trichodermones A (47) and B (352), together with a known compound, 3-(3-oxocyclopent-1-enyl)propanoic acid (353), were obtained from Trichoderma sp. YLF-3. These compounds were assayed for antibacterial activity, and compound 353 showed activity against Staphyloccocus aureus and Bacillus cereus [73].
Two novel compounds were isolated from Trichoderma sp. USF-2690: demethylsorbicillin (354) and oxosorbicillinol (355). In a 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging asssy, compound 355 gave an ED50 value of 87.7 µM [74].
Thirteen compounds were obtained from the fermentation broth of Trichoderma sp. Jing-8: a new natural mycotoxin, alternariol 1′-hydroxy-9-methyl ether (356), and twelve known compounds [ergosterol (134); and cerevisterol (221); alternariol 9-methyl ether (357); alternariol (358); altechromone A (359); altenuene (360); 4′-epialtenuene (361); scytalone (362); α-acetylorcinol (363); cerebroside C (364); α-palmitoyl-β-linoleoyl-α′-linoleoyl glycerol (365); and 1,2-benzenedicarboxylic acid bis(2S-methyl heptyl) ester (366)]. Compounds 356, 363, and 364 showed an inhibitory effect against cabbage seed germination (MIC < 3 μg/mL). Compound 356 showed antibacterial activity against B. subtilis and S. aureus (with MIC 64 μg/mL). Compounds 356 and 358 showed significant DPPH radical-scavenging activity (with IC50 12 μg/mL) [75].
Eight known compounds were isolated from Trichoderma sp. TA26-28: nafuredin (94); 5-hydroxy-2,3-dimethyl-7-methoxychromone (96); cerebroside D (242); cerebroside C (364); pachybasin (367); chrysophanol (368); 8-o-methylchrysophanol (369); and soya-cerebroside I (370). In the research, MIC (µM) values of eight compounds were evaluated against a panel of pathogenic bacteria: six Gram-positive bacteria [S. aureus, Sardine albus, B. cereus, B. subtilis, Micrococcus tetragenus, and K. rhizophila] and four Gram-negative bacteria [E. coli, V. parahaemolyticus, V. anguillarum, and P. putida]. Compound 96 showed pronounced antibacterial activity against all the tested bacteria, with MIC values ranging from 0.78 to 6.25 M. In addition, compounds 242 and 364 showed selective antibacterial activity against Gram-negative bacteria, and compound 94 showed weak antibacterial activity against B. cereus and P. putida [76].
Nine compounds were obtained from Trichoderma sp. YM311505: 3β,5α,9α-trihydroxyergosta-7,22-dien-6-one (31); ergosterol (134); trichodimerol (305); 5α,6α-epoxyergosta-8(14),22-diene-3β,7α-diol (371); campesterol (372); 7-methoxy-4,6-dimethyl phthalide (373); 7-hydroxy-4,6-dimethyl phtalide (374); daidzein (375); and cinnamic acid (376). Compound 31 exhibited the most potent antifungal activities against P. oryzae, C. albicans, Aspergillus niger, and Alternaria alternata with MIC value at 32 µg/mL. Compound 373 showed antimicrobial activity against E. coli, B. subtilis, P. oryzae, A. niger and A. alternata with MIC 64 µg/mL. Compounds 373 and 375 exhibited antibacterial activity against E. coli with MIC 64 µg/mL. Compound 305 showed antifungal activity against P. oryzae, C. albicans, and A. niger with MIC values of 32, 32, and 64 µg/mL, respectively [77].
Seventeen compounds were isolated from the endophytic fungus Trichoderma sp. Xy24: cyclonerodiol (92); ergosterol (134); trichodimerol (305); trichoacorenol (377) [78]; trichocage B (378); 1α-isopropyl-4α,8-dimethylspirod[4.5]-dec8-ene-2β,7α-di-ol (379); 1α-isopropyl-4α,8-dimethyl-spiro[4.5]dec-8-ene-3β,7α-diol (380); 10,11-dihydroxy-cyclonerodiol (381); 14-hydroxy-trichoacorenol (382); harzianone (383); (9R,10R)-dihydro-harzianone (384); ergokonin B (385); methyl stearate (386) [79]; harzianelactone (387); trichoacorenol B (388); trichoacorenol C (389); and cyclonerodiol B (390) [80]. Among them, compounds 381, 382, and 384 were new. Compound 305 exhibited medium inhibitory activity (with IC50 74.6 μM), using a neuraminidase (H7N9)/methylumbelliferyl-N-acetylneuraminic acid model. Compound 384 showed cytotoxic activity against the HeLa with IC50 30.1 μM and MCF-7 cell line with IC50 30.7 μM. Compound 390 inhibited LPS-induced NO production in BV2 cells by 75.0% (0.1 µM) and had good neuro-anti-inflammatory activity.
All secondary metabolites from Trichoderma are summarized in Table 1.
Table 1.
Metabolites | Species | Activity | Refs. | Metabolites | Species | Activity | Refs. |
---|---|---|---|---|---|---|---|
prealamethicin F50 (1) | T. arundinaceum | - | [3] | trikoningin KB I (196) | T. koningiopsis | - | [1] |
Glu(OMe)18-alamethicin F50 (2) | T. arundinaceum | Anti-tumor | [3] | trikoningin KB II (197) | T. koningiopsis | - | [1] |
trichobrevin BIII-D (3) | T. arundinaceum | Anti-tumor | [3] | konginginin A (198) | T. koningiopsis YIM PH30002 | Siderophoric Antifungal Antibacterial |
[42] |
alamethicin F50 (4) | T. arundinaceum | - | [3] | konginginin B (199) | T. koningiopsis YIM PH30002 | Siderophoric Antifungal Antibacterial |
[42] |
alamethicin II (5) | T. arundinaceum | - | [3] | konginginin D (200) | T. koningiopsis YIM PH30002 | Siderophoric Antifungal Antibacterial |
[42] |
atroviridin J (6) | T. arundinaceum | - | [3] | konginginin F (201) | T. koningiopsis YIM PH30002 | Siderophoric Antifungal Antibacterial |
[42] |
trichobranchin D-I (7) | T. arundinaceum | - | [3] | konginginin M (202) | T. koningiopsis YIM PH30002 | Antifungal Antibacterial |
[42] |
trichodermaerin (8) | T. asperellum | - | [5] | 3-acetyl-6-methyl-2H-pyran-2,4(3H)-dione (203) | T. koningiopsis Y10-2 | - | [43] |
6-amyl alpha-pyrone (9) | T. asperellum | - | [6] | lutidonecarboxylic acid (204) | T. koningiopsis Y10-2 | - | [43] |
aspereline G (10) | T. asperellum | - | [7] | cyclonertriol (205) | T. koningiopsis Y10-2 | - | [43] |
aspereline H (11) | T. asperellum | - | [7] | 2-hydroxydiplopterol (206) | T. koningiopsis Y10-2 | - | [43] |
aspereline A (12) | T. asperellum | - | [7] | verrucosidin (207) | T. koningiopsis Y10-2 | - | [43] |
aspereline C (13) | T. asperellum | - | [7] | neoechinulin A (208) | T. koningiopsis Y10-2 | - | [43] |
aspereline D (14) | T. asperellum | - | [7] | isoechinulin A (209) | T. koningiopsis Y10-2 | Antimicroalgal | [43] |
aspereline E (15) | T. asperellum | - | [7] | echinuline (210) | T. koningiopsis Y10-2 | Antimicroalgal | [43] |
aspereline F (16) | T. asperellum | - | [7] | cyclo-trans-4-OH-(D)-Pro-(D)-Phe (211) | T. koningiopsis Y10-2 | - | [43] |
bisabolan-1,10,11-triol (17) | T. asperellum cf44-2 | Antibacterial Growth inhibitoring |
[8] | fructigenine A (212) | T. koningiopsis Y10-2 | Antimicroalgal | [43] |
12-nor-11-acetoxybisabolen-3,6,7-triol (18) | T. asperellum cf44-2 | Antibacterial Growth inhibitoring |
[8] | 3-o-methylviridicatin (213) | T. koningiopsis Y10-2 | - | [43] |
(7S)-1-hydroxy-3-p-menthen-9-oic acid (19) | T. asperellum cf44-2 | - | [8] | cyclopenol (214) | T. koningiopsis Y10-2 | Antibacterial | [43] |
(7R)-1-hydroxy-3-p-menthen-9-oic acid (20) | T. asperellum cf44-2 | - | [8] | olemolide (215) | T. koningiopsis Y10-2 | - | [43] |
dechlorotrichodenone C (21) | T. asperellum cf44-2 | Antibacterial Growth inhibitoring | [8] | 4-hydroxyphenylacetate (216) | T. koningiopsis Y10-2 | - | [43] |
3-hydroxytrichodenone C (22) | T. asperellum cf44-2 | Antibacterial Growth inhibitoring | [8] | 4-hydroxyphenylethanol (217) | T. koningiopsis Y10-2 | - | [43] |
methylcordysinin A (23) | T. asperellum cf44-2 | - | [8] | m-methoxyphenol (218) | T. koningiopsis Y10-2 | - | [43] |
4-oxazolepropanoic acid (24) | T. asperellum cf44-2 | - | [8] | sorbicillin (219) | T. longibrachiatum | Antibacterial | [45] |
wickerol A (25) |
T. asperellum dl-34 T. koningiopsis Y10-2 |
Nematicidal | [9] [43] |
ergosterol peroxide (220) | T. longibrachiatum | - | [45] |
harziandione (26) |
T. asperellum dl-34 T. koningiopsis Y10-2 |
Nematicidal | [9] [43] |
cerevisterol (221) | T. longibrachiatum | - | [45] [75] |
ergosterol endoperoxide (27) |
T. asperellum dl-34 T. citrinoviride cf-27 T. harzianum R5 |
- | [9] | 2-anhydromevalonic acid (222) | T. longibrachiatum | - | [45] |
5α,8α-epidioxyergosta-6,9(11),22-trien-3β-ol (28) |
T. asperellum dl-34 T. harzianum R5 T. harzianum dl-36 |
- | [9] [24] |
squalene (223) | T. longibrachiatum | - | [45] |
3β,5α,6β-trihydroxyergosta-7,22-diene (29) |
T. asperellum dl-34 T. harzianum R5 |
- | [9] | ergokonin A (224) | T. longibrachiatum | Antifungal | [46] |
3β,5α-dihydroxy-6β-methoxyergosta-7,22-diene (30) | T. asperellum dl-34 | - | [9] | 5-hydroxyvertinolide (225) | T. longibrachiatum Rifai | Antagonism | [47] |
3β,5α,9α-trihydroxyergosta-7,22-dien-6-one (31) |
T. asperellum dl-34 T. harzianum dl-36 Trichoderma sp. YM311505 |
Antifungal | [9] [24] [77] |
bislongiquinolide (226) |
T. longibrachiatum Rifai T. saturnisporum T. viride |
Antagonism Antibacterial |
[47] [54] [60] |
(22E,24R)-ergosta-4,6,8,(14),22-tetraen-3-one (32) |
T. asperellum dl-34 T. citrinoviride cf-27 |
- | [9] | 10,11-dihydrocyclonerotriol (227) | T. longibrachiatum YM311505 | Antifungal | [48] |
(22E,24R)-5α,6α-epoxyergosta-8,22-diene-3β,7α-diol (33) | T. asperellum dl-34 | - | [9] | sohirnone A (228) | T. longibrachiatum YM311505 | Antifungal | [48] |
ergosta-7,22-dien-3β-ol (34) | T. asperellum dl-34 | - | [9] | trichokonin A (229) | T. longibrachiatum SMF2 | Antiviral Anti-tumor Antimicrobial Plant resistance |
[49] |
(22E,24R)-ergosta-5,7,22-trien-3β-ol (35) |
T. asperellum dl-34 T. citrinoviride cf-27 T. harzianum dl-36 |
- | [9] [24] |
trichokonin B (230) | T. longibrachiatum SMF2 | - | [49] |
β-sitosterol (36) |
T. asperellum dl-34 T. harzianum T-4 T. longibrachiatum |
- | [9] [22] [33] |
valinotricin (231) | T. polysporum | - | [50] |
(L)-Pro-(L)-Leu (37) | T. asperellum dl-34 | - | [9] | cyclonerodiol oxide (232) | T. polysporum | - | [50] |
(L)-4-OH-Pro-(L)-Leu (38) | T. asperellum dl-34 | - | [9] | epi-cyclonerodiol oxide (233) | T. polysporum | - | [50] |
adenine nucleoside (39) |
T. asperellum dl-34 T. harzianum R5 |
- | [9] | trichosporin Bs (234) | T. polysporum | - | [51] |
cis-4-hydroxy-6-deoxyscytalone (40) | T. asperellum dl-34 | - | [9] | trichosporin B-V (235) | T. polysporum | - | [52] |
2,4-dihydroxy-3,6-dimethylbenzaldehyde (41) | T. asperellum dl-34 | - | [9] | 8,9-dihydroxy-megastigmatrienone (236) | T. reesei | - | [53] |
dihydrocitrinone (42) | T. asperellum dl-34 | - | [9] | harzialactone A (237) | T. reesei | - | [53] |
atrichodermone A (43) | T. atroviride | Cytotoxic Anti-inflammatory |
[10] | 3,6-dibenzylpiperazine-2,5-dione (238) | T. reesei | - | [53] |
atrichodermone B (44) | T. atroviride | Cytotoxic Anti-inflammatory |
[10] | 3-isobutyl-8-hydroxyl-pyrrolopiperazine-2,5-dione (239) | T. reesei | - | [53] |
atrichodermone C (45) | T. atroviride | Cytotoxic Anti-inflammatory |
[10] | 3-benzyl-8-hydroxyl-pyrrolopiperazine-2,5-dione (240) | T. reesei | - | [53] |
atrichodermone D (46) | T. atroviride | - | [11] | cerebroside A (241) | T. saturnisporum | Antibacterial | [54] |
trichodermone A (47) |
T. atroviride Trichoderma sp. YLF-3 |
- | [11] [73] |
cerebroside D (242) |
T. saturnisporum Trichoderma sp. TA26-28 |
Antibacterial | [54] [76] |
(5R)5-hydroxy-3-[(methoxycarbonyl)-amino]-5-vinyl-2-cyclopenten-1-one (48) | T. atroviride | - | [11] | sorbicillin A (243) | T. saturnisporum | - | [54] |
4H-1,3-dioxin-4-one-2,3,6-trimethyl (49) | T. atroviride | Antibacterial Cytotoxic |
[11] | sorbicillin B (244) | T. saturnisporum | - | [54] |
1,3-dione-5,5-dimethylcyclohexane (50) |
T. atroviride
T. harzianum |
- | [11] | bisvertinolone (245) | T. saturnisporum | Antibacterial | [54] |
2-enone-3hydroxy-5,5-dimethylcylohex (51) | T. atroviride | - | [11] | saturnispol A (246) | T. saturnisporum | - | [55] |
6-pentyl-pyran-2-one (52) | T. atroviride | - | [1] [25] [26] |
saturnispol B (247) | T. saturnisporum | - | [55] |
6-pent-1-enyl-pyrane-2-one (53) | T. atroviride | - | [1] | saturnispol C (248) | T. saturnisporum | - | [55] |
2-hydroxybutan-3-yl5′-(2″-hydroxy-N-(2‴-oxobutan-3‴-yl)propanamido)butanoate (54) | T. atroviride G20-12 | - | [12] | saturnispol D (249) | T. saturnisporum | - | [55] |
3-hydroxy-5-(4-hydroxybenzyl)dihydrofuran-2(3H)-one (55) | T. atroviride G20-12 | - | [12] | saturnispol E (250) | T. saturnisporum | - | [55] |
4′-(4,5-dimethyl-1,3-dioxolan-2-yl)methyl-phenol (56) | T. atroviride G20-12 | - | [13] | saturnispol F (251) | T. saturnisporum | - | [55] |
(3′-hydroxybutan-2′-yl)5-oxopyrrolidine-2-carboxylate (57) | T. atroviride G20-12 | - | [13] | saturnispol G (252) | T. saturnisporum | - | [55] |
atroviridetide (58) | T. atroviride G20-12 | - | [13] | saturnispol H (253) | T. saturnisporum | Antibacterial | [55] |
trichodermadione A (59) | T. atroviride S361 | - | [14] | trichodemic acid (254) | T. spirale A17 | Anti-tumor | [56] |
trichodermadione B (60) | T. atroviride S361 | - | [14] | gliotoxin (255) | T. virens ITC-4777 | Antifungal | [57] |
4-(2-formyl-5-(methoxymethyl)-1H-pyrrol-1-yl)butanoic acid (61) | T. atroviride S361 | - | [14] | dimethyl gliotoxin (256) | T. virens ITC-4777 | - | [57] |
5-methoxymethyl-1H-pyrrole-2-carbaalde-hyde (62) | T. atroviride S361 | - | [14] | viridin (257) | T. virens ITC-4777 | - | [57] |
3-(1-carbaalde)-6-methyl-2H-pyran-2,4(3H)-dione (63) | T. atroviride S361 | - | [14] | viridiol (258) | T. virens ITC-4777 | - | [57] |
lignoren (64) |
T. atroviride S361 T. citrinoviride T. lignorum HKI 0257 |
Antibacterial | [14], [18], [44] | trichorenin A (259) | T. virens Y13-3 | Antimicroalgal | [43] |
ascotrichic acid (65) | T. atroviride S361 | - | [14] | trichorenin B (260) | T. virens Y13-3 | Antimicroalgal | [43] |
catenioblin C (66) |
T. atroviride S361 T. longibrachiatum YM311505 |
Antifungal | [14] | trichorenin C (261) | T. virens Y13-3 | Antimicroalgal | [43] |
6-pentyl-α-pyrone (67) |
T. atroviride UST1 T. atroviride UST2 T. harzianum T77 T. harzianum SQR-T037 |
Plant resistance Antifungal | [15] [35] |
trichocarotin A (262) | T. virens Y13-3 | - | [43] |
koninginin G (68) | T. aureoviride | Growth inhibitoring | [16] | trichocarotin B (263) | T. virens Y13-3 | - | [43] |
Koninginin G triacetate (69) | T. aureoviride | - | [16] | trichocarotin C (264) | T. virens Y13-3 | Antimicroalgal | [43] |
trichodermin (70) |
T. brevicompactum T. harzianum Trichoderma sp.YMF1.02647 |
Antifungal Nematicidal | [17] [25] [26] [72] |
trichocarotin D (265) | T. virens Y13-3 | Antimicroalgal | [43] |
(R)-vertinolide (71) | T. citrinoviride | - | [1] | trichocarotin E (266) | T. virens Y13-3 | Antimicroalgal | [43] |
trichoderiol C (72) | T. citrinoviride | - | [18] | trichocarotin F (267) | T. virens Y13-3 | - | [43] |
citrinoviric acid (73) | T. citrinoviride | Cytotoxic | [18] | trichocarotin G (268) | T. virens Y13-3 | - | [43] |
penicillenol D (74) | T. citrinoviride | Cytotoxic | [18] | trichocarotin H (269) | T. virens Y13-3 | Antimicroalgal | [43] |
trichotetronine (75) | T. citrinoviride | - | [18] | trichocadinin A (270) | T. virens Y13-3 | - | [43] |
bisvertinol (76) |
T. citrinoviride
T. viride |
- | [6] [18] |
(3S,6R)-6-(para-hydroxybenzyl)-1,4-dimethyl-3,6-bis(methylthio)piperazine-2,5-dion (271) | T. virens Y13-3 | - | [43] |
spirosorbicillinol A (77) | T. citrinoviride | - | [18] | dehydroxymethylbis(dethio)bis(methylthio)gliotoxin (272) | T. virens Y13-3 | - | [43] |
spirosorbicillinol B (78) | T. citrinoviride | - | [18] | CAF-603 (273) | T. virens Y13-3 | - | [43] |
spirosorbicillinol C (79) | T. citrinoviride | - | [18] | 14-hydroxy CAF-603 (274) | T. virens Y13-3 | - | [43] |
trichoderiol A (80) | T. citrinoviride | - | [18] | 7-β-hydroxy CAF-603 (275) | T. virens Y13-3 | - | [43] |
penicillenol B1 (81) | T. citrinoviride | - | [18] | trichocarane A(276) | T. virens Y13-3 | Antimicroalgal | [43] |
penicillenol B2 (82) | T. citrinoviride | - | [18] | 3[(4′-hydroxyphenyl)methyl]-1,4-dimethyl-3,6-bis(methylthio)piperazine-2,5-dione (277) | T. virens Y13-3 | - | [43] |
cyclo-(Leu-Pro) (83) | T. citrinoviride | - | [18] | bis(dethio)bis(methylthio)gliotoxin (278) | T. virens Y13-3 | - | [43] |
cyclo-(Ile-Pro) (84) | T. citrinoviride | - | [18] | bisdethiobis(methylthio)-dehydrogliotoxin (279) | T. virens Y13-3 | - | [43] |
cyclo-(Phe-Pro) (85) | T. citrinoviride | - | [18] | chromone (280) | T. virens Y13-3 | Antifungal | [43] |
trichocitrin (86) | T. citrinoviride cf-27 | Antimicroalgal | [9] | trichodecenins (281) | T. viride | - | [58] |
24-methylenecycloartanol (87) | T. citrinoviride cf-27 | - | [9] | trichorovins (282) | T. viride | - | [58] |
cycloeucalenol (88) | T. citrinoviride cf-27 | - | [9] | trichocellins (283) | T. viride | - | [58] |
citrostadienol (89) | T. citrinoviride cf-27 | - | [9] | trichorovin I (284) |
T. viride | - | [59] |
euphorbol (90) | T. citrinoviride cf-27 | - | [9] | trichorovin II (285) |
T. viride | - | [59] |
24-methylene-lanost-8-en-3β-ol (91) | T. citrinoviride cf-27 | - | [9] | trichorovin III (286) |
T. viride | - | [59] |
cyclonerodiol (92) |
T. citrinoviride cf-27 T. harzianum R5-1 T. harzianum T. koningiopsis Y10-2 T. reesei Trichoderma sp Trichoderma sp. Xy24 |
Antibacterial Antifungal Nematicidal | [9] [21] [27] [43] [53] [63] [78] |
trichorovin IV (287) |
T. viride | - | [59] |
(22E,24R)-7β,8β-epoxy-3β,5α,9α-trihydroxyergosta-22-en-6-one (93) | T. citrinoviride cf-27 | - | [9] | trichorovin V (288) |
T. viride | - | [59] |
nafuredin (94) |
T. citrinoviride cf-27 Trichoderma sp. TA26-28 |
Antimicroalgal Antibacterial | [9] [76] |
trichorovin VI (289) |
T. viride | - | [59] |
harzianolide (95) |
T. citrinoviride cf-27 T. harzianum T22 T. harzianum T39 T. harzianum dl-36 |
Antibacterial Antifungal |
[9] [23] [24] |
trichorovin VII (290) |
T. viride | - | [59] |
5-hydroxy-2,3-dimethyl-7-methoxychromone (96) |
T. citrinoviride cf-27 Trichoderma sp. TA26-28 |
Antibacterial | [9] [76] |
trichorovin VIII (291) |
T. viride | - | [59] |
5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone (97) |
T. citrinoviride cf-27 Trichoderma sp. KK19L1 |
- | [9] [69] |
trichorovin IX (292) |
T. viride | - | [59] |
methyl 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate (98) | T. citrinoviride cf-27 | - | [9] | trichorovin X (293) |
T. viride | - | [59] |
methyl 2,8-dihydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate (99) | T. citrinoviride cf-27 | - | [9] | trichorovin XI (294) |
T. viride | - | [59] |
stachyline B (100) | T. citrinoviride cf-27 | - | [9] | trichorovin XII (295) |
T. viride | - | [59] |
trans-3,4-dihydro-2,4,8-trihydroxynaphthalen-1(2H)-one (101) | T. citrinoviride cf-27 | - | [9] | trichorovin XIII (296) |
T. viride | - | [59] |
pyrazole-3-carboxylic acid (102) | T. citrinoviride cf-27 | - | [9] | trichorovin XIV (297) |
T. viride | - | [59] |
pyrrole-2-carboxylic acid (103) | T. citrinoviride cf-27 | - | [9] | trichopyrone (298) | T. viride | - | [60] |
dibutyl phthalate (104) | T. citrinoviride cf-27 | - | [9] | trichodermanone A (299) | T. viride | - | [60] |
cremenolide (105) | T. cremeum | Antifungal Growth enhancing | [19] | trichodermanone B (300) | T. viride | - | [60] |
trichoderone A (106) | T. gamsii | - | [20] | trichodermanone C (301) | T. viride | - | [60] |
trichoderone B (107) | T. gamsii | - | [20] | trichodermanone D (302) | T. viride | - | [60] |
aspochalasin D (108) | T. gamsii | Cytotoxic | [20] | rezishanone (303) | T. viride | - | [60] |
aspochalasin J (109) | T. gamsii | Cytotoxic | [20] | vertinolide (304) | T. viride | - | [60] |
aspochalasin I (110) | T. gamsii | - | [20] | trichodimerol (305) |
T. viride Trichoderma sp. YM311505 Trichoderma sp. Xy24 |
Antifungal Enzyme inhibitoring |
[60] [77] [78] |
trichoharzianin (111) | T. harzianum R5 | Antimicroalgal | [9] | 2-furancarboxylic acid (306) | T. viride | - | [60] |
3β-hydroxyergosta-8,24(28)-dien-7-one (112) | T. harzianum R5 | - | [9] | α-phenylcinnamic acid (307) | T. viridescens TS0404 | - | [61] |
(22E,24R)-24-methylcholesta-5,22-dien-3β-ol (113) | T. harzianum R5 | - | [9] | trichoderone (308) | Trichoderma sp | Cytotoxic Enzyme inhibitoring |
[62] |
5,7-dihydroxy-2,3-dimethylchromone (114) | T. harzianum R5 | - | [9] | cholesta-7,22-diene-3β,5α,6β-triol (309) | Trichoderma sp | Enzyme inhibitoring | [62] |
(22E,24R)-3β,5α-dihydroxy-ergosta-7,22-dien-6-one (115) | T. harzianum R5 | - | [9] | 5α,8α-epidioxyergosta-6,22-diem-3β-ol (310) | Trichoderma sp | - | [63] |
5-hydroxy-2-hydroxymethyl-3-methyl-7-methoxychromone (116) | T. harzianum R5 | - | [9] | 1-monoolein (311) | Trichoderma sp | - | [63] |
indole-3-carboxaldehyde (117) | T. harzianum R5 | - | [9] | methyl elaidate (312) | Trichoderma sp | - | [63] |
3-indol acetic acid (118) | T. harzianum R5 | - | [9] | trichoderol A (313) | Trichoderma sp | Antibacterial | [64] |
2,4-dimethylbenzene-1,3,5-triol (119) | T. harzianum R5 | - | [9] | trichbenzoisochromen A (314) | Trichoderma sp. SCSIO41004 | - | [66] |
5′-o-acetyluracil nucleoside (120) | T. harzianum R5 | - | [9] | 5,7-dihydroxy-3-methyl-2-(2-oxopropyl)naphthalene-1,4-dione (315) | Trichoderma sp. SCSIO41004 | - | [66] |
wickerol B (121) |
T. harzianum R5-1 T. koningiopsis Y10-2 |
Antibacterial | [21] [43] |
7-acetyl-1,3,6-trihydroxyanthracene-9,10-dione (316) | Trichoderma sp. SCSIO41004 | - | [66] |
(1S,4S,5S)-8-hydroxymethyl-1-isopropyl-4-methylspiro[4.5]dec-8-en-7-one) (122) | T. harzianum R5-1 | Antibacterial | [21] | ZSU-H85 A (317) | Trichoderma sp. SCSIO41004 | Antiviral | [66] |
epicycloneodiol oxide (123) |
T. harzianum R5-1 T. koningiopsis Y10-2 |
Antibacterial | [21] [43] |
1,3,6-trihydroxy-8-methytanthraquinone (318) | Trichoderma sp. SCSIO41004 | - | [66] |
cycloneodiol oxide (124) |
T. harzianum R5-1 T. koningiopsis Y10-2 |
Antibacterial | [21] [43] |
2,5-dimethyl-7-hydroxy-chromone (319) | Trichoderma sp. SCSIO41004 | - | [66] |
5,6-dihydro-4-methyl-2H-pyran-2-one (125) | T. harzianum R5-1 | - | [21] | 7-hydroxy-2-(2′S-hydroxypropyl)-5-methylchromone (320) | Trichoderma sp. SCSIO41004 | - | [66] |
demethylincisterol A3 (126) |
T. harzianum R5-1 T. virens Y13-3 |
- | [21] [43] |
cyclonerotriol (321) | Trichoderma sp. SCSIO41004 | - | [66] |
palmitic acid (127) |
T. harzianum T-4 T. koningii T-8 |
- | [22] [38] |
adenosine (322) | Trichoderma sp. SCSIO41004 | - | [66] |
1,8-dihydroxy-3-methylanthraquinone (128) |
T. harzianum T-4 T. harzianum T22 T. harzianum T39 |
- | [22] [23] |
microsphaeropsisin B (323) | Trichoderma sp. 307 | - | [64] |
6-pentyl-2H-pyran-2-one (129) |
T. harzianum T-4 T. viridescens TS0404 Trichoderma sp |
Antifungal Growth inhibitoring | [22] [61] [65] |
microsphaeropsisin C (324) | Trichoderma sp. 307 | - | [64] |
2(5H)-furanone (130) | T. harzianum T-4 | - | [22] | (3R,7R)-7-hydroxy-de-o-methyllasiodiplodin (325) | Trichoderma sp. 307 | Enzyme inhibitoring | [64] [67] |
stigmasterol (131) |
T. harzianum T-4 T. koningii T-11 |
- | [22] [38] |
(3R)-5-oxo-de-o-methyllasiodiplodin (326) | Trichoderma sp. 307 | Enzyme inhibitoring | [64] [67] |
1-hydroxy-3-methylanthraquinone (132) |
T. harzianum T-4 T. harzianum T22 T. harzianum T39 |
- | [22] [23] |
(3R)-7-oxo-de-o-methyllasiodiplodin (327) | Trichoderma sp. 307 | - | [64] |
δ-decanolactone (133) |
T. harzianum T-4 T. koningii T-8 |
- | [22] [38] |
microsphaeropsisin (328) | Trichoderma sp. 307 | - | [64] |
ergosterol (134) |
T. harzianum T-4 T. longibrachiatum Trichoderma sp. YM311505 Trichoderma sp. Xy24 |
- | [22] [33] [75] [77] [78] |
(3R)-5-oxolasiodiplodin (329) | Trichoderma sp. 307 | - | [64] |
harzianopyridone (135) |
T. harzianum T-4 T. harzianum T22 T. harzianum T39 |
Antifungal | [22] [23] |
(3S)-6-oxo-de-o-methyllasiodiplodin (330) | Trichoderma sp. 307 | - | [64] |
6-methyl-1,3,8-trihydroxyanthraquinone (136) | T. harzianum T-4 | - | [22] | (3R)-de-o-methyllasiodiplodin (331) | Trichoderma sp. 307 | - | [64] |
T22azaphilone (137) |
T. harzianum T22 T. harzianum T39 |
Antifungal | [23] | (3R,4R)-4-hydroxy-de-o-methyllasiodiplodin (332) | Trichoderma sp. 307 | - | [64] |
T39butenolide (138) |
T. harzianum T22 T. harzianum T39 |
Antifungal | [23] | (3R,5R)-5-hydroxy-de-o-methyllasiodiplodin (333) | Trichoderma sp. 307 | - | [64] |
(22E,24R)-5α,8β-epidioxyergosta-6,22-dien-3-β-ol (139) | T. harzianum dl-36 | - | [24] | (3R,6R)-6-hydroxy-de-o-methyllasiodiplodin (334) | Trichoderma sp. 307 | - | [64] |
ergosta-7,22-dien-3β,5α,6β-triol (140) | T. harzianum dl-36 | - | [24] | (3R)-lasiodiplodin (335) | Trichoderma sp. 307 | - | [64] |
harzianic acid (141) |
T. harzianum Trichoderma sp |
Antibiotic Growth enhancing | [27] [65] |
(3S)-ozoroalide (336) | Trichoderma sp. 307 | - | [64] |
15-hydroxyacorenone (142) | T. harzianum | - | [28] | (3S,5R)-5-hydroxylasiodiplodin (337) | Trichoderma sp. 307 | - | [64] |
2460A (143) | T. harzianum | Anti-tumor | [29] | (E)-9-etheno-lasiodiplodin (338) | Trichoderma sp. 307 | - | [64] |
trichokindin I (144) | T. harzianum | Bioinducer | [30] | (3R)-nordinone (339) | Trichoderma sp. 307 | - | [64] |
trichokindin II (145) | T. harzianum | Bioinducer | [30] | 2,5-cyclohexadiene-1,4-dione-2,6-bis(1,1-dimethylethyl) (340) | Trichoderma sp. T-33 | Antifungal | [68] |
trichokindin III (146) | T. harzianum | Bioinducer | [30] | (E)-3-acetylbenzylbut-2-enoate (341) | Trichoderma sp. KK19L1 | - | [69] |
trichokindin IV (147) | T. harzianum | Bioinducer | [30] | 1-hydroxy-6-methyl-9,10-anthraquinone (342) | Trichoderma sp. KK19L1 | - | [69] |
trichokindin V (148) | T. harzianum | Bioinducer | [30] | methyl hexadecanoate (343) | Trichoderma sp. 09 | - | [70] |
trichokindin VI (149) | T. harzianum | Bioinducer | [30] | N-2′-hydroxy-3′E-octadecenoyl-1-o-β-D-glucopyranosyl-9-methyl-4E,8E-sphingadiene (344) | Trichoderma sp. 09 | Antifungal | [70] |
trichokindin VII (150) | T. harzianum | Bioinducer | [30] | (4E,8E)-1-o-(β-D-glucopyranosyl)-2-(2′-hydroxyl-(E)-3′-heptadecenoylamideo)-3-hydroxyl-9-methyl-4,8-nonadecadiene (345) | Trichoderma sp. 09 | Antifungal | [70] |
trichorozin I (151) | T. harzianum | - | [31] | ergosta-7,24(28)-diene-3β-ol (346) | Trichoderma sp. 09 | - | [70] |
trichorozin II (152) | T. harzianum | - | [31] | cholest-4-ene-3-ol (347) | Trichoderma sp. 09 | - | [70] |
trichorozin III (153) | T. harzianum | - | [31] | methyl decanoate (348) | Trichoderma sp. 09 | - | [70] |
trichorozin IV (154) | T. harzianum | - | [31] | trichodin A (349) | Trichoderma sp. MF106 | Antibiotic | [71] |
octaketide keto diol (155) | T. harzianum | - | [32] | trichodin B (350) | Trichoderma sp. MF106 | - | [71] |
oxidized analog (156) | T. harzianum | - | [1] | pyridoxatin (351) | Trichoderma sp. MF106 | Antibiotic | [71] |
2-phenylethanol (157) | T. harzianu | - | [33] | trichodermone B (352) | Trichoderma sp. YLF-3 | - | [73] |
tyrosol (158) |
T. harzianum T. spirale A17 |
Anti-tumor Hyperplasia-inhibitory |
[33] [56] |
3-(3-oxocyclopent-1-enyl)propanoic acid (353) | Trichoderma sp. YLF-3 | Antibacterial | [73] |
6-n-pentyl-•-pyrone (159) | T. harzianum | Antifungal Antibacterial |
[33] | demethylsorbicillin (354) | Trichoderma sp. USF-2690 | - | [74] |
cyclo-(R-Pro-Gly) (160) | T. harzianum | - | [34] | oxosorbicillinol (355) | Trichoderma sp. USF-2690 | DPPH-radical-scavenging | [74] |
cyclo-(R-Pro-R-Ala) (161) | T. harzianum | [34] | alternariol 1′-hydroxy-9-methyl ether (356) | Trichoderma sp. Jing-8 | Growth inhibitoring Antibacterial DPPH-radical-scavenging |
[75] | |
cyclo-(S-Pro-R-Va1) (162) | T. harzianum | - | [34] | alternariol 9-methyl ether (357) | Trichoderma sp. Jing-8 | - | [75] |
cyclo-(4-methyl-R-Pro-S-Nva) (163) | T. harzianum | - | [34] | alternariol (358) | Trichoderma sp. Jing-8 | DPPH-radical-scavenging | [75] |
cyclo-(R-Pro-R-Leu) (164) | T. harzianum | - | [34] | altechromone A (359) | Trichoderma sp. Jing-8 | - | [75] |
cyclo-(R-Pro-R-Phe) (165) | T. harzianum | - | [34] | altenuene (360) | Trichoderma sp. Jing-8 | - | [75] |
cyclo-(4-hydroxyl-S-Pro-S-Leu) (166) | T. harzianum | - | [34] | 4′-epialtenuene (361) | Trichoderma sp. Jing-8 | - | [75] |
uraci (167) | T. harzianum | - | [34] | scytalone (362) | Trichoderma sp. Jing-8 | - | [75] |
p-hydroxylphenylethanol (168) | T. harzianum | - | [34] | α-acetylorcinol (363) | Trichoderma sp. Jing-8 | Growth inhibitoring | [75] |
m-hydroxylphenylacitic acid (169) | T. harzianum | - | [34] | cerebroside C (364) | Trichoderma sp. Jing-8 | - | [75] |
3-dimethylamino-5-hydroxy-5-vinyl-2-cyclopenten-l-one (170) | T. koningii | - | [36] | α-palmitoyl-β-linoleoyl-α′-linoleoyl glycerol (365) | Trichoderma sp. Jing-8 | - | [75] |
7-O-methylkoninginin D (171) | T. koningii | - | [36] | 1,2-benzenedicarboxylic acid bis(2S-methyl heptyl) ester (366) | Trichoderma sp. Jing-8 | - | [75] |
Trichodermaketone A (172) | T. koningii | Antifungal | [36] [37] |
pachybasin (367) | Trichoderma sp. TA26-28 | - | [76] |
Trichodermaketone B (173) | T. koningii | - | [36] | chrysophanol (368) | Trichoderma sp. TA26-28 | - | [76] |
Trichodermaketone C (174) | T. koningii | - | [36] | 8-o-methylchrysophanol (369) | Trichoderma sp. TA26-28 | - | [76] |
Trichodermaketone D (175) | T. koningii | - | [36] | soya-cerebroside I (370) | Trichoderma sp. TA26-28 | - | [76] |
koninginin A (176) |
T. koningii T. koningiopsis Y10-2 |
- | [36] [43] |
5α,6α-epoxyergosta-8(14),22-diene-3β,7α-diol (371) | Trichoderma sp. YM311505 | - | [77] |
koninginin D (177) |
T. koningii T. koningiopsis Y10-2 |
- | [36] [43] |
campesterol (372) | Trichoderma sp. YM311505 | - | [77] |
koninginin E (178) | T. koningii | - | [36] | 7-methoxy-4,6-dimethyl phthalide (373) | Trichoderma sp. YM311505 | Antibacterial Antifungal |
[77] |
koninginin F (179) | T. koningii | - | [36] | 7-hydroxy-4,6-dimethyl phtalide (374) | Trichoderma sp. YM311505 | - | [77] |
6-pentyl-α-pyranone (180) |
T. koningii T-8 T. koningii T-11 |
Antifungal | [38] | daidzein (375) | Trichoderma sp. YM311505 | Antibacterial | [77] |
6-(4-oxopentyl)-2H-pyran-2-one (181) | T. koningii T-8 | Antifungal | [38] | cinnamic acid (376) | Trichoderma sp. YM311505 | - | [77] |
tricho-acorenol (182) | T. koningii | - | [39] | trichoacorenol (377) | Trichoderma sp. Xy24 | - | [78] |
methyl benzoate (183) | T. koningii | - | [40] [41] |
trichocage B (378) | Trichoderma sp. Xy24 | - | [79] |
cyclo-(L-Pro-L-Leu) (184) | T. koningii | - | [40] [41] |
1α-isopropyl-4α,8-dimethylspirod[4.5]-dec8-ene-2β,7α-di-ol (379) | Trichoderma sp. Xy24 | - | [79] |
4-hydroxyphenethylalcohol (185) | T. koningii | - | [40] [41] |
1α-isopropyl-4α,8-dimethyl-spiro[4.5]dec-8-ene-3β,7α-diol (380) | Trichoderma sp. Xy24 | - | [79] |
ceramide (186) | T. koningii | - | [40] [41] |
10,11-dihydroxy-cyclonerodiol (381) | Trichoderma sp. Xy24 | - | [79] |
trichokonin-V (187) | T. koningii | - | [40] [41] |
14-hydroxy-trichoacorenol (382) | Trichoderma sp. Xy24 | - | [79] |
trichokonin-VI (188) | T. koningii | - | [40] [41] |
harzianone (383) | Trichoderma sp. Xy24 | - | [79] |
trichokonin-II (189) | T. koningii | - | [40] [41] |
(9R,10R)-dihydro-harzianone (384) | Trichoderma sp. Xy24 | Cytotoxic | [79] |
trichokonin-III (190) | T. koningii | - | [40] [41] |
ergokonin B (385) | Trichoderma sp. Xy24 | - | [79] |
trichokonin-Ia (191) | T. koningii | - | [40] [41] |
methyl stearate (386) | Trichoderma sp. Xy24 | - | [79] |
trichokonin-Ib (192) | T. koningii | - | [40] [41] |
harzianelactone (387) | Trichoderma sp. Xy24 | - | [80] |
trichokonin-IX (193) | T. koningii | - | [40] [41] |
trichoacorenol B (388) | Trichoderma sp. Xy24 | - | [80] |
trikoningin KAV (194) | T. koningiopsis | - | [1] | trichoacorenol C (389) | Trichoderma sp. Xy24 | - | [80] |
11-residue lipopeptaibols (195) | T. koningiopsis | - | [1] | cyclonerodiol B (390) | Trichoderma sp. Xy24 | Anti-inflammatory | [80] |
3. Conclusions
Trichoderma species are known for their diverse bioactivity owing to the production of abundant secondary metabolites. Hundreds of metabolites produced by Trichoderma have been isolated and characterized. In this review, 390 non-volatile compounds from 20 known species and various Trichoderma spp. were summarized. These compounds included peptaibols, terpenes, diketopiperazines, steroids, amides, lactones, polyketides, tetronic acid derivatives, peptides, pyranone derivatives, pyridines, and cyclopentenones. These compounds exhibited numerous biological activities, including cytotoxic, anti-tumor, antifungal, antibacterial, antiviral, antibiotic, anti-inflammatory, antimicroalgal, plant-growth-enhancing/inhibitoring, bioinducer, hyperplasia inhibitory, siderophoric, antagonism, nematicidal, plant resistance, DPPH radical scavenging, and enzyme inhibitory effects.
Some metabolites were found in different species of Trichoderma. The antifungal and nematicidal compound trichodermin (70) was found in T. brevicompactum, T. harzianum, and Trichoderma sp. YMF1.02647. The bioactive metabolite 6-pentyl-α-pyrone (67) was distributed both in T. atroviride and T. harzianum. Cyclonerodiol (92) was found in T. citrinoviride, T. harzianum, T. koningüi, T. reesei, and Trichoderma sp. Lignoren (64) was obtained from three species (T. atroviride, T. citrinoviride, and T. lignorum) and showed antimicrobial activity. Numerous strains from different species of Trichoderma had the same bioactivity, perhaps due to their identical metabolites.
Although Trichoderma spp. have been widely studied, more metabolites will likely be identified in the future.
Author Contributions
M.-F.L. collected the literatures and wrote the manuscript. G.-H.L. summarized the date and wrote the manuscript. K.-Q.Z. designed and revised the manuscript.
Funding
This work was supported by grants from the NSFC (31560016, 31860015).
Conflicts of Interest
The authors declare no conflict of interest.
References
- 1.McMullin D.R., Renaud J.B., Barasubiye T., Sumarah M.W., David M.J. Metabolites of Trichoderma species isolated from damp building materials. Can. J. Microbiol. 2017;63:621–632. doi: 10.1139/cjm-2017-0083. [DOI] [PubMed] [Google Scholar]
- 2.Su D.Q., Ding L.J., He S. Marine-derived Trichoderma species as a promising source of bioactive secondary metabolites. Mini-Rev. Med. Chem. 2018;18:1702–1713. doi: 10.2174/1389557518666180727130826. [DOI] [PubMed] [Google Scholar]
- 3.Chavez J.R., Raja H.A., Graf T.N., Gallagher J.M., Metri P., Xue D., Pearcec C.J., Oberlies N.H. Prealamethicin F50 and related peptaibols from Trichoderma arundinaceum: Validation of their authenticity via in situ chemical analysis. RSC Adv. 2017;7:45733–45741. doi: 10.1039/C7RA09602J. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Cardoza R.E., Hermosa M.R., Vizcaino J.A., Sanz L., Monte E., Gutierrez S. Secondary metabolites produced by Trichoderma and their importance in the biocontrol process. Microorgan. Ind. Enzymes Biocontrol. 2005;37:1–22. [Google Scholar]
- 5.Chantrapromma S., Jeerapong C., Phupong W., Quah C.K., Fun H.K. Trichodermaerin: A diterpene lactone from Trichoderma asperellum. Acta Crystallogr. 2014;70:o408–o409. doi: 10.1107/S1600536814004632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Yang P., Yang Q., Xu Q. Study on metabolites related to biocontrol from Trichoderma asperellum. J. Harbin Univ. Commun. 2014;30:36–40. [Google Scholar]
- 7.Chen L., Zhong P., Pan J.R., Zhou K.J., Huang K., Fang Z.X., Zhang Q.Q. Asperelines G and H, two new peptaibbols from the marine-deriver fungus Trichoderma asperellum. Heterocycles. 2013;87:645–655. doi: 10.3987/COM-12-12644. [DOI] [Google Scholar]
- 8.Song Y.P., Miao F.P., Fang S.T., Yin X.L., Ji N.Y. Halogenated and nonhalogenated metabolites from the marine-alga-endophytic fungus Trichoderma asperellum cf44-2. Mar. Drugs. 2018;16:266. doi: 10.3390/md16080266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Liang X.R. Ph.D. Thesis. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences; Yantai, China: 2016. Secondary Metabolites from Three Marine-Derived Trichoderma Fungi and Their Bioactivities. [Google Scholar]
- 10.Zhou P., Wu Z.D., Tan D.D., Yang J., Zhou Q., Zeng F.R., Zhang M., Bie Q., Chen C.M., Xue Y.B., et al. Atrichodermones A–C, three new secondary metabolites from the solid culture of an endophytic fungal strain, Trichoderma atroviride. Fitoterapia. 2017;123:18–22. doi: 10.1016/j.fitote.2017.09.012. [DOI] [PubMed] [Google Scholar]
- 11.Kandasamy S., Suresh M., Ramachandran C., Elango J., Ravi Shankar B.Y., Deepthi M., Wu W.H., Jongkook L., Deog Hwan O., Kandasamy K., et al. Novel metabolites from Trichoderma atroviride against human prostate cancer cells and their inhibitory effect on Helicobacter pylori and Shigella toxin producing Escherichia coli. Microb. Pathogenesis. 2018;126:19–26. doi: 10.1016/j.micpath.2018.10.011. [DOI] [PubMed] [Google Scholar]
- 12.Sun S., Tian L., Wu Z.H., Chen G., Wu H.H., Wang Y.N., Pei Y.H. Two new compounds from fermentation liquid of the marine fungus Trichoderma atroviride G20-12. J. Asian. Nat. Prod. Res. 2009;11:898–903. doi: 10.1080/10286020903193102. [DOI] [PubMed] [Google Scholar]
- 13.Lu X., Tian L., Chen G., Xu Y., Wang H.F., Li Z.Q., Pei Y.H. Three new compounds from the marine-derived fungus Trichoderma atroviride G20-12. J. Asian. Nat. Prod. Res. 2012;14:647–651. doi: 10.1080/10286020.2012.682256. [DOI] [PubMed] [Google Scholar]
- 14.Kong Z.Y., Jing R., Wu Y.B., Guo Y.L., Geng Y.Y., Ji J.C., Qin L.P., Zheng C.J. Trichodermadiones A and B from the solid culture of Trichoderma atroviride S361, an endophytic fungus in Cephalotaxus fortune. Fitoterapia. 2018;127:362–366. doi: 10.1016/j.fitote.2018.04.004. [DOI] [PubMed] [Google Scholar]
- 15.Mutawila C., Vinale F., Halleen F., Lorito M., Mostert L. Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathol. 2016;65:104–113. doi: 10.1111/ppa.12385. [DOI] [Google Scholar]
- 16.Cutler H.G., Cutler S.J., Ross S.A., Sayed K.E., Dugan F.M., Bartlett M.G., Hill A.A., Hill R.A., Parker S.R. Koninginin G, a new metabolite from Trichoderma aureoviride. J. Nat. Prod. 1999;62:137–139. doi: 10.1021/np9801817. [DOI] [PubMed] [Google Scholar]
- 17.Shentu X.P., Zhan X.H., Ma Z., Yu X.P., Zhang C.X. Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic. Braz. J. Microbiol. 2014;45:248–254. doi: 10.1590/S1517-83822014005000036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Hu X., Gong M.W., Zhang W.W., Zheng Q.H., Liu Q.Y., Chen L., Zhang Q.Q. Novel cytotoxic metabolifes from the marine-derived fungus Trichoderma citrinoviride. Heterocycles. 2014;89:189–196. [Google Scholar]
- 19.Vinale F., Strakowska J., Mazzei P., Piccolo A., Marra R., Lombardi N., Manganiello G., Pascale A., Woo S.L., Lorito M. Cremenolide, a new antifungal, 10-member lactone from Trichoderma cremeum with plant growth promotion activity. Nat. Prod. Res. 2016;30:2575–2581. doi: 10.1080/14786419.2015.1131985. [DOI] [PubMed] [Google Scholar]
- 20.Ding G., Wang H.L., Li L., Chen A.J., Chen L., Chen H., Zhang H.W., Liu X.Z., Zou Z.M. Trichoderones A and B: Two pentacyclic cytochalasans from the plant endophytic fungus Trichoderma gamsii. Eur. J. Org. Chem. 2012:2516–2519. doi: 10.1002/ejoc.201200053. [DOI] [Google Scholar]
- 21.Ma X.Y. Master’s Thesis. Yantai University; Yantai, China: 2018. Secondary Metabolites from Three Marine Sediment-Derived Fungi and Their Bioactivities. [Google Scholar]
- 22.Ahluwalia V., Kumar J., Rana V.S., Sati O.P., Walia S. Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity. Nat. Prod. Res. 2015;29:914–920. doi: 10.1080/14786419.2014.958739. [DOI] [PubMed] [Google Scholar]
- 23.Vinale F., Ghisalberti E.L., Sivasithamparam K., Marral R., Ritieni A., Ferracane R., Woo1 S., Lorito M. Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett. Appl. Microbiol. 2009;48:705–711. doi: 10.1111/j.1472-765X.2009.02599.x. [DOI] [PubMed] [Google Scholar]
- 24.Song Y.P. Master’s Thesis. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences; Yantai, China: 2016. Regulation on the Secondary Metabolism of Marine Algicolous Trichoderma Fungi. [Google Scholar]
- 25.Shi Y.J., Shentu X.P., Yu X.P. Identification of an endophytic fungus isolated from Llex cornuta and the biocontrol effects of its secondary metabolite. Acta Phytopathol. Sin. 2009;39:362–367. [Google Scholar]
- 26.Sha S., Liu L., Pan S., Wang W.M. Isolation and purification of antifungal components from Trichoderma harzianum ferment broth by high-speed counter-current chromatography. Chin. J. Biol. Control. 2013;29:83–88. [Google Scholar]
- 27.Vinale F., Flematti G., Sivasithamparam K., Lorito M., Marra R., Skelton B.W., Ghisalberti E.L. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J. Nat. Prod. 2009;72:2032–2035. doi: 10.1021/np900548p. [DOI] [PubMed] [Google Scholar]
- 28.Tezuka Y., Tasaki M., Huang Q., Hatanaka Y., Kikuchi T. 15-Hydroxyacorenone:new acorane-type sesquiterpene from the culture broth of the mycoparasitic fungus Trichoderma harzianum. Liebigs Ann. Recl. 1997;12:2579–2580. doi: 10.1002/jlac.199719971224. [DOI] [Google Scholar]
- 29.Qi X.Q., Zhu F.C., Zhang Y., Guo L.H., Jiang R., He Q.Y., Li Y. Study of a novel compound 2460A with activities produced by fungus. Acta Pharm. Sin. 2011;46:165–169. [PubMed] [Google Scholar]
- 30.Iida A., Sanekata M., Fujita T., Tanaka H., Enoki A., Fuse G., Kanai M., Rudewicz P.J., Tachikawa E. Fungal metabolites. XVI. structures of new peptaibols, trichokindinsI-VII, from the fungus Trichoderma harzianum. Chem. Pharm. Bull. 1994;42:1070–1075. doi: 10.1248/cpb.42.1070. [DOI] [PubMed] [Google Scholar]
- 31.Iida A., Sanekata M., Wada S.I., Fujita T., Tanaka H., Enoki A., Fuse G., Kanai M., Asami K. Fungal Metabolites. XVI. New membrane-modifying peptides, trichorozins I-IV, from the fungus Trichoderma harzianum. Chem. Pharm. Bull. 1995;43:392–397. doi: 10.1248/cpb.43.392. [DOI] [PubMed] [Google Scholar]
- 32.Ghisuerti E.L., Rowlang C.Y. Antifungal metabolites from Trichoderma harzianum. J. Nat. Prod. 1993;56:1799–1804. doi: 10.1021/np50100a020. [DOI] [PubMed] [Google Scholar]
- 33.Tarus P.K., Langat-Thoruwa C.C., Wanyonyi A.W., Chhabra S.C. Bioactive metabolites from Trichoderma harzianum and Trichoderma longibrachiatum. Bull. Chem. Soc. Ethiop. 2003;17:185–190. [Google Scholar]
- 34.Lv H.N., Chen H., Qu J., Li Y., Ma S.G., Liu Y.B. Study on secondary metabolites of endophytic fungi Trichoderma harzianum. Mod. Chin. Med. 2015;17:427–430. [Google Scholar]
- 35.Chen L.H., Cui Y.Q., Yang X.M., Zhao D.K., Shen Q.R. An antifungal compound from Trichoderma harzianum SQR-T037 effectively controls Fusarium wilt of cucumber in continuously cropped soil. Australas. Plant Path. 2012;41:239–245. doi: 10.1007/s13313-012-0119-5. [DOI] [Google Scholar]
- 36.Sawant S.N., Deshmukh S.K., Ganguli B.N. On an unstable antifungal metabolite from Trichoderma koningii-isolation and structure elucidation of a new cyclopentenone derivative(3-Dimethylamino-5-hydroxy-5-vinyl-2-cyclopenten-1-one) J. Antibiot. 1996;49:220–221. doi: 10.7164/antibiotics.49.210. [DOI] [PubMed] [Google Scholar]
- 37.Song F.H., Dai H.Q., Tong Y.J., Ren B., Chen C.X., Sun N., Liu X.Y., Bian J., Liu M., Gao H., et al. Trichodermaketones A-D and 7-O-methylkoninginin D from the marine fungus Trichoderma koningii. J. Nat. Prod. 2010;73:806–810. doi: 10.1021/np900642p. [DOI] [PubMed] [Google Scholar]
- 38.Ahluwaliaa V., Waliaa S., Satib O.P., Kumara J., Kundua A., Shankara J., Paulc Y.S. Isolation, characterisation of major secondary metabolites of the himalayan Trichoderma koningii and their antifungal activity. Arch. Phytopathol. Plant Prot. 2014;47:1063–1071. doi: 10.1080/03235408.2013.829715. [DOI] [Google Scholar]
- 39.Huang Q., Tezuka Y., Hatanaka Y., Kikuchi T., Nishi A., Tubaki K. Studies on metabolites of mycoparasiticfungi. III. New sesquiterpene alcohol from Trichoderma koningii. Chem. Pharm. Bull. 1995;43:1035–1038. doi: 10.1248/cpb.43.1035. [DOI] [PubMed] [Google Scholar]
- 40.Huang Q., Tezuka Y., Kikuchi T., Nishi A., Tubaki K., Tanaka K. Studies on metabolites of mycoparasiticfungi. II. Metabolites of Trichoderma koningii. Chem. Pharm. Bull. 1995;4:223–229. doi: 10.1248/cpb.43.223. [DOI] [PubMed] [Google Scholar]
- 41.Huang Q., Tezuka Y., Kikuchi T., Nishi A., Tubaki K., Tanaka K. Studies on metabolites of mycoparasiticfungi. IV. Minor peptaibols of Trichoderma koningii. Chem. Pharm. Bull. 1995;43:1163–1167. doi: 10.1248/cpb.43.1663. [DOI] [PubMed] [Google Scholar]
- 42.Chen J.L., Liu K., Miao C.P., Guan H.L., Zhao L.X., Sun S.Z. Chemical constituents with siderophores activities from Trichoderma koningiopsis YIM PH30002. Nat. Prod. Res. Dev. 2015;27:1878–1883. [Google Scholar]
- 43.Shi Z.Z. Ph.D. Thesis. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences; Yantai, China: 2018. Chemical Structures and Biological Activities of Secondary Metabolites from Five Marine-Alga-Epiphytic Fungi. [Google Scholar]
- 44.Berg A., Wangun H.K., Nkengfack A.E., Schlegel B. Lignoren, a new sesquiterpenoid metabolite from Trichoderma lignorum HKI 0257. J. Basic. Microbiol. 2004;44:317–319. doi: 10.1002/jobm.200410383. [DOI] [PubMed] [Google Scholar]
- 45.Ji Z.L., Ma D.S., Miao F.P. Chemical constituents from Trichoderma longibrachiatum, an endophytic fungus derived from marine green alga codium fragile. J Shenyang Univ. 2014;26:277–280. [Google Scholar]
- 46.Vicente M.F., Cabello A., Platas G., Basilio A., Dier M.T., Dreikorn S., Giacobbe R.A., Onishi J.C., Meinz M., Kurtz M.B., et al. Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J. Appl. Microbiol. 2001;91:806–813. doi: 10.1046/j.1365-2672.2001.01447.x. [DOI] [PubMed] [Google Scholar]
- 47.Andrade R., Ayer W.A., Trifonov L.S. The metabolites of Trichoderma longibrachiatum. III. two new tetronic acids: 5-hydroxyvertinolideand bislongiquinolide. Aust. J. Chem. 1997;50:255–257. doi: 10.1071/C96103. [DOI] [Google Scholar]
- 48.Xuan Q.C., Huang R., Chen Y.W., Miao C.P., Ma K.X., Wang T., Wu S.H. Cyclonerol derivatives from Trichoderma longibrachiatum YM311505. Nat. Prod. Commun. 2014;9:313–314. [PubMed] [Google Scholar]
- 49.Wang L.X. Master’s Thesis. Shandong University; Jinan, China: 2015. Isolation, Purification and Identificaton of Medium Chain Peptaibols-Trichokonin B and Scale-Up Production of Trichokonin from Trichoderma longibrachiatum SMF2. [Google Scholar]
- 50.Fujita T., Takaihi Y., Takeda Y., Fujiyama T., Nishi T. Fungal metabolites. II. structural elucidation of minor metabolites, valinotricin, cyclonerodiol oxide, and epicyclonerodiol oxide, from Trichoderma polysporum. Chem. Pharm. Bull. 1984;32:4419–4425. doi: 10.1248/cpb.32.4419. [DOI] [Google Scholar]
- 51.Lida A., Uesato S., Shingu T., Okuda M., Nagaoka Y., Kuroda Y., Fujita T. Fungal metabolites. Part 6. Nuclear magnetic resonance study of antibioticpeptides, Trichosporin Bs, from Trichoderma polysporum. J. Chem. Soc. Perkin Trans. 1993;24:367–373. [Google Scholar]
- 52.Lida A., Uesato S., Shingu T., Nagaoka Y., Kuroda Y., Fujita T. Fungal metabolites. Part 7. Solution structure of an antibiotic peptide Trichosporin B-V, from Trichoderma polysporum. J. Chem. Soc. Perkin Trans. 1993;24:375–379. [Google Scholar]
- 53.Sun Y., Lv A.L., Tian L., Wei L., Pei Y.H. Secondary metabolism product of fungus Trichoderma reesei. J. Shenyang Pharm. Univ. 2007;24:546–548. [Google Scholar]
- 54.Meng J.J., Wang B., Cheng W. Study on the secondary metabolites of Trichoderma saturnisporum. Chin. J. Mar. Drugs. 2017;36:27–31. [Google Scholar]
- 55.Meng J.J., Cheng W., Heydari H., Wang B., Zhu K., Konuklugil B., Lin W.H. Sorbicillinoid-based metabolites from a sponge-derived fungus Trichoderma saturnisporum. Mar. Drugs. 2018;16:226. doi: 10.3390/md16070226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Li D.L., Chen Y.C., Li Y.Y., Tao M.H., Zhang W.M. Isolatjon and identification of anti-tumor constituents from an endophytic fungus of baimuxiang (Aquilaria sinensis) J. Mcrobiol. 2010;30:1–5. [Google Scholar]
- 57.Shyamli S., Prem D., Rs T., Atar S. Production and antifungal activity of secondary metabolites of Trichoderma virens. Pestic. Res. J. 2005;17:26–29. [Google Scholar]
- 58.Fujta T., Wada S.I., Iida A., Nishimura T., Kanai M., Toyama N. Fungal metabolites. XIII. isolation and structural elucidation of new peptaibols, Trichodecenins-I and II, from Trichoderma viride. Chem. Pharm. Bull. 1994;42:489–494. doi: 10.1248/cpb.42.489. [DOI] [PubMed] [Google Scholar]
- 59.Wada S.I., Iida A., Akimoto N., Kanai M., Toyama N., Fujta T. Fungal metabolites. XIX. structural elucidation of channel-forming peptides, Trichorovins-I-XIV, from the fungus Trichoderma viride. Chem. Pharm. Bull. 1995;43:910–915. doi: 10.1248/cpb.43.910. [DOI] [PubMed] [Google Scholar]
- 60.Ahmed A.L., Katja F., Wright A.D. Trichopyrone and other constituents from the marine sponge-derived fungus Trichoderma sp. Z. Naturforsch. C. 2009;64:186–192. doi: 10.1515/znc-2009-3-406. [DOI] [PubMed] [Google Scholar]
- 61.Zhang L., Zhang J.Z. Isolation and purification of active compound from Trichoderma viridescens and its inhibitory activities against phytopathogens. Sci. Agric. Sin. 2015;48:882–888. [Google Scholar]
- 62.You J.L., Dai H.Q., Chen Z.H., Liu G.G., He Z.X., Song F.H., Yang X., Fu H.A., Zhang L.X., Chen X.P. Trichoderone, a novel cytotoxic cyclopentenone and cholesta-7,22-diene-3β, 5α, 6β-triol, with new activities from the marine-derived fungus Trichoderma sp. J. Ind. Microbiol. Biotechnol. 2010;37:245–252. doi: 10.1007/s10295-009-0667-z. [DOI] [PubMed] [Google Scholar]
- 63.Dang L.Z., Zhang Y.P., Zhen L., Jiang J.X., Duan Y.Q. Studies on the chemical constituents of Trichoderma sp. J. Yunnan Agric. Univ. 2016;31:567–570. [Google Scholar]
- 64.Xu L.L., Zhao Q.Q., Yu H., Wang J.C., Wang H.J., Yang Q., Zhu H.J., Li Y. Absolute configuration determination of one newcompound Trichoderol A from Trichoderma sp. fungus. Chem. J. Chin. Univ. 2016;37:1972–1976. [Google Scholar]
- 65.Mazzei P., Vinale F., Woo S.L., Pascale A., Lorito M., Piccolo A. Metabolomics by 1H-HRMAS-NMR of tomato plants treated with two secondary metabolites isolated from Trichoderma. J. Agric. Food. Chem. 2016;64:1021–1055. doi: 10.1021/acs.jafc.6b00801. [DOI] [PubMed] [Google Scholar]
- 66.Pang X.Y., Lin X.P., Tian Y.Q., Liang R., Wang J.F., Yang B., Zhou X.F., Kaliyaperumal K., Luo X.W., Tu Z.C., et al. Three new polyketides from the marine sponge-derived fungus Trichoderma sp. SCSIO41004. Nat. Prod. Res. 2017;32:105–111. doi: 10.1080/14786419.2017.1338286. [DOI] [PubMed] [Google Scholar]
- 67.Zhang L.H., Niaz S.I., Khan D., Wang Z., Zhu Y.H., Zhou H.Y., Lin Y.C., Li J., Liu L. Induction of diverse bioactive secondary metabolites from the mangrove endophytic fungus Trichoderma sp. (Strain 307) by co-cultivation with Acinetobacter johnsonii (Strain B2) Mar. Drugs. 2017;15:35. doi: 10.3390/md15020035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Li C.W., Song R.Q., Yang L.B., Deng X. Isolation, purification, and structural Identification of an antifungal compound from a Trichoderma Strain. J. Microbiol. Biotechnol. 2015;25:1257–1264. doi: 10.4014/jmb.1410.10027. [DOI] [PubMed] [Google Scholar]
- 69.Yu H., Wang X.F., Ji Y.N., Xu Y., Tian S.S., Zhu H.J. A new compound from Trichoderma sp. KK19L1. Nat. Prod. Res. Dev. 2014;26:159–161. [Google Scholar]
- 70.Gong B., Zhang S.Q., Lin Y.X., Wang X.F., Ding W.J., Li C.Y. Study on metabolites with antifungal activity against plant pathogens of an endophytic fungus Trichoderma sp. 09 from Myoporum bontioides A. Gray. Guangdong Agric. Sci. 2013;40:62–65. [Google Scholar]
- 71.Wu B., Oesker V., Wiese J., Schmaljohann R., Imhoff J.F. Two new antibiotic pyridones produced by a marinefungus, Trichoderma sp. strain MF106. Mar. Drugs. 2014;12:1208–1219. doi: 10.3390/md12031208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Yang Z.S., Li G.H., Zhao P.J., Zheng X., Luo S.L., Li L., Niu X.M., Zhang K.Q. Nematicidal activity of Trichoderma spp. and isolation of an active compound. World J. Microbiol. Biotechnol. 2010;26:2297–2302. doi: 10.1007/s11274-010-0410-y. [DOI] [Google Scholar]
- 73.Li G.H., Zheng L.J., Liu F.F., Dang L.Z., Li L., Huang R., Zhang K.Q. New cyclopentenones from strain Trichoderma sp. YLF-3. Nat. Prod. Res. 2009;23:1431–1435. doi: 10.1080/14786410902843269. [DOI] [PubMed] [Google Scholar]
- 74.Abe N., Yamamoto K., Hirota A. Novel fungal metabolites, demethylsorbicillin and oxosorbicillinol, isolated from Trichoderma sp. USF-2690. Biosci. Biotechnol. Biochem. 2000;64:620–622. doi: 10.1271/bbb.64.620. [DOI] [PubMed] [Google Scholar]
- 75.Zhang J.C., Chen G.Y., Li X.Z., Hu M., Wang B.Y., Ruan B.H., Zhou H., Zhao L.X., Zhou J., Ding Z.T., et al. Phytotoxic, antibacterial, and antioxidant activities of mycotoxins and other metabolites from Trichoderma sp. Nat. Prod. Res. 2017;31:2745–2752. doi: 10.1080/14786419.2017.1295235. [DOI] [PubMed] [Google Scholar]
- 76.Qin X.Y., Yang K.L., Wang C.Y., Shao C.L. Sencondary metabolites of the zoanthid-derived fungus Trichoderma sp. TA26-28 collected from the South China Sea. Chem. Nat. Compd. 2014;50:961–964. doi: 10.1007/s10600-014-1134-2. [DOI] [Google Scholar]
- 77.Xuan Q.C., Huang R., Miao C.P., Chen Y.W., Zhai Y.Z., Song F., Wang T., Wu S.H. Sencondary metabolites of endophytic fungus Trichoderma sp. YM 311505 of Azadirachta indica. Chem. Nat. Compd. 2014;50:139–141. doi: 10.1007/s10600-014-0891-2. [DOI] [Google Scholar]
- 78.Zhang M. Master’s Thesis. Beijing University of Chinese Medicine; Beijing, China: 2015. Mangrove Endophytic Fungus Trichoderma sp. Xy24 Steroid Metabolites and Microbial Transformation of Harzianone. [Google Scholar]
- 79.Zhang M., Li N., Chen R.D., Zou J.H., Wang C.M., Dai J.G. Two terpenoids and a polyketide from the endophytic fungus Trichoderma sp. Xy24 isolated from mangrove plant Xylocarpus granatum. J. Chin. Pharm. Sci. 2014;23:421–424. doi: 10.5246/jcps.2014.06.056. [DOI] [Google Scholar]
- 80.Zhang M., Liu J.M., Zhao J.L., Chen R.Z., Li N., Zhang W.J., Wang N., Zhang D., Dai J.G. Terpenoids from the mangrove endophytic fungus Trichoderma sp.Xy 24; Proceedings of the Eleventh National Conference on Natural Organic Chemistry of the Chinese Chemical Society; Beijing, China. 10–12 October 2016; p. 334. [Google Scholar]