Skip to main content
Materials logoLink to Materials
. 2019 Mar 19;12(6):917. doi: 10.3390/ma12060917

Database of Shear Experiments on Steel Fiber Reinforced Concrete Beams without Stirrups

Eva O L Lantsoght 1,2
PMCID: PMC6470936  PMID: 30893925

Abstract

Adding steel fibers to concrete improves the capacity in tension-driven failure modes. An example is the shear capacity in steel fiber reinforced concrete (SFRC) beams with longitudinal reinforcement and without shear reinforcement. Since no mechanical models exist that can fully describe the behavior of SFRC beams without shear reinforcement failing in shear, a number of empirical equations have been suggested in the past. This paper compiles the existing empirical equations and code provisions for the prediction of the shear capacity of SFRC beams failing in shear as well as a database of 488 experiments reported in the literature. The experimental shear capacities from the database are then compared to the prediction equations. This comparison shows a large scatter on the ratio of experimental to predicted values. The practice of defining the tensile strength of SFRC based on different experiments internationally makes the comparison difficult. For design purposes, the code prediction methods based on the Eurocode shear expression provide reasonable results (with coefficients of variation on the ratio tested/predicted shear capacities of 27–29%). None of the currently available methods properly describe the behavior of SFRC beams failing in shear. As such, this work shows the need for studies that address the different shear-carrying mechanisms in SFRC and its crack kinematics.

Keywords: beams, database, experiments, flexure, shear, steel fiber reinforced concrete

1. Introduction

When steel fibers are added to the concrete mix, the weak tension properties of the concrete may be improved, as the steel fibers can carry this tension. As a result, steel fiber reinforced concrete (SFRC) has superior material and mechanical behavior for all tension-driven material properties and failure modes. An example of a tension-driven failure mode is shear failure [1,2]. Typically, shear-critical elements are provided with shear reinforcement. However, for certain cases, providing shear reinforcement may not be desirable. One example of such an application is reinforced concrete one-way slabs [3], where using shear reinforcement is often not cost-effective. For other cases, heavy shear reinforcement and the resulting reinforcement congestion make casting concrete difficult [4], especially in high performance high strength beams, so that other solutions may be more practical and may lead to a better execution and performance of the structural element. For these cases, dispersing steel fibers in the concrete mix can improve the shear capacity and reduce or eliminate the need for stirrups.

Bernard proposed the use of steel “splinters” to strengthen concrete in tension as early as 1874 [5]. Nevertheless, practical applications of SFRC are still not widespread. The main barrier to application is that building codes, such as the ACI 318-14 [6] and EN 1992-1-1:2004 [7] do not contain provisions for determining the shear capacity of SFRC. The most noteworthy national codes and guidelines with shear provisions for SFRC are the French recommendations [8,9,10], the German guideline [11], and the Italian guide [12].

The currently available shear equations from codes and guidelines, as well as those reported in the literature are summarized in this work. An analysis of the available expressions shows that the majority are empirical equations. Expressions resulting from an analysis of the mechanics of the problem are scarce, with the exceptions of the extensions [13,14] of the modified compression field theory (MCFT) [15] and the dual potential capacity model [16,17]. None of the existing expressions are based on an analysis of the shear-carrying mechanisms in concrete structures [18]: the capacity of the uncracked concrete in the compression zone [19], aggregate interlock [20], dowel action [21], and residual tension across the crack [22]. For SFRC, the contribution of the residual tension across the crack may be negligible, and instead the contribution of the steel fibers bridging the crack should be analyzed [23]. This lack of understanding of the mechanics of the problem forms a more fundamental barrier to the practical application of SFRC. To optimize structural designs, and reduce the material quantities used in a project, as well as their embodied carbon and environmental impact, it is important to develop better models for the shear capacity of SFRC with longitudinal steel reinforcement without stirrups.

Before better models for the shear capacity of SFRC can be evaluated, it is necessary to gather the available experimental data from the literature. This information can be used to analyze the shortcomings of the current equations, and to carry out parameter studies. This paper presents a unique database of 488 experiments. Smaller databases have been reported or discussed in the literature previously [24,25,26,27,28,29,30], but the current effort has resulted in the gathering of a significantly larger number of datapoints. Moreover, the full database is available as a dataset in the public domain for other researchers [31], which is a step forward as well.

2. Methods

2.1. Overview of Shear Prediction Equations

The currently available expressions to predict the shear capacity of SFRC beams without stirrups are mostly empirical equations. Besides the empirical equations, some methods have been derived that are (partially) based on the mechanics of the problem. Noteworthy here are extensions of the modified compression field theory (MCFT) [15,32] for SFRC, the dual potential capacity model [16,17], and plasticity-based approaches. For the extension of the MCFT to SFRC several approaches have been followed: describing the constitutive equations of cracked SFRC [33,34], assumptions for smeared cracking in SFRC [35], programming the effect of fibers into the VecTor2 software [13,36], panel testing [37], the development of an engineering model [38] for inclusion in the next version of the fib model code [39], and the development of a model that considers the rotation of the individual fibers with respect to the crack plane [40] and its closed-form solution [41]. Hwang’s softened truss model with steel fibers [42] falls in the same category as the MCFT for SFRC. Most of these MCFT-based methods require programming and/or the use of finite element models. The dual potential capacity model [16,17] evaluates the capacity of the concrete in the compression zone and the tension capacity of the SFRC in the tension zone. The drawback of this approach is that these assumptions for the mechanics of the behavior do not reflect all shear-carrying mechanisms in SFRC (capacity of compression zone, dowel action, tension capacity of SFRC in tension zone, aggregate interlock, and arching action [18]). Plasticity-based models have been proposed in the past [43,44,45,46]. While the results of these models seem promising, they require further research and validation.

Since the mechanical models that are available in the literature each have drawbacks as pointed out in the previous paragraph, the current codes and guidelines are based on empirical models. Therefore, in this section, an overview of a selection of currently available empirical prediction equations and code equations is given. These prediction models will be used in Section 3 for comparison to the shear capacities obtained from the literature.

Table 1 gives an overview of the shear prediction equations. All symbols used in Table 1 can be found in the list of notations at the end. The expression by Sarveghadi et al. [28] is a simplification of a matrix-based expression resulting from an analysis testing different artificial neural networks. Many expressions describe the steel fiber properties with the fiber factor F. The fiber factor [47] is a metric used for defining the properties of the fibers, taking into account the fiber volume fraction Vf, the aspect ratio lf/df, and the bond properties of the fiber ρf:

F=Vflfdfρf (1)

Table 1.

Shear prediction equations from literature and available codes.

Authors Reference Expression
Sarveghadi et al. [28] Vu=[ρ+ρvb+1ad(ρft(ρ+2)(ftad3vb)ad+ft)+vb]bwd (2)
ft=0.79fc (3)
vb=0.41τF with τ = 4.15 MPa (4)
Kwak et al. [48] Vu=[3.7efspfc2/3(ρda)1/3+0.8vb]bwd (5)
fspfc=fcuf(20F)+0.7+1.0F in MPa (6)
e={1 for ad>3.43.4da for ad3.4 (7)
Greenough and Nehdi [50] Vu=[0.35(1+400d)(fc)0.18((1+F)ρda)0.4+0.9ηoτF]bwd (8)
Kuntia et al. [51] Vu=[(0.167+0.25F)fc]bwd (9)
Sharma [52] Vu=(23×0.8fc(da)0.25)bwd (10)
Mansur et al. [54] Vu=Vc+σtubwd (11)
Vc=(0.16fc+17.2ρVdM)bwd0.29fcbwd (12)
σtu=3.2ηoηlFτ with τ=2.58MPa (13)
ηl=1tanh(βlf2)βlf2 (14)
β=2πGmEfAfln(Srf) (15)
S=25dfVflf (16)
Ashour et al. [59] Vu=[(0.7fc+7F)da+17.2ρda]bwd (17)
Vu=[(2.11fc3+7F)(ρda)0.333]bwd for ad2.5 (18)
Vu=[((2.11fc3+7F)(ρda)0.333)2.5ad+vb(2.5ad)]bwd for ad<2.5 (19)
Arslan et al. [60] Vu=[(0.2(fc)2/3cd+ρ(1+4F)fc)3ad3]bwd (20)
(cd)2+(600ρfc)(cd)600ρfc=0 (21)
Imam et al. [63] Vu=[0.6ψω3((fc)0.44+275ω(ad)5)]bwd (22)
ψ=1+5.08da1+d25da (23)
ω=ρ(1+4F) (24)
Yakoub [64] Vu=[0.83ξρ3(fc+249.28ρ(ad)5+0.405lfdfVfRgdafc)]bwd for ad2.5 (25)
Vu=[0.83ξρ3(fc+249.28ρ(ad)5+0.162lfdfVfRgfc)]bwd for ad2.5 (26)
ξ=11+d25da (27)
Vu=2.5(0.401+1500εx×13001000+sxe)fc(1+0.7lfdfVfRg)dabwdv for ad2.5 (28)
Vu=(0.401+1500εx×13001000+sxe)fc(1+0.7lfdfVfRg)bwdv for ad2.5 (29)
dv=max(0.9d,0.72h) (30)
εx=Mdv+V2EsAs (31)
sxe=35sx16+da0.85sx and sxdv (32)
Association Française de Génie Civil [10] VRd=VRd,c+VRd,f (33)
VRd,c=0.21γcfγEfck1/2bwd (34)
VRd,f=AvfσRd,ftanθ (35)
σRd,f={1Kγcf1wlim0wlimσf(w)dw for strain softening or low strain hardening1Kγcf1εlimεelεelεlimσf(ε)dε for high strain hardening (36)
wlim=max(wu,wmax) (37)
εlim=max(εu,εmax) (38)
Avf=bwz (39)
DAfStB [11] VRd,cf=VRd,c+VRd,cf (40)
VRd,c=CRd,cγck(100ρfck)1/3bwd>VRd,c,min (41)
VRd,cf=αcffctR,ufbwhγctf (42)
fctR,uf=kFfkGf0.37fcfIk,L2f (43)
kGf=1.0+0.5Actf1.7 (44)
Actf=bw×min(d,1.5m) (45)
k=1+200mmd (46)
RILEM [66] VRd=Vcd+Vfd (47)
Vcd=0.12k(100ρfck)13bwd (48)
Vfd=0.7kfkτfdbwd (49)
kf=1+n(hfbw)(hfd)1.5 (50)
n=bfbwhf3 and n3bwhf (51)
τfd=0.12fRk,4 (52)
fib [39] VRd=VRd,f=CRd,cγck(100ρ(1+7.5fFtukfctk)fck)1/3bwd (53)
fctk={0.3(fck)2/3 for concrete grades  C502.12ln(1+0.1(fck+8MPa))for concrete grades > C50 (54)
CNR-DT [12] VRd=VRd,fVmin (55)
Vmin=0.035k3/2fck1/2bwd (56)

The expression of Kwak et al. [48] follows the form of Zsutty’s empirical equation for the shear capacity of reinforced concrete beams [49], with vb as given in Equation (4). The Greenough and Nehdi expression [50], which is a simplification of an expression resulting from genetic programming, uses a % for ρ instead of the actual reinforcement ratio.

Khuntia et al.’s expression [51] is a proposal to include the effect of fibers on the expression for the shear capacity of ACI 318-14 [6]. Similarly, Sharma’s proposal [52] follows the format of the ACI 318-14 code expression, and links the tensile and compressive strength of concrete through the expression by Wright [53]. Mansur et al. [54] also propose an extension of the ACI 318-14 code expression, using σtu as recommended by Swamy and Al-Ta’an [55], which uses the fiber length correction factor ηl from Cox [56], the fiber spacing from Swamy et al. [57], and the bond stress τ proposed by Swamy and Mangat [58]. Ashour et al. [59] propose two (sets of) equations: the first equation, Equation (17) is a proposal for extension of the ACI 318-14 [6] expressions, whereas Equations (18) and (19) are based on Zsutty’s equation [49]. Arslan’s equations [60] are also based on Zsutty’s equation [49], with the addition of the determination of the height of the compression zone c as proposed by Zararis and Papadakis [61]. However, this method for determining c ignores the contribution of the fibers on the horizontal and moment equilibrium of the cross-section.

The shear capacity equation from Bažant and Kim [62], derived from fracture mechanics of quasi-brittle materials, was extended to include the contribution of fibers by Imam et al. [63] as well as Yakoub [64] (first set of equations, Equations (25) through (27)). The second set of equations by Yakoub [64], Equations (28) through (32) is a proposal to include the effect of fibers in the shear expressions from the Canadian code CSA A23.3-04 [65], which is based on the MCFT [15].

The next entries in Table 1 are expressions from codes and guidelines. The expressions from the French recommendations [10] separate the concrete contribution to the shear-carrying capacity from the contribution of the fibers. The determination of the contribution of the fibers requires experimental data of the SFRC mix, as shown in Equations (35) through (38). An additional material safety factor γE is added so that γcfγE = 1.5. The angle of the compression strut θ ≥ 30°. The value of K in Equation (36) can be approximated as K = 1.25, except when bw and h are less than 5lf, or the value of K can be determined from tension tests on the SFRC mix.

The expressions from the German guideline [11] and RILEM [66] are based on the Eurocode EN 1992-1-1:2004 [7] equations, by adding a term to represent the contribution of the steel fibers. The expressions from the fib Model Code [39] are based on EN 1992-1-1:2004 [7], but incorporate the effect of the fibers into the original expression. The Italian guide [12] uses the same expressions as the fib Model Code [39], and includes a lower bound for the shear capacity Vmin. In the German National Annex of the Eurocode 2, CRd,c = 0.15, and this value is used in Equation (41) as well. The following factors are used: γc = 1.5, γctf = 1.25, αcf = 0.85 to account for long-term effects, and kFf = 0.5 for shear. For cross-sections subjected to axial loads, the contribution of the steel fibers cannot be taken into account, as more experimental results are necessary to derive suitable expressions [24]. In the Italian guideline [12], the influence of axial loads is considered in the same way as in EN 1992-1-1:2004 [7]. Since this work deals with elements without axial loads, the formulas have been simplified accordingly. The expressions from the German guideline [11], RILEM [66], the fib Model Code [39], and the Italian guide [12] are valid for ρ ≤ 2%. For the fib Model Code expressions, CRd,c = 0.18 and γc = 1.5. All notations used in Table 1 are explained in the “List of notations”.

2.2. Database of Experiments

2.2.1. Development of Database

The database developed for this study contains 488 experiments of SFRC beams with longitudinal tension reinforcement (mild steel only) and without transverse shear reinforcement failing in shear reported in the literature. The consulted references are: Singh and Jain [4], Sahoo and Sharma [67], Shoaib, Lubell, and Bindiganavile [68] (lightweight beams), Manju, Sathya and Sylviya [69], Arslan, Keskin, and Ulusoy [70], Parra-Montesinos et al. [71], Rosenbusch and Teutsch [72], Sahoo, Bhagat, and Reddy [73] (T-beams), Amin and Foster [74], Tahenni et al. [75], Narayanan and Darwish [76], Cucchiara, La Mendola, and Papia [77], Kwak et al. [48], Lim and Oh [78], Dinh, Parra-Montesinos and Wight [79], Lima Araujo et al. [80], Casanova, Rossi, and Schaller [81], Aoude et al. [82], Minelli and Plizzari [83], Kang et al. [84], Casanova and Rossi [85], Lim, Paramasivam, and Lee [44], Mansur, Ong, and Paramasivam [54], Zarrinpour and Chao [86], Noghabai [87], Randl, Mészöly, and Harsányi [88], Ashour, Hasanain, and Wafa [59], Tan, Murugappan, and Paramasivam [89], Pansuk et al. [90], Kim et al. [91], Sharma [52], Narayanan and Darwish [92], Li, Ward, and Hamza [93], Swamy, Jones, and Chiam [94], Cho and Kim [95], Greenough and Nehdi [50], Kang et al. [96], Dupont and Vandewalle [97] with further information in [98], Swamy and Bahia [99], Batson, Jenkins, and Spatney [100], Zhao et al. [101], Jindal [102], Shin, Oh, and Ghosh [103], Imam, Vandewalle, and Mortelmans [104,105], Huang, Zhang, and Guan [106], Kwak, Suh, and Hsu [107], Roberts and Ho [108], Hwang et al. [109], Spinella, Colajanni, and La Mendola [110], Chalioris and Sfiri [111], Cohen and Aoude [112], Aoude and Cohen [113], Qissab and Salman [114], Furlan and de Hanai [115], Dancygier and Savir [116], Krassowska and Kosior-Kazberuk [117], Yoo and Yang [118], Gali and Subramaniam [119], Zamanzadeh, Lourenco, and Barros [120], Shoaib, Lubell, and Bindiganaville [121], Shoaib [122], Bae, Choi, and Choi [123], and Abdul-Zaher et al. [124]. The database does not include the Keskin et al. [125] experiments, since for these specimens carbon fiber reinforced polymer (CFRP) bars were used as longitudinal reinforcement. The experiments by Khan [126] are excluded, as these specimens are subjected to a combination of shear, bending moment, and torsional moment.

Table A1 gives the database developed for this study. The full spreadsheet is available as supplementary file in .xlsx format available in the public domain [31]. The notations used in this database are given in the “List of notations”. For a number of references [42,44,50,52,54,59,67,69,70,71,72,73,75,76,77,78,80,81,83,84,85,88,89,94,96,97,98,99,100,102,103,104,106,107,109,110,111,112,115,116,117,118,119,123,124] information about the geometry of the support and loading plate was missing. These values were then approximated based on figures of the test setup in the original reference. For rollers, the contact surface was assumed to be 10 mm wide. Most specimens are rectangular beams, but the specimens in [73,81,94,99] are T-beams, in [89,90] I-beams, and in [114] non-prismatic beams. Almost all experiments are on simply supported beams in three- or four-point bending, with exception of the two-span beams in [117] and the special setup by [127] for short spans that does not allow for the development of arching action.

In terms of geometry, references [54,69,76] do not report the total length of the beam specimen. Reference [121] only reports the total length for the largest specimens. For the database entries, a similar overhang is used for the smaller specimens. Reference [54] does not report the span length, but the span and total length are estimated from the technical drawings in the original reference. The total length for the beams in [52,89,97,102] was also estimated based on the technical drawings in the paper. A practical value of overhang over the support is assumed for these cases. The results in [103] are inconsistent: the relation between the maximum load in the figures and the shear stress in the reported table is not clear. The cause of this inconsistency seems to be that the authors did not show the length correctly: the sketched span length lspan appears to be the total length ltot. This correction is included in the database. References [69,81,115] do not report the effective depth. For the database entries, these values are then calculated back from the a/d ratio, or based on the rebar diameter and a 10 mm cover, as typically used in laboratory conditions on small specimens. Reference [79] reports different values for the effective depth than what can be calculated from the technical drawings. The values from the drawings are used for the database. The ratio av/d reported in [117] is 2.7. For the database entries, the size of the support plate measured from the technical drawings is used, and the effective depth is calculated assuming a cover of 10 mm. These assumptions result in av/d = 2.83; the value of av/d = 2.7 can’t be reverse-engineered based on the available information. Singh and Jain [4] mention that the smallest dimension of the cross-section should be at least three times the length of the longest fiber in the mix. As can be seen in the database, many experiments do not fulfil this requirement. Regardless of their comment, Singh and Jain proceeded to test specimens that do not fulfil this requirement, for ease of comparison to other test results.

The concrete compressive strength in the database is fc,cyl, the average concrete compressive strength as measured on cylinders. When the compressive strength is reported from cube specimens, the conversion fc,cyl = 0.85fc,cube is used. Reference [102] does not give the concrete compressive strength, but uses 3 ksi (21 MPa) in the presented calculation example. Therefore, the value of fc,cyl is reported as 21 MPa. Reference [119] does not report the concrete compressive strength. Normal strength concrete of fc,cyl = 30 MPa is assumed. References [50] and [112] used self-consolidating concrete. For references where the maximum aggregate size is not reported [52,74,82,91,109,115,119,120], a standard laboratory mix with da = 10 mm is assumed. References [52,86,114,115,124,127] do not report the yield strength of the steel. For these cases fy = 420 MPa is assumed. For [108], the yield strength at 0.2% strain from the stress-strain diagram is used for the database.

When the tensile strength of the fibers was not given [50,52,71,89,97,98,100,107,108,110,111,115], the value of ftenf = 1100 MPa was assumed. For recent references, this assumption is reasonable, as this value is common for commercially available fibers. For the experiments by Batson [100] from 1972, it is only known that low-carbon steel was used for the fibers, but the tensile strength of the fibers is not known. The reported tensile strength for fibers by Ashour et al. [59] is smaller than for any other reference. The same value is reported in the paper in MPa and psi units, which seems to exclude a typing error in the reference. Reference [120] used recycled steel fibers. The properties of these fibers were not discussed in this reference, but for the database entries, reference [128] was consulted. Reference [123] does not report on the fiber type and properties. Therefore, standard commercially available hooked fibers were assumed. For the references where the amount of fibers is given as a mass, the fiber volume fraction is calculated by dividing the mass by 7800 kg/m3. When the concrete mix contained a combination of fibers [83], the reported fiber properties are weighted averages of the different fibers. Experiment B59 by [99] contained fibers only in the bottom 90 mm of the cross-section.

The results are given in terms of the sectional shear force at failure Vutot, which includes the contribution of the self-weight, as well as in terms of the failure mode. Since this database includes the contribution of the self-weight, the shear at failure from this database may differ from what is reported in the original reference. For small specimens, the effect is small. For lightweight specimens [68,84], the density as reported in the original reference is taken into account to calculate the contribution of the self-weight. When this value was not reported in the original reference [94], a self-weight of 17 kN/m3 was assumed. In some references [81], the sectional shear force at failure Vmax or the applied load at failure Pmax is not included. Where possible [119,123], the load-displacement diagrams are used to read off this value. When this information was not presented, the experiments were not included in the database for lack of vital information. There is a factor 2 difference between the shear stress at failure vmax in [102] and the value I calculated based on the size of the cross-section and the sectional shear at failure Vmax. The database contains this calculated value. What [118] reports as the shear force Vmax is actually Pmax, as one can see when calculating vmax. The following abbreviations are used for the reported failure modes: B (bond failure of longitudinal reinforcement), DT (diagonal tension), NA (the failure mode for the individual experiment is not given in the original reference, but the text mentions that all experiments resulted in shear failure), S (shear failure), SC (shear-compression failure), S-FL (shear-flexure), ST (shear-tension), and Y (yielding of reinforcement).

2.2.2. Parameter Ranges in Database

This section evaluates the distribution of the values of parameters over the database, in terms of range and shape of the distribution. Table 2 gives the ranges of key parameters in the database. These ranges show that the maximum height that has been tested (1220 mm) is relatively small to evaluate the size effect in shear [62,129,130,131,132,133]. The fiber types that occur in the database are: hooked, crimped, straight smooth, mixed (hooked + straight), fibers with a flat end, flat fibers, round fibers, mill-cut fibers, fibers of straight mild steel, brass-coated high strength steel fibers, chopped fibers with butt ends, recycled fibers, and corrugated fibers. The most frequently used fibers in the database are hooked (63% of all gathered experiments), crimped (22% of experiments), and straight smooth (3%).

Table 2.

Ranges of parameters in database.

Parameter Min Max
bw (mm) 50 610
h (mm) 100 1220
d (mm) 85 1118
lspan (mm) 204 7823
a (mm) 102 3912
av (mm) 52 3747
ρ (%) 0.37% 5.72%
fy (MPa) 276 900
a/d (-) 0.46 6
av/d (-) 0.20 5.95
da (mm) 0.4 22
fc,cyl (MPa) 9.8 215
Vf (%) 0.2 4.5
lf/df (-) 25 191
ftenf (MPa) 260 4913
F (-) 0.075 2.858

Figure 1 shows the distribution of a selection of key parameters in the database. In terms of concrete compressive strength, Figure 1a shows that the results in the database are concentrated in the range of normal strength concrete, with some outliers for high and ultra-high strength concrete. For the reinforcement ratio, one can observe in Figure 1b that most specimens have large amounts of longitudinal steel, as typical for shear experiments where extra tension reinforcement is used to avoid a bending moment failure. The experiments are uniformly distributed in the range from 1.5–3.5% reinforcement. The database shows crowding in the range of small effective depths, see Figure 1c. The experiments are normally distributed in terms of shear span to depth ratio, see Figure 1d, with a/d = 3.5 as the most frequently used shear span. The histogram of the fiber volume fraction Vf, Figure 1e, shows crowding in the range of 0.5–1.5%. This observation is not surprising, as these fractions are practical values: these fractions result in workable mixes, and serve the purpose of partially (not fully) replacing the mild steel reinforcement. Similarly, the observations for the histogram of the fiber factor F in Figure 1f reflect practical considerations and workability of SFRC.

Figure 1.

Figure 1

Distribution of parameters in database: (a) concrete compressive strength fc,cyl; (b) reinforcement ratio ρ; (c) effective depth d; (d) shear span to depth ratio a/d; (e) fiber volume fraction Vf; and (f) fiber factor F.

3. Results

3.1. Parameter Studies

First, the raw data from the database are used to analyze the effect of different experimental parameters on the outcome (sectional shear stress at failure as a result of self-weight and applied load). To eliminate the influence of the concrete compressive strength fc,cyl on the parameter studies, normalized shear stresses are used. There is, however, quite some disagreement in the literature on the effect of the concrete compressive strength on the shear capacity [134]: should we normalize the shear stress with respect to the square or cube root of the concrete cylinder’s compressive strength? Therefore, I analyzed the normalized shear stress to both the square and cube root of the concrete as a function of the concrete compressive strength. Figure 2 shows the relation between the normalized shear stress and the concrete compressive strength fc,cyl. These results show that the shear stress should be normalized with respect to the square root of fc,cyl. The influence of different parameters will thus be studied as a function of the shear stress normalized to the square root of fc,cyl.

Figure 2.

Figure 2

Normalized shear stresses to the concrete compressive strength: (a) normalized to the square root; (b) normalized to the cube root.

Figure 3 gives an overview of the most important parameters and their influence on the shear stress normalized to the square root of fc,cyl. Figure 3a shows the influence of the reinforcement ratio ρ. Larger reinforcement ratios result in larger normalized shear capacities. This observation is expected, since larger reinforcement ratios result in a larger dowel action capacity [21,135,136], and thus a larger shear capacity. Figure 3b shows the influence of the effective depth d on the normalized shear stress. In reinforced concrete, the so-called size effect in shear [62,129,130,131,137,138] is known: the shear stress at failure reduces as the effective depth increases. The analysis of the database shows a small size effect. However, very few experiments on specimens with larger depths are available, as shown in Figure 1c. More experiments are necessary to study the size effect in SFRC. Figure 3c shows the influence of the shear span to depth ratio in terms of a/d. Note that the linear relation plotted on the graph is presented for consistency with the other figures, but does not accurately present the relation between a/d and the normalized shear strength. These results show that, just as for reinforced concrete beams, the shear capacity for specimens with a/d ≤ 2.5 increases for a decrease in a/d. The development of a compressive strut or arch between the point of application of the load and the support increases the shear capacity through the shear-carrying mechanism of arching action [139,140,141]. This influence can also be expressed as a function of the clear shear span to depth ratio av/d and the generalized expression M/Vd. Since almost all experiments in the database are three- or four-point bending tests, the difference between a/d and M/Vd lies only in the contribution of the self-weight to M and V. For small specimens, this effect is negligible. For the current database therefore, the difference between the influence of a/d and M/Vd is negligible [142]. The parameter av/d has a slightly larger influence on the normalized shear stress than a/d. This observation can be explained by the geometries used for deep beams in the database.

Figure 3.

Figure 3

Parameter studies based on normalized shear stresses for all entries in database, influence of (a) longitudinal reinforcement ratio ρ; (b) effective depth d; (c) shear span to depth ratio a/d; (d) fiber volume fraction Vf; (e) fiber factor F; and (f) maximum aggregate size da.

Figure 3d shows the relation between the normalized shear capacity and the fiber volume fraction Vf. The normalized shear stress increases as the fiber volume fraction increases. The reason for this observation is the tension carried by the fibers across the crack. Figure 3e shows the relation between the fiber factor F and the normalized shear stress. Comparing Figure 3d,e shows that using the fiber factor F is an improvement as compared to using only the fiber volume fraction Vf: less scatter is observed. Other properties of the fibers that were studied [142] were the aspect ratio lf/df and the fiber tensile strength ftenf. The influence of the aspect ratio is similar to the influence of the fiber factor F, with the difference that the scatter on the plot with the fiber factor is smaller than for the plot with the aspect ratio. Small increases in the normalized shear strength were found for increases in the fiber tensile strength ftenf. Since the fibers typically do not reach their tensile strength, this observation is not surprising. Figure 3f shows the influence of the maximum aggregate size da on the normalized shear strenght. The data show a minor decrease in normalized shear strength for increasing maximum aggregate size. Larger aggregates improve the aggregate interlock capacity [143,144], and it is often assumed that using smaller aggregates in small specimens is a conservative approach. For SFRC, however, smaller aggregates result in a more uniform concrete mix with a better bond between the fibers and the concrete.

3.2. Comparison to Code Predictions

The experimental shear capacities from the database are then compared to the shear capacities predicted by the code equations and equations proposed in the literature. A difficulty here lies in the definition of the tensile strength of the SFRC, which is based on different experiments depending on local or national practice. As such, it is not possible to build a database containing all values that quantify the tensile behavior of the SFRC, as none of the references report on the outcome of all possible tension tests. As a result, the equations proposed in the literature that were selected for this study depend as much as possible on the concrete compressive strength instead of on the tensile strength.

In a first step, the shear capacity was predicted with 12 sets of equations in total: Sarveghadi et al. [28], Kwak et al. [48], Greenough and Nehdi [50], Khuntia et al. [51], Imam et al. [63], Sharma [52], Mansur et al. [54], Ashour et al. [59]—first equation, Ashour et al. [59]—second set of equations, Arslan et al. [60], Yakoub [64]—first set of equations, and Yakoub [64]—second set of equations. Table 1 contains all expressions. The expression by Greenough and Nehdi [50] uses the reinforcement ratio ρ as a percentage instead of as a number. Figure 4 shows the comparison between tested and predicted results, with the statistical properties of Vutot/Vpred in Table 3. Parametric studies for the influence of the different parameters are reported elsewhere [142]. Since not all proposed equations are (explicitly) valid for deep beams, the results for slender beams only are given in Table 4. For all datapoints, the expressions by Kwak et al. [48] result in the smallest coefficient of variation on the ratio of tested to predicted shear capacities and the mean value of tested to predicted shear capacity closest to 1.00, see Table 3. When only the slender beams are considered, the expressions by Arslan et al. [60] result in the smallest coefficient of variation on the tested to predicted shear capacities, combined with an average value of tested to predicted shear capacity close to 1.00 (1.04), see Table 4. In general, the scatter on the tested to predicted shear capacities is high. None of the expressions predicted in the literature is based on a mechanical model that studies the shear-carrying capacity of SFRC based on the mechanisms of shear transfer [18]. The expressions are (semi)-empirical, and thus depend on the database of experiments they were originally derived from. When developing a larger database, as part of this work, the equations do not perform well.

Figure 4.

Figure 4

Comparison between experimental and predicted shear capacities for 12 methods from the literature.

Table 3.

Statistical properties of Vutot/Vpred for all 488 datapoints, with AVG = average of Vutot/Vpred, STD = standard deviation on Vutot/Vpred, and COV = coefficient of variation of Vutot/Vpred.

Model AVG STD COV Min Max
Sarveghadi et al. [28] 1.03 0.29 28% 0.23 2.49
Kwak et al. [48] 1.01 0.28 27% 0.27 2.39
Greenough and Nehdi [50] 1.34 0.48 36% 0.31 3.11
Khuntia et al. [51] 1.81 0.85 47% 0.18 6.53
Imam et al. [63] 0.97 0.36 37% 0.06 2.51
Sharma [52] 1.24 0.49 39% 0.18 3.59
Mansur et al. [54] 1.30 0.60 46% 0.15 3.85
Ashour et al. [59] 1 1.08 0.38 35% 0.24 3.14
Ashour et al. [59] 2 1.29 0.37 29% 0.31 3.22
Arslan et al. [60] 1.17 0.37 31% 0.43 3.24
Yakoub [64] 1 1.90 0.76 40% 0.28 7.50
Yakoub [64] 2 2.97 1.37 46% 0.51 17.48

Table 4.

Statistical properties of Vtest/Vpred for 352 datapoints with a/d ≥ 2.5, with AVG = average of Vutot/Vpred, STD = standard deviation on Vutot/Vpred, and COV = coefficient of variation of Vutot/Vpred.

Model AVG STD COV Min Max
Sarveghadi et al. [28] 1.02 0.29 28% 0.23 2.20
Kwak et al. [48] 1.06 0.28 26% 0.27 2.39
Greenough and Nehdi [50] 1.20 0.37 30% 0.31 3.11
Khuntia et al. [51] 1.53 0.48 31% 0.18 4.03
Imam et al. [63] 1.07 0.31 29% 0.32 2.51
Sharma [52] 1.11 0.33 30% 0.18 2.28
Mansur et al. [54] 1.12 0.42 38% 0.15 3.57
Ashour et al. [59] 1 1.15 0.40 35% 0.24 3.14
Ashour et al. [59] 2 1.35 0.35 26% 0.47 3.22
Arslan et al. [60] 1.04 0.24 23% 0.43 1.97
Yakoub [64] 1 2.03 0.80 39% 0.62 7.50
Yakoub [64] 2 2.83 1.37 49% 0.61 17.48

Next, the experimental shear capacities are compared to the code predictions. The code equations that were used for the predictions are the French recommendations [10], the German guideline [11], the fib 2010 Model Code [39], and the RILEM recommendations [66]. The predicted shear capacities with the Italian guide [12] are the same as with the fib 2010 Model Code [39]; Vmin never exceeds the shear capacity of the fiber reinforced concrete. Each of these codes requires the determination of the tensile strength according to experiments described in the respective codes. Since these results are not available in the reported experiments, except for the experiments carried out in the country where the code is valid, the properties had to be calculated. For determination of the tensile strength fcfIk,L2f in the German guideline, the expression from Thomas [145] is used:

fspfc=0.63fcuf+0.288×Ffcuf+0.052×F (57)

To determine fctR,uf, the value of kFf=0.5 for shear is used. The value of CRd,c = 0.15 is used together with the German guideline, to reflect the German National Annex to the Eurocode, whereas CRd,c = 0.18 is used together with the fib Model Code provisions and RILEM provisions. For determining fFtuk as used in the fib Model Code, the value of fctR,uf from the German code is used. When comparing to the RILEM provisions, it is assumed that fRk,4 = fspfc according to Equation (57). For all of the expressions based on the Eurocode shear provisions, the limitation of ρ ≤ 2% was removed, so that the heavily reinforced beams from the database could be evaluated as well.

Figure 5 shows the comparison between the tested and predicted shear capacities according to the code equations. For the code equations that are based on the provisions from NEN-EN 1992-1-1:2005 [7], the reduction factor β = av/2d for 0.5dav2d is used on the externally applied load but not on the self-weight, to find the sectional shear force at the support Vutot. Table 5 shows the statistical properties of the ratio of the tested to predicted shear capacities. This comparison shows a large scatter on the ratio of experimental to predicted values. For design purposes, the code prediction methods based on the Eurocode shear expression provide reasonable results (with coefficients of variation on the ratio of tested to predicted results of 27–29%). These proposed code equations tend to perform better than the equations proposed in the literature. Full parametric studies based on the tested to predicted shear capacities can be found elsewhere [142].

Figure 5.

Figure 5

Comparison between tested and predicted shear capacities with the code formulas.

Table 5.

Statistical properties of Vutot/Vpred for all 488 datapoints, with AVG = average of Vutot/Vpred, STD = standard deviation on Vutot/Vpred, and COV = coefficient of variation of Vutot/Vpred.

Model AVG STD COV Min Max
French code [10] 1.85 0.88 48% 0.22 5.95
German code [11] 1.12 0.31 27% 0.21 2.13
fib [39] 1.24 0.36 29% 0.30 2.33
RILEM [66] 1.16 0.33 29% 0.23 2.28

4. Discussion

None of the currently available methods properly describe the behavior of SFRC beams failing in shear, as none of the currently available methods describe the influence of adding steel fibers on the shear-carrying mechanisms: capacity in the compression zone, aggregate interlock, dowel action, residual tension, the contribution of the fibers across the crack, and arching action. This study shows the need for theoretical work that address the different shear-carrying mechanisms in SFRC and its crack kinematics. The large scatter on the ratios of tested to predicted shear capacities found in this study show that the currently available expressions do not describe the shear capacity of SFRC in a satisfactory manner. The code expressions based on the Eurocode are conservative, have smaller scatter as compared to the other expressions, and it seems that these can be used currently for the purpose, as practitioners wait for improved expressions.

An analysis of the ranges of parameters used in the experiments from the literature shows that the majority of tested specimens are small, heavily reinforced for flexure, and tested in three- or four-point bending. Such beams are typical for shear experiments. One may however question how representative such specimens are for actual structural elements. In my opinion, laboratory specimens provide valuable insight into the behavior of SFRC beams failing in shear, but cannot address all open questions. For the implementation of SFRC beams and one-way slabs in buildings and bridges, full-size beams and girders should be designed, and their performance should be evaluated experimentally. Full-size specimens are also required to study the size effect in shear for SFRC.

In earlier work [146], I followed the approach of adding a separate term to quantify the contribution of the steel fibers, in addition to the capacity of the concrete expressed by using the Critical Shear Displacement Theory [147]. This approach is followed by a number of the currently available codes and equations proposed in the literature. However, a further study of the influence of adding steel fibers to the concrete on the shear capacity and the individual shear-carrying mechanisms [18] led me to the conclusion that isolating the contribution of the fibers in a separate, single term is theoretically not correct. The influence of the fibers on all shear-carrying mechanisms should be quantified theoretically, and then evaluated experimentally (for example, with digital image correlation analysis [148,149,150]).

A better understanding of how steel fibers improve the shear resistance of SFRC is important to allow a wider use of SFRC in structural applications. Likewise, a better understanding of the contribution of steel fibers to the shear capacity can result in optimization of cross-sections, a more optimal and economical use of materials, and thus more sustainable designs.

5. Summary and Conclusions

One of the barriers for more widespread use of steel fiber reinforced concrete (SFRC) in structural applications, such as beams and girders where part of the stirrups are replaced by fibers, or slabs without stirrups, is the lack of understanding of the shear-carrying behavior. This lack of understanding is reflected by the fact that only a handful of national codes or guidelines contain expressions to quantify the shear capacity of SFRC. This study evaluates the currently available code provisions and equations proposed in the literature for the shear capacity of SFRC elements without stirrups against a database of 488 experimental results from the literature. This study provides an inventory of the current knowledge, identifies the gaps, and proposes a way forward for research on the shear capacity of SFRC elements.

Analyzing the available experimental results from the database resulted in the following conclusions:

  • Most experiments are carried out on small specimens.

  • There is a lack of experiments on SFRC beams with a large depth, which is necessary to evaluate the size effect in shear.

  • Most specimens have a large reinforcement ratio, which is common for shear tests to avoid a flexural failure but does not correspond to actual designs.

  • Experiments on deep and slender beams are available to evaluate the influence of the shear span to depth ratio.

  • The majority of the specimens are cast with normal strength concrete.

  • Most of the fiber volume fractions in the specimens lie between 0.5–1.5% as this range contains practical and workable amounts of fibers and fulfils the aim of partially replacing the mild steel shear reinforcement. The full range of fiber volume fractions in the database is 0.2–4.5%.

  • Historically, different fiber types have been included in experiments. Nowadays, the most commonly used and commercially available fibers are hooked-end fibers. This practice is reflected in the database: 63% of the reported experiments use hooked-end fibers.

Then, parameter studies were carried out based on the available experimental results from the database, which led to the following observations:

  • An analysis of the data shows that the shear stresses should be normalized to the square root of the concrete compressive strength, as this ratio shows a smaller relation to the concrete compressive strength than the cube root of the concrete compressive strength.

  • The normalized shear strength increases as the reinforcement ratio increases, which can be explained by the larger dowel action for larger amounts of reinforcement.

  • The data show a small decrease for the normalized shear strength as the effective depth increases. Not enough experimental results on large SFRC beams are available to study the size effect in shear in SFRC.

  • The influence of the shear span to depth ratio on the normalized shear strength is similar in SFRC as in reinforced concrete. The higher shear strength for small values of the shear span to depth ratio is the result of arching action.

  • The normalized shear strength increases as the fiber volume fraction increases. The normalized shear strength increases as the fiber factor increases. These observations are expected, since the contribution of the fibers improves the shear capacity. There is less scatter on the influence of the fiber factor than on the influence of the fiber volume fraction, which justifies the use of the fiber factor in expressions and code equations.

  • The normalized shear strength decreases as the maximum aggregate size increases. This observation in contrary to what happens in reinforced concrete, where larger aggregates improve the aggregate interlock capacity and thus the shear capacity. In SFRC, smaller aggregates result in a more uniform mix, and a better bond between the concrete matrix and the steel fibers, which enhances the shear capacity.

For the comparison between the experimental shear capacities and the capacities predicted by the currently available codes and equations proposed in the literature, the following conclusions result:

  • National codes and guidelines are based on specific methods for determining the tensile strength of the SFRC, and these methods differ internationally. As such, none of the experiments available in the literature report on all values of the tensile strength that are required for determining the tensile strength in the various expressions.

  • The ratio of tested to predicted shear capacities shows large scatter. When all experiments are considered, the expression by Kwak et al. results in the best performance. When only slender beams are considered, the expression by Arslan et al. results in the best performance.

  • The code equations based on the Eurocode shear expressions have a coefficient of variation between 27% and 29% and a slightly conservative value of the average ratio of the tested to predicted shear capacity. As such, these equations can be used until better proposals are available.

The analysis in this work shows the need for a better understanding of the shear capacity of SFRC. An analysis of the influence of the steel fibers on all shear-carrying mechanisms seems necessary. A better understanding of the shear-carrying mechanisms is necessary to allow a more widespread use of SFRC in structural elements, and an optimization of designs.

Acknowledgments

The author would like to acknowledge the work done by Belkis Filian Abad in the exploratory study on this topic.

Appendix A

Table A1.

Database of experimental results from literature of SFRC beams with longitudinal reinforcement without stirrups failing in shear.

Geometry Concrete Mix Fibers Results
Reference ID bw h d lspan ρ a/d av/d da fc,cyl Fiber Type Vf lf/df ftenf Vutot Failure Mode
(mm) (mm) (mm) (mm) (-) (-) (-) (mm) (MPa) (%) (-) (MPa) (kN)
Singh & Jain
2014
[4]
D-I 150 300 251 1470 0.0267 3.49 3.09 12.5 28.1 hooked 0.75 65 1100 114 DT + ST + SC
D-II 150 300 251 1470 0.0267 3.49 3.09 12.5 25.3 hooked 0.75 65 1100 80 DT + ST + SC
E-I 150 300 251 1470 0.0267 3.49 3.09 12.5 27.9 hooked 1 65 1100 110 DT + ST + SC
E-II 150 300 251 1470 0.0267 3.49 3.09 12.5 26.2 hooked 1 65 1100 124 DT + ST + SC
F-I 150 300 251 1470 0.0267 3.49 3.09 12.5 28.1 hooked 1.5 65 1100 112 DT + ST + SC
F-II 150 300 251 1470 0.0267 3.49 3.09 12.5 27.3 hooked 1.5 65 1100 132 DT + ST + SC
G-I 150 300 251 1470 0.0267 3.49 3.09 12.5 27.5 hooked 0.5 80 1050 66 DT + ST + SC
G-II 150 300 251 1470 0.0267 3.49 3.09 12.5 24.9 hooked 0.5 80 1050 78 DT + ST + SC
H-I 150 300 251 1470 0.0267 3.49 3.09 12.5 27.8 hooked 0.75 80 1050 92 DT + ST + SC
H-II 150 300 251 1470 0.0267 3.49 3.09 12.5 27.3 hooked 0.75 80 1050 102 DT + ST + SC
I-I 150 300 251 1470 0.0267 3.49 3.09 12.5 26.3 hooked 1 80 1050 117 DT + ST + SC
I-II 150 300 251 1470 0.0267 3.49 3.09 12.5 27.1 hooked 1 80 1050 105 DT + ST + SC
K-I 150 300 251 1470 0.0267 3.49 3.09 12.5 53.4 hooked 0.75 65 1100 114 DT + ST
K-II 150 300 251 1470 0.0267 3.49 3.09 12.5 54.1 hooked 0.75 65 1100 127 DT + ST
L-I 150 300 251 1470 0.0267 3.49 3.09 12.5 53.2 hooked 1 65 1100 145 DT + ST
L-II 150 300 251 1470 0.0267 3.49 3.09 12.5 55.3 hooked 1 65 1100 166 DT + ST + SC
P-I 150 300 251 1470 0.0267 3.49 3.09 12.5 64.6 hooked 1.5 65 1100 196 DT + ST
P-II 150 300 251 1470 0.0267 3.49 3.09 12.5 59.9 hooked 1.5 65 1100 161 DT + ST + SC
AA-I 150 300 251 1470 0.0267 3.49 3.09 12.5 47.8 hooked 0.5 80 1050 128 DT + ST + SC
AA-II 150 300 251 1470 0.0267 3.49 3.09 12.5 49.5 hooked 0.5 80 1050 153 DT + ST + SC
M-I 150 300 251 1470 0.0267 3.49 3.09 12.5 55.3 hooked 0.75 80 1050 147 DT + ST + SC
M-II 150 300 251 1470 0.0267 3.49 3.09 12.5 56.4 hooked 0.75 80 1050 179 DT + ST
N-I 150 300 251 1470 0.0267 3.49 3.09 12.5 53.4 hooked 1 80 1050 129 DT + ST + SC
N-II 150 300 251 1470 0.0267 3.49 3.09 12.5 51 hooked 1 80 1050 158 DT + ST
R-I 150 300 251 1470 0.0267 3.49 3.09 12.5 27.8 crimped 1 50 1025 80 DT + ST + SC
R-II 150 300 251 1470 0.0267 3.49 3.09 12.5 27.2 crimped 1 50 1025 79 DT + ST + SC
U-I 150 300 251 1470 0.0267 3.49 3.09 12.5 27.6 crimped 1 85 1050 99 DT + ST + SC
U-II 150 300 251 1470 0.0267 3.49 3.09 12.5 27.9 crimped 1 85 1050 82 DT + ST + SC
W-I 150 300 251 1470 0.0267 3.49 3.09 12.5 34.7 crimped 1 50 1025 100 DT + ST + SC
W-II 150 300 251 1470 0.0267 3.49 3.09 12.5 36.2 crimped 1 50 1025 101 DT + ST
Z-I 150 300 251 1470 0.0267 3.49 3.09 12.5 37 crimped 1 85 1050 111 DT + ST
Z-II 150 300 251 1470 0.0267 3.49 3.09 12.5 38.3 crimped 1 85 1050 105 DT + ST
Sahoo & Sharma M-25-0.50 150 300 261 1800 0.0116 2.30 1.92 20.0 28.7 hooked 0.5 80 1100 144 S-FL
2014 M20-S-0.75 150 300 261 1800 0.0195 3.45 3.07 20.0 32.9 hooked 0.75 80 1100 109 S
[67] M20-S-1 150 300 261 1800 0.0195 3.45 3.07 20.0 23.8 hooked 1 80 1100 94 S
M20-S-1.25 150 300 261 1800 0.0195 3.45 3.07 20.0 24.1 hooked 1.25 80 1100 115 S
Shoaib, Lubell and Bindiganavile L31 310 308 258 1548 0.0184 3.00 2.42 10.0 22 hooked 1 55 1100 204 S-FL
2015 L32 310 308 258 1548 0.0245 3.00 2.42 10.0 31 hooked 1 55 1100 299 S-FL
[68] L62 300 600 550 3300 0.0119 3.00 2.73 10.0 30 hooked 1 55 1100 312 S-FL
Manju et al. SH1 140 220 175 2000 0.0128 1.50 0.93 12.0 82 hooked 0.5 80 1100 119 S
2017 SH2 140 220 175 2000 0.0128 1.50 0.93 12.0 83.2 hooked 1 80 1100 156 S
[69] SH3 140 220 175 2000 0.0128 1.50 0.93 12.0 83.8 hooked 1.5 80 1100 187 S
SH4 140 220 175 2000 0.0128 2.50 1.93 12.0 82 hooked 0.5 80 1100 63 S
SH5 140 220 175 2000 0.0128 2.50 1.93 12.0 83.2 hooked 1 80 1100 80 S
SH6 140 220 175 2000 0.0128 2.50 1.93 12.0 83.8 hooked 1.5 80 1100 136 S
Arslan et al. A2.5F1.0A 150 230 200 1000 0.0134 2.50 2.00 22.0 33.68 hooked 1 55 1100 65 S
2017 A2.5F1.0b 150 230 200 1000 0.0134 2.50 2.00 22.0 24.53 hooked 1 55 1100 44 S
[70] A2.5F2.0 150 230 200 1000 0.0134 2.50 2.00 22.0 21.43 hooked 2 55 1100 50 S
A2.5F3.0 150 230 200 1000 0.0134 2.50 2.00 12.0 9.77 hooked 3 55 1100 39 S
A3.5F1.0 150 230 200 1400 0.0134 3.50 3.00 22.0 20.21 hooked 1 55 1100 33 S
A3.5F2.0 150 230 200 1400 0.0134 3.50 3.00 22.0 21.43 hooked 2 55 1100 43 S
A3.5F3.0 150 230 200 1400 0.0134 3.50 3.00 12.0 27.91 hooked 3 55 1100 59 S
A4.5F1.0 150 230 200 1800 0.0134 4.50 4.00 22.0 24.53 hooked 1 55 1100 43 S
A4.5F2.0 150 230 200 1800 0.0134 4.50 4.00 22.0 21.43 hooked 2 55 1100 36 S-FL
Parra-Montesinos et al. 11 152 457.2 381 2766.2 0.0271 3.40 3.41 10.0 49.2 hooked 1 80 1100 174 NA
2006 7 152 457.2 381 2766.2 0.0271 3.40 3.41 10.0 31 hooked 1.5 60 1100 151 NA
[71] 10 152 457.2 381 2766.2 0.0271 3.40 3.41 10.0 44.9 hooked 1.5 60 1100 191 NA
9 152 457.2 381 2766.2 0.0271 3.40 3.41 10.0 44.9 hooked 1.5 60 1100 192 NA
12 152 457.2 381 2766.2 0.0271 3.40 3.41 10.0 49.2 hooked 1 80 1100 220 NA
8 152 457.2 381 2766.2 0.0271 3.40 3.41 10.0 31 hooked 1.5 60 1100 198 NA
4 152 457.2 381 2817 0.0271 3.50 3.47 10.0 38.1 hooked 1 60 1100 149 NA
3 152 457.2 381 2817 0.0271 3.50 3.47 10.0 38.1 hooked 1 60 1100 203 NA
1 152 457.2 381 2817 0.0197 3.50 3.47 10.0 38.1 hooked 1 60 1100 178 NA
2 152 457.2 381 2817 0.0197 3.50 3.47 10.0 38.1 hooked 1 60 1100 181 NA
Rosenbusch & Teutsch 2.2/2 200 300 260 952.64 0.0181 1.50 1.51 10.0 41.2 hooked 0.25 67 1100 280 NA
2003 2.2/3 200 300 260 952.64 0.0181 1.50 1.51 10.0 40.3 hooked 0.76 67 1100 300 NA
[72] 2.4/2 200 300 260 1450.48 0.0181 2.50 2.46 10.0 40 hooked 0.25 67 1100 108 NA
2.4/3 200 300 260 1450.48 0.0181 2.50 2.46 10.0 38.7 hooked 0.76 67 1100 144 NA
2.3/2 200 300 260 1450.48 0.0115 2.50 2.46 10.0 40 hooked 0.25 67 1100 82 NA
2.3/3 200 300 260 1450.48 0.0115 2.50 2.46 10.0 38.7 hooked 0.76 67 1100 107 NA
T15*100-SFRC-2 200 500 460 3248.8 0.0280 3.40 3.35 10.0 37.7 hooked 0.5 67 1100 244 NA
T23*50-SFRC-2 200 500 460 3248.8 0.0280 3.40 3.35 10.0 38.8 hooked 0.5 67 1100 252 NA
T15*75-SFRC-2 200 500 460 3248.8 0.0280 3.40 3.35 10.0 37.7 hooked 0.5 67 1100 259 NA
T15*50-SFRC-1 200 500 460 3248.8 0.0280 3.40 3.35 10.0 37.7 hooked 0.5 67 1100 263 NA
1.2/2 200 300 260 1948.32 0.0356 3.50 3.42 10.0 46.9 hooked 0.25 67 1100 110 NA
1.2/3 200 300 260 1948.32 0.0356 3.50 3.42 10.0 43.7 hooked 0.51 67 1100 120 NA
1.2/4 200 300 260 1948.32 0.0356 3.50 3.42 10.0 48.3 hooked 0.76 67 1100 155 NA
20*30-SFRC-1 200 300 260 1968.64 0.0283 3.50 3.46 10.0 37.7 hooked 0.5 67 1100 111 NA
20*30-SFRC-2 200 300 260 1968.64 0.0283 3.50 3.46 10.0 38.8 hooked 0.5 67 1100 132 NA
20*60-SFRC-1 200 600 540 3929.52 0.0273 3.50 3.48 10.0 37.7 hooked 0.25 67 1100 153 NA
20*60-SFRC-2 200 600 560 3929.52 0.0273 3.50 3.36 10.0 38.8 hooked 0.5 67 1100 230 NA
2.6/2 200 300 260 2253.12 0.0181 4.00 4.01 10.0 41.2 hooked 0.25 67 1100 82 NA
2.6/3 200 300 260 2253.12 0.0181 4.00 4.01 10.0 40.3 hooked 0.76 67 1100 117 NA
Sahoo et al. TB0.75_1.6 150 250 217 1150 0.0185 1.59 1.13 10.0 35 hooked 0.75 80 1100 149 DT
2016 TB0.75_2.5 150 250 217 1600 0.0185 2.47 2.00 10.0 35 hooked 0.75 80 1100 99 SC
[73] TB0.75_3.0 150 250 217 1750 0.0185 2.95 2.49 10.0 35 hooked 0.75 80 1100 85 SC
Amin & Foster B25-0-0- 300 700 622 4500 0.0198 2.81 2.49 10.0 34 hooked 0.321 65 2300 286 S
2016 [74] B50-0-0 300 700 622 4500 0.0198 2.81 2.49 10 36 hooked 0.687 65 2300 356 S
Tahenni et al. S0F0.5-65 100 150 135 900 0.0116 2.22 2.15 15.0 64.2 hooked 0.5 65 1100 42 S
2016 S0F0.5-65 100 150 135 900 0.0116 2.22 2.15 15.0 64.2 hooked 0.5 65 1100 44 S
[75] S0F0.5-65 100 150 135 900 0.0116 2.22 2.15 15.0 64.2 hooked 0.5 65 1100 43 S
S0F1.0-65 100 150 135 900 0.0116 2.22 2.15 15.0 64 hooked 1 65 1100 45 S-FL
S0F1.0-65 100 150 135 900 0.0116 2.22 2.15 15.0 64 hooked 1 65 1100 48 S-FL
S0F1.0-65 100 150 135 900 0.0116 2.22 2.15 15.0 64 hooked 1 65 1100 43 S-FL
S0F1.0-80 100 150 135 900 0.0116 2.22 2.15 15.0 60 hooked 1 80 1100 50 S-FL
S0F1.0-80 100 150 135 900 0.0116 2.22 2.15 15.0 60 hooked 1 80 1100 52 S-FL
S0F1.0-80 100 150 135 900 0.0116 2.22 2.15 15.0 60 hooked 1 80 1100 45 S-FL
Narayanan & Darwish SF1 85 150 130 900 0.0205 2.02 1.94 9.6 51.85 crimped 0.25 100 2000 33 S
1987 SF2 85 150 130 1030 0.0205 2.52 2.44 9.6 51.85 crimped 0.25 100 2000 30 S
[76] SF3 85 150 130 1160 0.0205 3.02 2.94 9.6 51.85 crimped 0.25 100 2000 31 S
SF4 85 150 130 900 0.0205 2.02 1.94 9.6 33.32 crimped 0.25 100 2000 30 S
SF5 85 150 130 1030 0.0205 2.52 2.44 9.6 33.32 crimped 0.25 100 2000 23 S
SF6 85 150 130 1160 0.0205 3.02 2.94 9.6 33.32 crimped 0.25 100 2000 22 S
B1 85 150 130 1160 0.0205 3.02 2.94 9.6 51.68 crimped 0.5 133 2000 36 S
B7 85 150 130 1160 0.0205 3.02 2.94 9.6 30.6 crimped 0.5 133 2000 22 S
B9 85 150 130 1160 0.0205 3.02 2.94 9.6 31.025 crimped 1 100 2000 33 S
B11 85 150 130 900 0.0205 2.02 1.94 9.6 51.68 crimped 0.5 133 2000 51 S
B12 85 150 130 1030 0.0205 2.52 2.44 9.6 51.68 crimped 0.5 133 2000 41 S
B13 85 150 130 1290 0.0205 3.52 3.44 9.6 41.65 crimped 0.5 133 2000 29 S
B14 85 150 130 900 0.0205 2.02 1.94 9.6 48.705 crimped 1 133 2000 62 S
B15 85 150 130 1030 0.0205 2.52 2.44 9.6 48.705 crimped 1 133 2000 49 S
B16 85 150 130 1290 0.0205 3.52 3.44 9.6 48.79 crimped 1 133 2000 33 S
B17 85 150 128 1160 0.0370 3.06 2.98 9.6 41.65 crimped 0.5 133 2000 32 S
B18 85 150 126 1160 0.0572 3.11 3.03 9.6 41.65 crimped 0.5 133 2000 38 S
B19 85 150 128 1160 0.0370 3.06 2.98 9.6 30.6 crimped 0.5 133 2000 25 S
B20 85 150 126 1160 0.0572 3.11 3.03 9.6 30.6 crimped 0.5 133 2000 25 S
B23 85 150 128 1160 0.0370 3.06 2.98 9.6 48.79 crimped 1 133 2000 48 S
B24 85 150 126 1160 0.0572 3.11 3.03 9.6 48.79 crimped 1 133 2000 54 S
B25 85 150 126 1160 0.0572 3.11 3.03 9.6 53.55 crimped 1.5 100 2000 52 S
B26 85 150 126 1160 0.0572 3.11 3.03 9.6 43.18 crimped 2 100 2000 53 S
B27 85 150 128 1160 0.0370 3.06 2.98 9.6 53.55 crimped 1.5 100 2000 49 S
B28 85 150 126 900 0.0572 2.08 2.00 9.6 50.15 crimped 0.5 100 2000 59 S
B29 85 150 126 900 0.0572 2.08 2.00 9.6 45.9 crimped 1 100 2000 73 S
B30 85 150 126 900 0.0572 2.08 2.00 9.6 53.55 crimped 1.5 100 2000 77 S
B31 85 150 126 900 0.0572 2.08 2.00 9.6 43.18 crimped 2 100 2000 68 S
Cucchiara et al. A10 150 250 219 2300 0.0191 2.80 2.75 10.0 40.85 hooked 1 60 1115 97 S
2004 A20 150 250 219 2300 0.0191 2.80 2.75 10.0 40.85 hooked 2 60 1115 104 S
[77] B10 150 250 219 2300 0.0191 2.00 1.95 10.0 43.23 hooked 1 60 1115 116 S
B20 150 250 219 2300 0.0191 2.00 1.95 10.0 43.23 hooked 2 60 1115 117 S
Kwak et al. FHB2-2 125 250 212 1248 0.0152 2.00 1.46 19.0 63.8 hooked 0.5 63 1079 135 S-FL
2002 FHB3-2 125 250 212 1248 0.0152 2.00 1.46 19.0 68.6 hooked 0.75 63 1079 145 S-FL
[48] FNB2-2 125 250 212 1248 0.0152 2.00 1.46 19.0 30.8 hooked 0.5 63 1079 108 S
FNB2-3 125 250 212 1672 0.0152 3.00 2.46 19.0 30.8 hooked 0.5 63 1079 68 S
Lim & Oh S0.00V1 100 180 130 1300 0.0309 3.08 3.00 10.0 38.69 straight smooth 1 60 1303 59 S
1999 [78] S0.00V2 100 180 130 1300 0.0309 3.08 3.00 10.0 42.4 straight smooth 2 60 1303 75 S
Dinh et al. B18-1a 152 455 381 2136 0.0196 3.44 3.04 10.0 44.8 hooked 0.75 55 1100 172 SC + DT + Y
2010 B18-1b 152 455 381 2136 0.0196 3.44 3.04 10.0 44.8 hooked 0.75 55 1100 162 SC + DT + Y
[79] B18-2a 152 455 381 2136 0.0196 3.44 3.04 10.0 38.1 hooked 1 55 1100 171 SC + DT + Y
B18-2b 152 455 381 2136 0.0196 3.44 3.04 10.0 38.1 hooked 1 55 1100 174 SC + DT + Y
B18-3a 152 455 381 2136 0.0263 3.44 3.04 10.0 31 hooked 1.5 55 1100 150 ST + DT + B
B18-3b 152 455 381 2136 0.0263 3.44 3.04 10.0 31 hooked 1.5 55 1100 198 SC + ST
B18-3c 152 455 381 2136 0.0263 3.44 3.04 10.0 44.9 hooked 1.5 55 1100 193 ST + DT
B18-3d 152 455 381 2136 0.0263 3.44 3.04 10.0 44.9 hooked 1.5 55 1100 191 ST + DT
B18-5a 152 455 381 2136 0.0263 3.44 3.04 10.0 49.2 hooked 1 80 1100 174 DT
B18-5b 152 455 381 2136 0.0263 3.44 3.04 10.0 49.2 hooked 1 80 1100 220 ST + DT
B18-7a 152 455 381 2136 0.0196 3.44 3.04 10.0 43.3 hooked 0.75 80 2300 194 ST + DT + Y
B18-7b 152 455 381 2136 0.0196 3.44 3.04 10.0 43.3 hooked 0.75 80 2300 191 ST + DT + Y
B27-1a 205 685 610 3558 0.0196 3.50 3.21 10.0 50.8 hooked 0.75 55 1100 369 ST + DT
B27-1b 205 685 610 3558 0.0196 3.50 3.21 10.0 50.8 hooked 0.75 55 1100 341 DT
B27-2a 205 685 610 3558 0.0196 3.50 3.21 10.0 28.7 hooked 0.75 80 1100 355 SC + ST
B27-2b 205 685 610 3558 0.0196 3.50 3.21 10.0 28.7 hooked 0.75 80 1100 348 DT
B27-3b 205 685 610 3558 0.0152 3.50 3.21 10.0 42.3 hooked 0.75 55 1100 351 SC + ST + Y
B27-4a 205 685 610 3558 0.0152 3.50 3.21 10.0 29.6 hooked 0.75 80 1100 271 ST + DT + B
B27-4b 205 685 610 3558 0.0152 3.50 3.21 10.0 29.6 hooked 0.75 80 1100 228 ST + DT + B
B27-5 205 685 610 3558 0.0196 3.50 3.21 10.0 44.4 hooked 1.5 55 1100 438 SC + ST + Y
B27-6 205 685 610 3558 0.0196 3.50 3.21 10.0 42.8 hooked 1.5 80 1100 424 ST + DT + Y
Lima Araujo et al. V-1-0 150 390 340 2200 0.0308 2.50 2.21 12.5 58.87 hooked 1 65 1150 262 NA
2014 [80] V-2-0 150 390 340 2200 0.0308 2.50 2.21 12.5 51.67 hooked 2 65 1150 292 NA
Casanova et al. FRC1 150 800 735 5600 0.0106 3.81 3.67 12.5 42 hooked 1.25 75 1200 360 NA
1997 FRC2 150 800 735 5600 0.0106 3.81 3.67 12.5 38 hooked 1.25 60 1200 360 NA
[81] HSFRC1 125 250 225 2000 0.0349 2.89 2.44 10.0 90 hooked 1.25 60 1200 158 DT
Aoude et al. A0.5% 150 250 202 1700 0.0117 2.97 2.48 10.0 21.3 hooked 0.5 55 1100 48 S
2012 A1% 150 250 202 1700 0.0117 2.97 2.48 10.0 19.6 hooked 1 55 1100 57 S
[82] B0.5% 300 500 437 3700 0.0150 3.09 2.86 10.0 21.3 hooked 0.5 55 1100 161 S
B1% 300 500 437 3700 0.0150 3.09 2.86 10 19.6 hooked 1 55 1100 205 S
Minelli & Plizzari NSC1-FRC1 200 480 435 4350 0.0104 2.51 2.30 20 24.8 hooked 0.38 50 1100 134 S
2013 NSC2-FRC1 200 480 435 4350 0.0104 2.51 2.30 20 33.5 hooked 0.38 50 1100 120 S
[83] NSC2-FRC2 200 480 435 4350 0.0104 2.51 2.30 20 33.5 hooked + straight 0.57 78 1333 142 S
NSC3-FRC 200 480 435 4350 0.0104 2.51 2.30 20 38.6 hooked 0.38 50 1100 141 S
HSC1-FRC1 200 480 435 4350 0.0104 2.51 2.30 20 61.1 hooked 0.64 48 1250 191 S-FL
NSC4-FRC-500-1 200 500 455 2280 0.0099 2.51 2.31 15 24.4 hooked 0.25 50 1100 197 S-FL
NSC4-FRC-500-2 200 500 455 2280 0.0099 2.51 2.31 15 24.4 hooked 0.25 50 1100 157 S
NSC4-FRC-1000 200 1000 910 4550 0.0104 2.50 2.40 20 24.4 hooked 0.25 50 1100 258 S
HSC2-FRC-1000 200 1000 910 4550 0.0104 2.50 2.40 20 55 hooked 0.25 50 1100 339 S
Kang et al. FLB-0.5-2 125 250 210 1250 0.0153 2.00 1.52 19 44.6 hooked 0.5 63 1100 82 S-FL
2011 FLB-0.5-4 125 250 210 2100 0.0153 4.00 3.52 19 44.6 hooked 0.5 63 1100 36 S
[84] FNB-0.5-2 125 250 210 1250 0.0153 2.00 1.52 19 57.2 hooked 0.5 63 1100 78 S-FL
Casanova & Rossi HSFRC1 125 250 225 2000 0.0349 2.89 2.44 10 90 hooked 1.25 60 1200 139 S
1999 [85] HSFRC2 125 250 225 2000 0.0349 2.89 2.44 10 90 hooked 1.25 60 1200 139 S
Lim et al. 2/0.5/2.5 152 254 221 2100 0.0120 2.50 2.45 10 34 hooked 0.5 60 1130 59 S
1987 4/1.0/1.5 152 254 221 1600 0.0239 1.50 1.45 10 34 hooked 1 60 1130 148 S
[44] 4/1.0/2.5 152 254 221 2100 0.0239 2.50 2.45 10 34 hooked 1 60 1130 84 S
4/1.0/3.5 152 254 221 2100 0.0239 3.50 3.45 10 34 hooked 1 60 1130 68 S-FL
4/0.5/1.5 152 254 221 1600 0.0239 1.50 1.45 10 34 hooked 0.5 60 1130 136 S
4/0.5/2.5 152 254 221 2100 0.0239 2.50 2.45 10 34 hooked 0.5 60 1130 65 S
4/0.5/3.5 152 254 221 2100 0.0239 3.50 3.45 10 34 hooked 0.5 60 1130 50 S
Mansur et al. B1 150 225 197 1288 0.0136 2.00 1.49 20 29.1 hooked 0.5 60 1260 76 SC
1986 B2 150 225 197 1603.2 0.0136 2.80 2.29 20 29.1 hooked 0.5 60 1260 53 SC
[54] B3 150 225 197 1918.4 0.0136 3.60 3.09 20 29.1 hooked 0.5 60 1260 46 DT
C1 150 225 197 1288 0.0136 2.00 1.49 20 29.9 hooked 0.75 60 1260 86 SC
C2 150 225 197 1603.2 0.0136 2.80 2.29 20 29.9 hooked 0.75 60 1260 61 SC
C6 150 225 197 1603.2 0.0204 2.80 2.29 20 29.9 hooked 0.75 60 1260 66 SC
E2 150 225 197 1603.2 0.0136 2.80 2.29 20 20.6 hooked 0.75 60 1260 46 SC
E3 150 225 197 1603.2 0.0204 2.80 2.29 20 20.6 hooked 0.75 60 1260 61 SC
F3 150 225 197 1603.2 0.0204 2.80 2.29 20 33.4 hooked 0.75 60 1260 87 SC
Zarrinpour & Chao SFRC12W6 152 305 254 1778 0.0248 3.50 2.90 10 29 hooked 0.75 67 1096 121 S
2017 SFRC12W24 610 305 254 1778 0.0247 3.50 2.90 10 29 hooked 0.75 67 1096 482 S
[86] SFRC18a 152 457 394 2844.8 0.0286 3.61 3.22 10 39 hooked 0.75 67 1096 163 S
SFRC18b 152 457 394 2844.8 0.0286 3.61 3.22 10 39 hooked 0.75 67 1096 196 S
SFRC24a 203 610 541 3733.8 0.0254 3.45 3.17 10 50 hooked 0.75 67 1096 273 S
SFRC24b 203 610 541 3733.8 0.0254 3.45 3.17 10 50 hooked 0.75 67 1096 386 S
SFRC36a 254 915 813 5689.6 0.0270 3.50 3.31 10 50 hooked 0.75 67 1096 700 S
SFRC36b 254 915 813 5689.6 0.0270 3.50 3.31 10 50 hooked 0.75 67 1096 721 S
SFRC48a 305 1220 1118 7823.2 0.0255 3.50 3.35 10 50 hooked 0.75 67 1096 1081 S
SFRC48b 305 1220 1118 7823.2 0.0255 3.50 3.35 10 50 hooked 0.75 67 1096 1044 S
Noghabai HSC.I.S6.0.15 200 250 180 1200 0.0447 3.33 2.22 16 90.6 straight smooth 1 40 2600 300 S
2000 HSC.I.Smix 200 250 180 1200 0.0447 3.33 2.22 16 83.2 hooked + straight 1 48 1850 296 S
[87] HSC.I.S60/0.7/0.5 200 250 180 1200 0.0447 3.33 2.22 16 80.5 hooked 0.5 86 2200 253 S
HSC.I.S60/0.7/0.75 200 250 180 1200 0.0447 3.33 2.22 16 80.5 hooked 0.75 86 2200 263 S
NSC.II.Smix 200 250 195 1200 0.0309 3.08 2.05 16 39.4 hooked + straight 1 48 1850 190 S
HSC.II.S30/0.6 200 300 235 1300 0.0428 2.77 1.91 16 91.4 hooked 1 50 1100 311 S
HSC.II.S6/0.15 200 300 235 1300 0.0428 2.77 1.91 16 93.3 straight smooth 1 40 2600 364 S
HSC.II.Smix 200 300 235 1300 0.0428 2.77 1.91 16 89.6 hooked + straight 1 48 1850 408 S
HSC.III.S6/0.15 200 500 410 3000 0.0306 2.93 2.44 18 76.8 straight smooth 1 40 2600 293 S
HSC.III.S6/0.15 200 500 410 3000 0.0306 2.93 2.44 18 76.8 straight smooth 1 40 2600 340 S
HSC.III.Smix 200 500 410 3000 0.0306 2.93 2.44 18 72 hooked + straight 1 48 1850 371 S
HSC.III.Smix 200 500 410 3000 0.0306 2.93 2.44 18 72 hooked + straight 1 48 1850 331 S
HSC.III.S60/0.7/0.5 200 500 410 3000 0.0306 2.93 2.44 18 69.3 hooked 0.5 86 2200 268 S
HSC.III.S60/0.7/0.5 200 500 410 3000 0.0306 2.93 2.44 18 69.3 hooked 0.5 86 2200 316 S
HSC.III.S60/0.7/0.75 200 500 410 3000 0.0306 2.93 2.44 18 60.2 hooked 0.75 86 2200 343 S
HSC.IV.S60/0.7/0.75 200 500 410 3000 0.0306 2.93 2.44 18 75.7 hooked 0.75 86 2200 296 S
HSC.III.S6/0.15 300 700 570 5000 0.0287 2.98 2.63 18 76.8 straight smooth 1 40 2600 458 S
HSC.IV.Smix 300 700 570 5000 0.0287 2.98 2.63 18 72 hooked + straight 1 48 1850 609 S
HSC.III.S60/0.7/0.75 300 700 570 5000 0.0287 2.98 2.63 18 60.2 hooked 0.75 86 2200 522 S
Randl et al. B19 200 350 314 3000 0.0350 3.50 3.18 0.4 132 straight smooth 2 75 2000 254 S
2017 B25 200 350 314 3000 0.0350 3.50 3.18 0.4 154 straight smooth 2 75 2000 321 S
[88] B30 200 350 314 3000 0.0350 3.50 3.18 0.4 146 straight smooth 2 75 2000 360 S
B20 200 350 314 3000 0.0350 3.50 3.18 0.4 133 straight smooth 1 75 2000 269 S
B24 200 350 314 3000 0.0350 3.50 3.18 0.4 143 straight smooth 1 75 2000 202 S
B29 200 350 314 3000 0.0350 3.50 3.18 0.4 153 straight smooth 1 75 2000 311 S
Ashour et al. B-2-1.0-L 125 250 215 1360 0.0037 2.00 1.95 10 92 hooked 1 75 260 46 NA
1992 B-4-1.0-L 125 250 215 2220 0.0037 4.00 3.95 10 92.6 hooked 1 75 260 25 NA
[59] B-6-1.0-L 125 250 215 3080 0.0037 6.00 5.95 10 93.7 hooked 1 75 260 16 NA
B-1-0.5-A 125 250 215 930 0.0283 1.00 0.95 10 99 hooked 0.5 75 260 245 NA
B-2-0.5-A 125 250 215 1360 0.0283 2.00 1.95 10 99.1 hooked 0.5 75 260 130 NA
B-4-0.5-A 125 250 215 2220 0.0283 4.00 3.95 10 95.4 hooked 0.5 75 260 62 NA
B-6-0.5-A 125 250 215 3080 0.0283 6.00 5.95 10 95.83 hooked 0.5 75 260 54 NA
B-1-1.0-A 125 250 215 930 0.0283 1.00 0.95 10 95.3 hooked 1 75 260 343 NA
B-2-1.0-A 125 250 215 1360 0.0283 2.00 1.95 10 95.3 hooked 1 75 260 163 NA
B-4-1.0-A 125 250 215 2220 0.0283 4.00 3.95 10 97.53 hooked 1 75 260 86 NA
B-6-1.0-A 125 250 215 3080 0.0283 6.00 5.95 10 100.5 hooked 1 75 260 54 NA
B-1-1.5-A 125 250 215 930 0.0283 1.00 0.95 10 96.4 hooked 1.5 75 260 375 NA
B-2-1.5-A 125 250 215 1360 0.0283 2.00 1.95 10 96.6 hooked 1.5 75 260 194 NA
B-4-1.5-A 125 250 215 2220 0.0283 4.00 3.95 10 97.1 hooked 1.5 75 260 95 NA
B-6-1.5-A 125 250 215 3080 0.0283 6.00 5.95 10 101.32 hooked 1.5 75 260 54 NA
B-2-1.0-M 125 250 215 1360 0.0458 2.00 1.95 10 94.5 hooked 1 75 260 181 NA
B-4-1.0-M 125 250 215 2220 0.0458 4.00 3.95 10 93.8 hooked 1 75 260 105 NA
B-6-1.0-M 125 250 215 3080 0.0458 6.00 5.95 10 95 hooked 1 75 260 80 NA
Tan et al. 2 140 375 340 1910 0.0167 2.00 1.71 19 35 hooked 0.5 60 1100 219 NA
1993 3 140 375 340 1910 0.0167 2.00 1.71 19 33 hooked 0.75 60 1100 182 NA
[89] 4 140 375 340 1910 0.0167 2.00 1.71 19 36 hooked 1 60 1100 212 NA
5 140 375 340 1910 0.0167 2.50 2.21 19 36 hooked 1 60 1100 155 NA
6 140 375 340 1910 0.0167 1.50 1.21 19 36 hooked 1 60 1100 308 NA
Pansuk et al. NS08 150 400 350 2000 0.0561 2.86 2.57 2 121.1058 hooked 0.8 65 2000 342 NA
2017 [90] NS16 150 400 350 2000 0.0561 2.86 2.57 2 120.3022 hooked 1.6 65 2000 533 NA
Kim et al. 21FB 260 400 340 3120 0.0172 4.00 3.71 10 21 hooked 0.75 60 1336 118 NA
2017 [91] 60FB 260 400 340 3120 0.0172 4.00 3.71 10 56 hooked 0.75 60 1336 208 NA
Sharma, 1986 [52] S3F 150 300 276 1600 0.0146 1.81 1.78 10 48.6 hooked 0.96 85 1100 124 NA
Narayanan & Darwish D2 100 400 345 1000 0.0355 0.70 0.43 5 52.89 crimped 0.25 100 2000 351 NA
1988 D3 100 400 345 1000 0.0355 0.70 0.43 5 51.004 crimped 0.5 100 2000 326 NA
[92] D4 100 400 345 1000 0.0355 0.70 0.43 5 47.56 crimped 0.75 100 2000 362 NA
D5 100 400 345 1000 0.0355 0.70 0.43 5 55.924 crimped 1 100 2000 397 NA
D6 100 400 345 1000 0.0355 0.70 0.43 5 54.94 crimped 1.25 100 2000 394 NA
D7 100 400 345 1000 0.0355 0.46 0.20 5 50.512 crimped 1 100 2000 455 NA
D8 100 400 345 1000 0.0355 0.58 0.32 5 47.806 crimped 1 100 2000 405 NA
D9 100 400 345 1000 0.0355 0.81 0.55 5 45.592 crimped 1 100 2000 343 NA
D10 100 400 345 1000 0.0355 0.93 0.67 5 49.118 crimped 1 100 2000 345 NA
D11 100 400 345 1000 0.0355 0.70 0.43 5 30.996 crimped 1 100 2000 295 NA
D12 100 400 345 1000 0.0355 0.70 0.43 5 34.686 crimped 1 100 2000 334 NA
Li, Ward & Hamza M1 63.5 127 102 612 0.0220 3.00 2.88 2.36 53 crimped 1 29 1000 17 NA
1992 M2 127 228 204 1224 0.0221 3.00 2.88 2.36 53 crimped 1 29 1000 51 NA
[93] M3 63.5 127 102 612 0.0220 3.00 2.88 2.36 50.2 crimped 2 29 1000 21 NA
M4 127 228 204 1224 0.0221 3.00 2.88 2.36 50.2 crimped 2 29 1000 67 NA
M5 63.5 127 102 612 0.0220 3.00 2.88 2.36 62.6 crimped 1 29 1000 18 NA
M6 127 228 204 1224 0.0221 3.00 2.88 2.36 62.6 crimped 1 29 1000 62 NA
M8 63.5 127 102 204 0.0220 1.00 0.88 2.36 62.6 crimped 1 29 1000 51 NA
M9 63.5 127 102 306 0.0220 1.50 1.38 2.36 62.6 crimped 1 29 1000 33 NA
M10 63.5 127 102 357 0.0220 1.75 1.63 2.36 62.6 crimped 1 29 1000 30 NA
M11 63.5 127 102 408 0.0220 2.00 1.88 2.36 62.6 crimped 1 29 1000 26 NA
M12 63.5 127 102 459 0.0220 2.25 2.13 2.36 62.6 crimped 1 29 1000 23 NA
M13 63.5 127 102 510 0.0220 2.50 2.38 2.36 62.6 crimped 1 29 1000 21 NA
M14 63.5 127 102 561 0.0220 2.75 2.63 2.36 62.6 crimped 1 29 1000 18 NA
M15 63.5 127 102 612 0.0110 3.00 2.88 2.36 62.6 crimped 1 29 1000 13 NA
M16 63.5 127 102 612 0.0330 3.00 2.88 2.36 62.6 crimped 1 29 1000 18 NA
M17 63.5 127 102 612 0.0330 3.00 2.88 2.36 54.1 crimped 1 57 1000 25 NA
C1 127 228 204 1224 0.0221 3.00 2.88 9 22.7 hooked 1 60 1172 79 NA
C2 63.5 127 102 612 0.0220 3.00 2.88 9 22.7 hooked 1 60 1172 21 NA
C3 63.5 127 102 612 0.0110 3.00 2.88 9 22.7 hooked 1 60 1172 16 NA
C4 63.5 127 102 306 0.0110 1.50 1.38 9 22.7 hooked 1 60 1172 37 NA
C5 127 228 204 1224 0.0221 3.00 2.88 9 26 hooked 1 100 1172 79 NA
C6 63.5 127 102 612 0.0220 3.00 2.88 9 26 hooked 1 100 1172 23 NA
Swamy et al. 1TLF-1 55 300 265 3000 0.0431 2.00 1.62 14 36.49 crimped 1 100 1570 81 S
1993 1TLF-2 55 300 265 3000 0.0431 3.43 3.05 14 41.902 crimped 1 100 1570 59 S
[94] 1TLF-3 55 300 265 3000 0.0431 4.91 4.53 14 36.9 crimped 1 100 1570 43 S
2TLF-1 55 300 265 3000 0.0276 2.00 1.62 14 38.704 crimped 1 100 1570 72 S
2TLF-2 55 300 265 3000 0.0276 3.43 3.05 14 33.948 crimped 1 100 1570 46 S
2TLF-3 55 300 265 3000 0.0276 4.91 4.53 14 36.818 crimped 1 100 1570 43 S-FL
3TLF-1 55 300 265 3000 0.0155 2.00 1.62 14 36.572 crimped 1 100 1570 68 S-FL
Adebar et al. FC2 150 610 560 1500 0.0214 1.63 1.34 14 54.1 hooked 0.75 60 1200 278 S
1997 FC3 150 610 560 1500 0.0214 1.63 1.34 14 49.9 hooked 1.5 60 1200 326 S
[127] FC8 150 610 560 1500 0.0214 1.63 1.34 14 54.8 hooked 0.4 60 1200 206 S
FC9 150 610 560 1500 0.0214 1.63 1.34 14 56.5 hooked 0.6 60 1200 234 S
FC10 150 610 560 1500 0.0214 1.63 1.34 14 46.9 hooked 0.4 60 1200 249 S
FC11 150 610 560 1500 0.0214 1.63 1.34 14 40.8 hooked 0.6 60 1200 239 S
Cho & Kim F30-0.5-13 120 200 167.5 720 0.0132 1.43 1.25 13 25.7 hooked 0.5 60 1100 61 S
2003 F30-1.0-13 120 200 167.5 720 0.0132 1.43 1.25 13 25.3 hooked 1 60 1100 80 S-FL
[95] F30-1.5-13 120 200 167.5 720 0.0132 1.43 1.25 13 23.9 hooked 1.5 60 1100 85 S-FL
F50-0.5-13 120 200 167.5 720 0.0132 1.43 1.25 13 57.8 hooked 0.5 60 1100 95 S-FL
F60-1.0-13 120 200 167.5 720 0.0132 1.43 1.25 13 61.5 hooked 1 60 1100 103 S-FL
F70-0.5-19 120 200 167.5 720 0.0282 1.43 1.25 13 70.5 hooked 0.5 60 1100 179 S
F70-1.0-19 120 200 167.5 720 0.0282 1.43 1.25 13 67.3 hooked 1 60 1100 170 S
F70-1.5-19 120 200 167.5 720 0.0282 1.43 1.25 13 67.3 hooked 1.5 60 1100 187 S
F80-0.5-16 120 200 167.5 720 0.0200 1.43 1.25 13 82.4 hooked 0.5 60 1100 158 S
F80-1.0-16 120 200 167.5 720 0.0200 1.43 1.25 13 81.1 hooked 1 60 1100 163 S-FL
F80-0.5-19 120 200 167.5 720 0.0282 1.43 1.25 13 86.1 hooked 0.5 60 1100 154 S
F80-1.0-19 120 200 167.5 720 0.0282 1.43 1.25 13 89.4 hooked 1 60 1100 171 S-FL
Greenough & Nehdi S-HE-50-0.5 200 300 265 2000 0.0178 3.02 2.64 10 47.9 hooked 0.5 50 1100 92 S
2008 S-HE-50-0.75 200 300 265 2000 0.0178 3.02 2.64 10 38 hooked 0.75 50 1100 107 S
[50] S-HE-50-1.0 200 300 265 2000 0.0178 3.02 2.64 10 42.2 hooked 1 50 1100 150 S
S-FE-50-0.5 200 300 265 2000 0.0178 3.02 2.64 10 45.4 flat end 0.5 50 1100 117 S
S-FE-50-0.75 200 300 265 2000 0.0178 3.02 2.64 10 44.4 flat end 0.75 50 1100 146 S
S-FE-50-1.0 200 300 265 2000 0.0178 3.02 2.64 10 40.3 flat end 1 50 1100 148 S
S-FE-30-0.5 200 300 265 2000 0.0178 3.02 2.64 10 53.7 flat end 0.5 43 1100 108 S
S-FE-30-0.75 200 300 265 2000 0.0178 3.02 2.64 10 46 flat end 0.75 43 1100 124 S
S-FE-30-1.0 200 300 265 2000 0.0178 3.02 2.64 10 42.2 flat end 1 43 1100 153 S
Kang et al. FNB-50-1 200 355 310 3560 0.0113 2.55 1.98 9.5 39.8 hooked 0.375 80 1100 134 S
2012 [96] FNB-50-3 200 355 285 3560 0.0333 2.77 2.16 9.5 39.8 hooked 0.375 80 1100 223 S
Dupont & Vandewalle 2 200 300 260 1800 0.0355 3.46 3.08 14 46.4 hooked 0.25 65 1100 111 S
2003 3 200 300 260 1800 0.0355 3.46 3.08 14 43.2 hooked 0.5 65 1100 121 S
[97] 4 200 300 260 1800 0.0355 3.46 3.08 14 47.6 hooked 0.75 65 1100 156 S
14 200 300 260 2300 0.0181 1.54 1.15 14 40.7 hooked 0.25 65 1100 282 S
15 200 300 260 2300 0.0181 1.54 1.15 14 42.4 hooked 0.75 65 1100 302 S
17 200 300 262 2300 0.0115 2.48 2.10 14 39.1 hooked 0.25 65 1100 84 S
18 200 300 262 2300 0.0115 2.48 2.10 14 38.6 hooked 0.75 65 1100 110 S
20 200 300 260 2300 0.0181 2.50 2.12 14 39.1 hooked 0.25 65 1100 110 S
21 200 300 260 2300 0.0181 2.50 2.12 14 38.6 hooked 0.75 65 1100 146 S
23 200 300 260 2300 0.0181 4.04 3.65 14 40.7 hooked 0.25 65 1100 84 S
24 200 300 260 2300 0.0181 4.04 3.65 14 42.4 hooked 0.75 65 1100 119 S
26 200 300 262 2300 0.0115 2.48 2.10 14 26.5 hooked 0.25 45 1100 102 S
27 200 300 262 2300 0.0115 2.48 2.10 14 27.2 hooked 0.75 45 1100 122 S
29 200 300 260 2300 0.0181 2.50 2.12 14 26.5 hooked 0.25 45 1100 102 S
30 200 300 260 2300 0.0181 2.50 2.12 14 27.2 hooked 0.75 45 1100 122 S
31 200 300 262 2300 0.0115 2.48 2.10 14 47.4 hooked 0.5 65 1100 132 S
32 200 300 260 2300 0.0181 2.50 2.12 14 46.8 hooked 0.5 65 1100 159 S
33 200 300 262 2300 0.0115 2.48 2.10 14 45.4 hooked 0.5 80 1100 149 S
41 200 350 305 3250 0.0103 2.46 2.13 14 34.4 hooked 0.57 80 1100 165 S
43 200 350 305 3250 0.0103 2.46 2.13 14 30.2 hooked 0.38 80 1100 165 S-FL
Swamy & Bahia B52 175 250 210 2800 0.0401 4.50 4.26 10 36.408 crimped 0.4 100 1050 81 DT
1985 B53 175 250 210 2800 0.0401 4.50 4.26 10 38.376 crimped 0.8 100 1050 116 S + SC
[99] B54 175 250 210 2800 0.0401 4.50 4.26 10 40.836 crimped 1.2 100 1050 117 S + SC
B55 175 250 210 2800 0.0310 4.50 4.26 10 39.114 crimped 0.8 100 1050 120 SC + FL
B59 175 250 210 2800 0.0401 4.50 4.26 10 38.54 crimped 0.8 100 1050 71 DT
Batson et al. H1 101 152 127 1828.8 0.0309 4.80 4.01 2 33.22 flat 0.22 102 1100 28 S-FL
1972 H2 101 152 127 1828.8 0.0309 4.80 4.01 2 33.22 flat 0.22 102 1100 28 S-FL
[100] H3 101 152 127 1828.8 0.0309 4.80 4.01 2 33.22 flat 0.22 102 1100 27 S-FL
I1 101 152 127 1828.8 0.0309 4.80 4.01 2 33.22 crimped 0.22 46 1100 28 S-FL
I2 101 152 127 1828.8 0.0309 4.80 4.01 2 33.22 crimped 0.22 46 1100 28 S-FL
I3 101 152 127 1828.8 0.0309 4.80 4.01 2 33.22 crimped 0.22 46 1100 27 S-FL
A2 101 152 127 1828.8 0.0309 4.80 4.01 2 33.22 round 0.22 102 1100 27 S-FL
B3 101 152 127 1828.8 0.0309 4.40 3.61 2 33.22 round 0.22 102 1100 32 S
C1 101 152 127 1828.8 0.0309 4.20 3.41 2 33.22 round 0.22 102 1100 32 S
C2 101 152 127 1828.8 0.0309 4.20 3.41 2 33.22 round 0.22 102 1100 28 S
C3 101 152 127 1828.8 0.0309 4.20 3.41 2 33.22 round 0.22 102 1100 25 S
D2 101 152 127 1828.8 0.0309 4.30 3.51 2 33.22 round 0.22 102 1100 30 S
D3 101 152 127 1828.8 0.0309 4.30 3.51 2 33.22 round 0.22 102 1100 28 S
E3 101 152 127 1828.8 0.0309 4.20 3.41 2 40.21 round 0.44 102 1100 33 S-FL
F1 101 152 127 1828.8 0.0309 4.00 3.21 2 40.21 round 0.44 102 1100 33 S
F2 101 152 127 1828.8 0.0309 4.00 3.21 2 40.21 round 0.44 102 1100 31 S
F3 101 152 127 1828.8 0.0309 4.00 3.21 2 40.21 round 0.44 102 1100 33 S
G1 101 152 127 1828.8 0.0309 4.40 3.61 2 33.22 round 0.22 102 1100 29 S
G3 101 152 127 1828.8 0.0309 4.40 3.61 2 33.22 round 0.22 102 1100 27 S
L1 101 152 127 1828.8 0.0309 4.00 3.21 2 33.22 crimped 0.22 62 1100 30 S
L2 101 152 127 1828.8 0.0309 4.00 3.21 2 33.22 crimped 0.22 62 1100 31 S
L3 101 152 127 1828.8 0.0309 4.00 3.21 2 33.22 crimped 0.22 62 1100 33 S
M1 101 152 127 1828.8 0.0309 4.60 3.81 2 33.22 crimped 0.22 62 1100 26 S
M2 101 152 127 1828.8 0.0309 4.40 3.61 2 33.22 crimped 0.22 62 1100 27 S
M3 101 152 127 1828.8 0.0309 4.40 3.61 2 33.22 crimped 0.22 62 1100 26 S
N1 101 152 127 1828.8 0.0309 5.00 4.21 2 33.22 crimped 0.22 62 1100 25 S
N2 101 152 127 1828.8 0.0309 4.80 4.01 2 33.22 crimped 0.22 62 1100 23 S
O1 101 152 127 1828.8 0.0309 4.00 3.21 2 40.21 crimped 0.44 62 1100 32 S
P1 101 152 127 1828.8 0.0309 4.20 3.41 2 40.21 crimped 0.44 62 1100 34 S
P2 101 152 127 1828.8 0.0309 4.20 3.41 2 40.21 crimped 0.44 62 1100 30 S
P3 101 152 127 1828.8 0.0309 4.20 3.41 2 40.21 crimped 0.44 62 1100 33 S
R1 101 152 127 1828.8 0.0309 3.20 2.41 2 39.72 crimped 0.88 62 1100 37 S
R2 101 152 127 1828.8 0.0309 3.40 2.61 2 39.72 crimped 0.88 62 1100 35 S
S1 101 152 127 1828.8 0.0309 3.40 2.61 2 39.72 crimped 0.88 62 1100 33 S
S2 101 152 127 1828.8 0.0309 3.40 2.61 2 39.72 crimped 0.88 62 1100 42 S
S3 101 152 127 1828.8 0.0309 3.40 2.61 2 39.72 crimped 0.88 62 1100 40 S
U1 101 152 127 1828.8 0.0309 2.80 2.01 2 39.79 crimped 1.76 62 1100 57 S-FL
V2 101 152 127 1828.8 0.0309 1.80 1.01 2 39.79 crimped 1.76 62 1100 77 S
W1 101 152 127 1828.8 0.0309 1.20 0.41 2 39.79 crimped 1.76 62 1100 145 S
W2 101 152 127 1828.8 0.0309 1.20 0.41 2 39.79 crimped 1.76 62 1100 140 S
X1 101 152 127 1828.8 0.0309 4.80 4.01 2 33.22 crimped 0.22 62 1100 25 S
X2 101 152 127 1828.8 0.0309 4.80 4.01 2 33.22 crimped 0.22 62 1100 24 S
X3 101 152 127 1828.8 0.0309 4.80 4.01 2 33.22 crimped 0.22 62 1100 26 S
Zhao et al. S0005 150 300 259.5 2100 0.0252 2.00 1.61 20 34.45 mill-cut 0.5 35 700 114 S
2018 S0010 150 300 259.5 2100 0.0252 2.00 1.61 20 36.08 mill-cut 1 35 700 139 S
[101] S0015 150 300 259.5 2100 0.0252 2.00 1.61 20 37.13 mill-cut 1.5 35 700 157 S
S0020 150 300 259.5 2100 0.0252 2.00 1.61 20 35.26 mill-cut 2 35 700 150 S
Jindal C1 100 152.6 127 1524 0.0199 3.60 3.52 2 20.68966 straight mild steel 1 25 4913 21 S
1984 G1 100 152.6 127 762 0.0199 2.00 1.92 2 20.68966 brass-coated high strength steel 1 100 2350 30 S
[102] G2 100 152.6 127 762 0.0199 2.40 2.32 2 20.68966 brass-coated high strength steel 1 100 2350 30 S
H1 100 152.6 127 762 0.0199 2.00 1.92 2 20.68966 brass-coated high strength steel 1 83 2350 40 S
H3 100 152.6 127 1524 0.0199 3.60 3.52 2 20.68966 brass-coated high strength steel 1 83 2350 29 S
H4 100 152.6 127 1524 0.0199 4.80 4.72 2 20.68966 brass-coated high strength steel 1 83 2350 25 S
J1 100 152.6 127 762 0.0199 2.00 1.92 2 20.68966 brass-coated high strength steel 1 63 2350 33 S
Shin, Oh & Ghosh 2-0.5-0.5 100 200 175 700 0.0359 2.00 1.94 13 80 smooth straight 0.5 100 1856 120 S
1994 2-0.5-1 100 200 175 700 0.0359 2.00 1.94 13 80 smooth straight 1 100 1856 130 S
[103] 3-0.5-0.5 100 200 175 1050 0.0359 3.00 2.94 13 80 smooth straight 0.5 100 1856 56 S
3-0.5-1 100 200 175 1050 0.0359 3.00 2.94 13 80 smooth straight 1 100 1856 72 S
4.5-0.5-0.5 100 200 175 1575 0.0359 4.50 4.44 13 80 smooth straight 0.5 100 1856 49 S
4.5-0.5-1 100 200 175 1575 0.0359 4.50 4.44 13 80 smooth straight 1 100 1856 61 S
Imam, Vandewalle & Mortelmans B16 200 350 300 3250 0.0308 1.75 1.42 10 109.5 hooked 0.75 75 2000 531 S-FL
1994 B6 200 350 300 3250 0.0308 2.50 2.17 10 110 hooked 0.75 75 2000 287 SC
[104] B7 200 350 300 3250 0.0308 3.50 3.17 10 111.5 hooked 0.75 75 2000 212 DT
B12 200 350 300 3250 0.0308 4.50 4.17 10 110.8 hooked 0.75 75 2000 215 DT
Huang et al. 2005 [106] PB14 150 300 255 2000 0.0493 1.96 1.57 20 55.842 chopped with butt ends 1 47 700 254 SC
Kwak, Suh & Hsu IAS1 152.4 304.8 282.575 1524 0.0199 2.50 2.14 9.525 33.06897 hooked 1 100 1100 137 S
1991 IAS2 152.4 304.8 282.575 1524 0.0199 2.50 2.14 9.525 33.24138 hooked 1 100 1100 146 S
[107] IBS1 152.4 304.8 282.575 1524 0.0199 2.50 2.14 9.525 33.03448 hooked 2 100 1100 134 S
IBS2 152.4 304.8 282.575 1524 0.0199 2.50 2.14 9.525 34.37931 hooked 2 100 1100 139 S
Roberts & Ho F3.0B1 50 200 170 820 0.0237 2.41 2.12 10 32.062 brass-coated high strength steel 3 100 1100 33 S-FL
1982 F4.5B1 50 200 170 820 0.0237 2.41 2.12 10 39.278 brass-coated high strength steel 4.5 100 1100 36 S-FL
[108] F3.0B2 50 200 170 552 0.0237 1.62 1.33 10 32.062 brass-coated high strength steel 3 100 1100 51 S-FL
F4.5B2 50 200 170 552 0.0237 1.62 1.33 10 39.278 brass-coated high strength steel 4.5 100 1100 54 S-FL
F3.0B3 50 200 170 274 0.0237 0.81 0.51 10 32.062 brass-coated high strength steel 3 100 1100 81 S
F4.5B3 50 200 170 274 0.0237 0.81 0.51 10 39.278 brass-coated high strength steel 4.5 100 1100 108 S-FL
Hwang et al. S-35-0.5 100 200 165.5 1500 0.0343 3.02 2.96 10 39.4 hooked 0.5 60 1200 31 DT
2013 S-35-1.0 100 200 165.5 1500 0.0343 3.02 2.96 10 39.2 hooked 1 60 1200 52 DT
[42,109] S-35-1.5 100 200 165.5 1500 0.0343 3.02 2.96 10 40 hooked 1.5 60 1200 54 DT
S-35-2.0 100 200 165.5 1500 0.0343 3.02 2.96 10 35.5 hooked 2 60 1200 48 DT
HS-50-1.0 100 200 159 1500 0.0478 3.14 3.08 10 58 hooked 1 60 1200 74 DT
HS-70-00.5 100 200 159 1500 0.0478 3.14 3.08 10 80.1 hooked 0.5 60 1200 73 DT
HS-70-1.0 100 200 159 1500 0.0478 3.14 3.08 10 88 hooked 1 60 1200 82 SC
Spinella et al. A10 150 250 219 2300 0.0191 2.80 2.75 10 80.04 hooked 1 55 1100 115 S
2012 [110] B10 150 250 219 2300 0.0191 2.00 1.95 10 80.04 hooked 1 55 1100 142 S
Chalioris & Sfiri, 2011 [111] MF40 100 300 275 1450 0.0055 2.00 1.96 9.5 28.4 hooked 0.5 75 1100 43 S
Cohen & Aoude, 2012 [112] M15-0.5% 125 250 212 2400 0.0152 3.77 3.07 10 59.4 hooked 0.5 55 1100 44 S
Aoude & Cohen M15-0.5%H 125 250 212 2400 0.0152 3.77 3.07 10 49.6 hooked 0.5 80 1100 46 S
2014 M20-0.75% 125 250 210 2400 0.0228 3.81 3.10 10 49.7 hooked 0.75 55 1100 45 S
[113] M20-1.0% 125 250 210 2400 0.0228 3.81 3.10 10 51.5 hooked 1 55 1100 59 S
M20-1.0%A 125 250 210 2400 0.0228 3.81 3.10 12 54.5 hooked 1 55 1100 60 S
Qissab & Salman G1B2 100 170 140 1100 0.0112 1.07 0.50 12.5 36.08 hooked 0.5 63 1100 73 S
2018 G1B3 100 170 140 1100 0.0112 1.07 0.50 12.5 36.9 hooked 0.75 63 1100 87 S
[114] G1B5 100 170 140 1100 0.0112 2.50 1.93 12.5 36.08 hooked 0.5 63 1100 41 S
G1B6 100 170 140 1100 0.0112 2.50 1.93 12.5 36.9 hooked 0.75 63 1100 51 S-FL
G2B2 100 180 150 1100 0.0105 1.00 0.47 12.5 36.08 hooked 0.5 63 1100 107 S-FL
G2B3 100 180 150 1100 0.0105 1.00 0.47 12.5 36.9 hooked 0.75 63 1100 126 S-FL
G2B5 100 180 150 1100 0.0105 2.33 1.80 12.5 36.08 hooked 0.5 63 1100 45 S
G2B6 100 180 150 1100 0.0105 2.33 1.80 12.5 36.9 hooked 0.75 63 1100 47 S
G3B1 100 200 170 1100 0.0092 2.41 1.94 12.5 36.08 hooked 0.5 63 1100 42 S
G3B2 100 200 170 1100 0.0092 1.29 0.82 12.5 36.08 hooked 0.5 63 1100 22 S
G3B3 100 275 245 1100 0.0064 0.90 0.57 12.5 36.08 hooked 0.5 63 1100 51 S
Furlan & de Hanai P3B 100 100 85.25 900 0.0166 3.52 3.40 10 54.8 crimped 1 127 1100 20 ST
1997 P4B 100 100 85.25 900 0.0166 3.52 3.40 10 50 crimped 2 127 1100 22 S-FL
[115] P5A 100 100 85.25 900 0.0166 3.52 3.40 10 49.3 crimped 1 191 1100 22 ST
P5B 100 100 85.25 900 0.0166 3.52 3.40 10 49.3 crimped 1 191 1100 19 ST
P6B 100 100 85.25 900 0.0166 3.52 3.40 10 53.7 crimped 2 191 1100 20 ST
P7A 100 100 85.25 900 0.0166 3.52 3.40 10 53.5 crimped 0.5 191 1100 23 ST
P7B 100 100 85.25 900 0.0166 3.52 3.40 10 53.5 crimped 0.5 191 1100 18 ST
Dancygier & Savir H3-S0-1_35 200 325 273 2000 0.0348 2.75 2.71 22 110.9 hooked 0.75 64 1000 202 S
2011 [116] H3-S0-1_60 200 325 273 2000 0.0348 2.75 2.71 22 109.2 hooked 0.75 67 1000 211 S
Krassowska & Kosior-Kazberuk A-IV-WS1.0 80 180 165 987 0.0171 2.99 2.83 4 41.23 hooked 1 50 800 33 S
2018 [117] A-IV-WS1.5 80 180 165 987 0.0171 2.99 2.83 4 39.87 hooked 1.5 50 800 41 S
Yoo & Yang S-F0.75 300 500 420 3700 0.0322 3.21 3.19 20 62.3 hooked 0.75 65 1400 417 S
2018 M-F0.75 450 750 648 5220 0.0327 3.26 3.24 20 62.3 hooked 0.75 65 1400 815 S
[118] L-F0.75 600 1000 887 6780 0.0343 3.26 3.25 20 62.3 hooked 0.75 65 1400 1481 S
Gali & Subramaniam SFRC_0.5_1 125 250 222 1200 0.0145 1.80 1.76 10 30 hooked 0.5 80 1225 79 S
2017 [119] SFRC_0.5_2 125 250 222 1200 0.0145 1.80 1.76 10 30 hooked 0.5 80 1225 86 S
Zamanzadeh et al. S_W70 70 300 270 1040 0.0332 2.56 2.52 10 50 recycled 0.769 58 1100 82 S
2015 S_W110 110 300 270 1040 0.0212 2.56 2.52 10 50 recycled 0.769 58 1100 96 S
[120] S_W150 150 300 270 1040 0.0155 2.56 2.52 10 50 recycled 0.769 58 1100 110 S
Shoaib, Lubell & Bindiganavile N31 310 308 258 1548 0.0250 3.00 2.42 10 23 hooked 1 55 1100 212 S
2014 [121] N32 310 308 240 1440 0.0403 3.00 2.38 10 41 hooked 1 55 1100 282 S
Shoaib, 2012 [122] H31 310 308 258 1548 0.0250 3.00 2.42 10 41 hooked 1 55 1100 279 S-FL
H32 310 308 240 1440 0.0403 3.00 2.38 10 80 hooked 1 55 1100 459 S-FL
N61 300 600 531 3186 0.0188 3.00 2.72 10 23 hooked 1 55 1100 255 S
N62 300 600 523 3138 0.0255 3.00 2.71 10 23 hooked 1 55 1100 245 S
H62 300 600 523 3138 0.0255 3.00 2.71 10 41 hooked 1 55 1100 447 S
N10-1 300 1000 923 5538 0.0144 3.00 2.84 10 41 hooked 1 55 1100 500 S
N10-2 300 1000 920 5520 0.0203 3.00 2.84 10 41 hooked 1 55 1100 505 S
H10-1 300 1000 923 5538 0.0144 3.00 2.84 10 80 hooked 1 55 1100 653 S
H10-2 300 1000 920 5520 0.0203 3.00 2.84 10 80 hooked 1 55 1100 651 S
Bae, Choi & Choi U-0-f-3.5 200 350 300 2300 0.0360 3.50 3.17 2 215 hooked 2 55 1100 374 S
2014 [123] U-0-f-2.0 200 350 300 1200 0.0360 2.00 1.67 2 199 hooked 2 55 1100 587 S
Abdul-Zaher et al. B2 120 300 266 1100 0.0126 1.13 1.09 20 31.9 corrugated 0.2 50 834 127 S
2016 B3 120 300 266 1100 0.0126 1.13 1.09 20 31.9 corrugated 0.4 50 834 133 S
[124] B4 120 300 266 1100 0.0126 1.13 1.09 20 31.9 corrugated 0.6 50 834 146 S

Funding

This research was funded by the program of Poligrants 2017 and Poligrants 2019 from Universidad San Francisco de Quito, and the APC was partially funded by Delft University of Technology.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

List of Notations

a shear span, distance between left of loading plate and left of support
av clear shear span, distance between face of loading plate and face of support
bw web width
c height of compression zone
d effective depth
da maximum aggregate size
df fiber diameter
dv shear depth
e factor to take effect of shear span to depth ratio into account
fc specified concrete compressive strength
fc,cube average measured concrete cube compressive strength
fc,cyl average measured concrete cylinder compressive strength
fcfIk,L2f characteristic value of post-cracking flexural strength for a deflection of 3.5 mm
fck characteristic concrete cylinder compressive strength
fctk characteristic tensile strength of concrete
fctR,uf uniaxial tensile strength of SFRC
fcuf cube compressive strength of fiber reinforced concrete
fFtuk characteristic value of post-cracking strength for ultimate crack opening
fRk,4 characteristic residual flexural strength for the ultimate limit state at a CMOD of 3.5 mm
fspfc splitting tensile strength of fiber reinforced concrete
ft specified tensile strength of concrete mix
ftenf tensile strength of the fibers
fy yield strength of the reinforcement steel
h height of cross-section
hf height of flange
k size effect factor
kf factor that considers the contribution of flanges in T-sections (= 1 for rectangular sections)
kFf factor that considers the orientation of the fibers
kGf size factor, which accounts for the fact that fibers are better distributed in larger elements
lf fiber length
lspan span length
ltot total specimen length
n parameter for effect of geometry of flanged sections
rf fiber radius
sx crack spacing
sxe equivalent crack spacing factor
vmax shear stress at maximum sectional shear Vmax
wlim limiting crack width
wmax maximum crack width permitted by the code
wu ultimate crack width, i.e., the value attained at the ULS for resistance to combined stresses on the outer fiber under the moment exerted in this section
vb shear strength attributed to fibers
z internal lever arm
Actf effective area bw × d, with d limited to 1.5 m
Af cross-sectional area of the fiber
As area of longitudinal tension reinforcement
Avf shear area over which fibers contribute
B failure of bond between concrete and longitudinal reinforcement
CRd,c calibration factor for the design shear capacity
DT diagonal tension failure
Ef modulus of elasticity of the fibers
Es modulus of elasticity of reinforcement steel
F fiber factor
Gm matrix shear modulus
K orientation coefficient
M sectional moment
NA the failure mode of the individual experiment is not given, but the text mentions that all experiments resulted in a shear failure
Pmax maximum load in experiment
Rg geometry factor from Yakoub [64]: 0.83 for crimped fibers, 1.00 for hooked fibers, and 0.91 for round fibers
S fiber spacing
S shear failure
SC shear-compression failure
S-FL shear-flexure failure
ST shear-tension failure
V sectional shear force
Vc concrete contribution to shear capacity
Vcd design value of concrete contribution to shear capacity
Vf fiber volume fraction
Vfd design value of fiber contribution to shear capacity
Vmax maximum sectional shear in experiment caused by applied load only (without self-weight)
Vmin lower bound to the shear capacity
Vpred predicted shear capacity
VRd design shear capacity
VRd,c design shear capacity of the concrete contribution
VRd,cf design shear capacity of fiber reinforced concrete
VRd,cf design shear capacity of the fiber contribution, notation used in German guideline
VRd,c,min lower bound to the design shear capacity of the concrete contribution
VRd,f design shear capacity of the steel fiber contribution
Vu ultimate shear capacity
Vutot experimental shear capacity, including contribution from self-weight
Y failure mode includes yielding of longitudinal reinforcement
αcf factor that accounts for the long term effects
β fiber and matrix property factor developed by Cox [56]
γc concrete material factor
γcf concrete material factor, notation used in French guideline
γctf partial factor for tensile strength of fiber reinforced concrete
γE additional safety factor
εel elastic strain
εlim limiting strain
εmax maximum strain
εu ultimate strain at the ULS for bending combined with axial forces on the outer fiber under the moment exerted in the section
εx strain at mid-depth of the cross-section
ηo fiber orientation factor = 0.41 for fibers with a 3D random orientation, as derived by Romualdi and Mandel [151], but can be larger for members with thin webs
ηl a length factor used to account for the variability in the fiber embedment length across the cracking plane
θ angle of compression strut
ξ size effect factor from Bažant and Kim [62]
ρ reinforcement ratio
ρf fiber bond factor: 0.5 for straight fibers, 0.75 for crimped fibers, 1 for hooked fibers
σRd,f residual tensile strength of fiber reinforced cross-section
σf(ε) experimentally determined relation between stress in fiber concrete and strain
σf(w) experimentally determined relation between post-cracking stress and crack width w
σtu average stress at the ultimate limit state in the equivalent tensile stress block used for bending moment analysis of SFRC
τ bond strength between fibers and matrix
τfd design value of bond strength between fibers and matrix
ψ size effect factor from Imam et al. [63]
ω reinforcement ratio that includes the effect of fibers

References

  • 1.ACI-ASCE Committee 326 Shear and Diagonal Tension: Part 2—Beams and Frames. J. Am. Concr. Inst. 1962;59:277–333. [Google Scholar]
  • 2.Yang Y., Walraven J., den Uijl J.A. Shear Behavior of Reinforced Concrete Beams without Transverse Reinforcement Based on Critical Shear Displacement. J. Struct. Eng. 2017;143:04016146. doi: 10.1061/(ASCE)ST.1943-541X.0001608. [DOI] [Google Scholar]
  • 3.Lantsoght E.O.L., van der Veen C., Walraven J.C. Shear in One-way Slabs under a Concentrated Load close to the support. ACI Struct. J. 2013;110:275–284. [Google Scholar]
  • 4.Singh B., Jain K. An appraisal of steel fibers as minimum shear reinforcement in concrete beams (with Appendix) ACI Struct. J. 2014:111. doi: 10.14359/51686969. [DOI] [Google Scholar]
  • 5.Katzer J. Steel fibers and steel fiber reinforced concrete in civil engineering. Pac. J. Sci. Technol. 2006;7:53–58. [Google Scholar]
  • 6.ACI Committee 318 . Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary. American Concrete Institute; Farmington Hills, MI, USA: 2014. p. 503. [Google Scholar]
  • 7.CEN, Eurocode 2: Design of Concrete Structures—Part 1-1 General Rules and Rules for Buildings. Comité Européen de Normalisation; Brussels, Belgium: 2005. p. 229. NEN-EN 1992-1-1:2005. [Google Scholar]
  • 8.Association Française de Génie Civil . Bétons Fibrés à Ultra-Hautes Performances: Recommandations Provisoires. Association Française de Génie Civil; Paris, France: 2012. Service d’études techniques des routes et autoroutes; p. 98. [Google Scholar]
  • 9.Association Française de Génie Civil . Bétons Fibrés à Ultra-Hautes Performances: Recommandations Provisoires—Annexes. Association Française de Génie Civil; Paris, France: 2012. Service d’études techniques des routes et autoroutes; p. 55. [Google Scholar]
  • 10.Association Française de Génie Civil . Bétons Fibrés à Ultra-Hautes Performances: Recommandations. Association Française de Génie Civil; Paris, France: 2013. p. 359. [Google Scholar]
  • 11.DAfStB-Richtlinie Stahlfaserbeton. DAfStB; Berlin, Germany: 2012. p. 47. [Google Scholar]
  • 12.CNR—Advisory Committee on Technical Recommendations for Construction . Guide for the Design and Construction of Fiber-Reinforced Concrete Structures. CNR; Rome, Italy: 2007. p. 57. CNR-DT 204/2006. [Google Scholar]
  • 13.Minelli F., Vecchio F.J. Compression Field Modeling of Fiber-Reinforced Concrete Members Under Shear Loading. ACI Struct. J. 2006:103. doi: 10.14359/15182. [DOI] [Google Scholar]
  • 14.Zhang F., Ding Y., Xu J., Zhang Y., Zhu W., Shi Y. Shear strength prediction for steel fiber reinforced concrete beams without stirrups. Eng. Struct. 2016;127:101–116. doi: 10.1016/j.engstruct.2016.08.012. [DOI] [Google Scholar]
  • 15.Vecchio F.J., Collins M.P. The Modified Compression-Field Theory for Reinforced-Concrete Elements Subjected to Shear. J. Am. Concr. Inst. 1986;83:219–231. [Google Scholar]
  • 16.Lee D.H., Han S.-J., Kim K.S., LaFave J.M. Shear capacity of steel fiber-reinforced concrete beams. Struct. Concr. 2017;18:278–291. doi: 10.1002/suco.201600104. [DOI] [Google Scholar]
  • 17.Lee D.H., Kim K.S., Han S.J., Zhang D., Kim J. Dual potential capacity model for reinforced concrete short and deep beams subjected to shear. Struct. Concr. 2018;19:76–85. doi: 10.1002/suco.201700202. [DOI] [Google Scholar]
  • 18.Lantsoght E.O.L. How do steel fibers improve the shear capacity of reinforced concrete beams without stirrups? In review. [DOI] [PMC free article] [PubMed]
  • 19.Zararis P.D., Zararis I.P. Shear Strength of Reinforced Concrete Slender Beams with or without Axial Forces-A Generalized Theory. ACI Struct. J. 2009;106:782–789. [Google Scholar]
  • 20.Walraven J.C. Fundamental analysis of aggregate interlock. J. Struct. Div. ASCE. 1981;107:2245–2270. [Google Scholar]
  • 21.Vintzileou E. Shear transfer by dowel action and friction as related to size effects. CEB Bull. 1997;237:53–77. [Google Scholar]
  • 22.Gastebled O.J., May I.M. Fracture mechanics model applied to shear failure of reinforced concrete beams without stirrups. ACI Struct. J. 2001;98:184–190. [Google Scholar]
  • 23.Dinh H.H., Parra-Montesinos G.J., Wight J.K. Shear Strength Model for Steel Fiber Reinforced Concrete Beams without Stirrup Reinforcement. J. Struct. Eng. 2011;137:1039–1051. doi: 10.1061/(ASCE)ST.1943-541X.0000362. [DOI] [Google Scholar]
  • 24.Heek P., Look K., Minelli F., Mark P., Plizzari G. Datenbank für querkraftbeanspruchte Stahlfaserbetonbauteile. Beton-Und Stahlbetonbau. 2017;112:144–154. doi: 10.1002/best.201600075. [DOI] [Google Scholar]
  • 25.Adhikary B.B., Mutsuyoshi H. Prediction of shear strength of steel fiber RC beams using neural networks. Constr. Build. Mater. 2006;20:801–811. doi: 10.1016/j.conbuildmat.2005.01.047. [DOI] [Google Scholar]
  • 26.Kara I.F. Empirical modeling of shear strength of steel fiber reinforced concrete beams by gene expression programming. Neural Comput. Appl. 2013;23:823–834. doi: 10.1007/s00521-012-0999-x. [DOI] [Google Scholar]
  • 27.Naik U., Kute S. Span-to-depth ratio effect on shear strength of steel fiber-reinforced high-strength concrete deep beams using ANN model. Int. J. Adv. Struct. Eng. 2013;5:29. doi: 10.1186/2008-6695-5-29. [DOI] [Google Scholar]
  • 28.Sarveghadi M., Gandomi A.H., Bolandi H., Alavi A.H. Development of prediction models for shear strength of SFRCB using a machine learning approach. Neural Comput. Appl. 2015 doi: 10.1007/s00521-015-1997-6. [DOI] [Google Scholar]
  • 29.Hossain K.M.A., Gladson L.R., Anwar M.S. Modeling shear strength of medium- to ultra-high-strength steel fiber-reinforced concrete beams using artificial neural network. Neural Comput. Appl. 2016 doi: 10.1007/s00521-016-2417-2. [DOI] [Google Scholar]
  • 30.Al-Musawi A.A. Determination of shear strength of steel fiber RC beams: Application of data-intelligence models. Front. Struct. Civ. Eng. 2018 doi: 10.1007/s11709-018-0504-4. [DOI] [Google Scholar]
  • 31.Lantsoght E. Database of Experiments on Sfrc Beams without Stirrups Failing in Shear. 1.0 ed. Zenodo; Geneva, Switzerland: 2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Rahal K.N., Collins M.P. Background to the general method of shear design in the 1994 CSA-A23.3 standard. Can. J. Civ. Eng. 1999;26:827–839. doi: 10.1139/l99-050. [DOI] [Google Scholar]
  • 33.Kim K.S., Lee D.H., Hwang J.-H., Kuchma D.A. Shear behavior model for steel fiber-reinforced concrete members without transverse reinforcements. Compos. Part B Eng. 2012;43:2324–2334. doi: 10.1016/j.compositesb.2011.11.064. [DOI] [Google Scholar]
  • 34.Stevens D.J., Liu D. Constitutive Modeling of Fiber Reinforced Concrete. ACI Spec. Publ. 1994;142 doi: 10.14359/3963. [DOI] [Google Scholar]
  • 35.Lee S.-C., Cho J.-Y., Vecchio F.J. Analysis of Steel Fiber-Reinforced Concrete Elements Subjected to Shear. ACI Struct. J. 2016;113 doi: 10.14359/51688474. [DOI] [Google Scholar]
  • 36.Vecchio F.J. Disturbed stress field model for reinforced concrete: Formulation. J. Struct. Eng. ASCE. 2000;126:1070–1077. doi: 10.1061/(ASCE)0733-9445(2000)126:9(1070). [DOI] [Google Scholar]
  • 37.Susetyo J., Gauvreau P., Vecchio F.J. Steel Fiber-Reinforced Concrete Panels in Shear: Analysis and Modeling. ACI Struct. J. 2013;110 doi: 10.14359/51684408. [DOI] [Google Scholar]
  • 38.Matthys S., Soetens T. Engineering Model for SFRC Shear Strength Based on MC2010 MCFT Approach; Proceedings of the fib Symposium 2017; Maastricht, The Netherlands. 12–14 June 2017. [Google Scholar]
  • 39.fib . Model Code 2010: Final Draft. International Federation for Structural Concrete; Lausanne, Switzerland: 2012. p. 676. [Google Scholar]
  • 40.Barros J.A.O., Foster S.J. An integrated approach for predicting the shear capacity of fibre reinforced concrete beams. Eng. Struct. 2018;174:346–357. doi: 10.1016/j.engstruct.2018.07.071. [DOI] [Google Scholar]
  • 41.Foster S.J., Agarwal A., Amin A. Design of steel fiber reinforced concrete beams for shear using inverse analysis for determination of residual tensile strength. Struct. Concr. 2018;19:129–140. doi: 10.1002/suco.201700100. [DOI] [Google Scholar]
  • 42.Hwang J.-H., Lee D., Ju H., Kim K., Seo S.-Y., Kang J.-W. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches. Materials. 2013;6:4847. doi: 10.3390/ma6104847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Batson G.B., Youssef A.G. Shear Capacity of Fiber Reinforced Concrete Based on Plasticity of Concrete: A Review. ACI Spec. Publ. 1994;142 doi: 10.14359/1185. [DOI] [Google Scholar]
  • 44.Lim T.Y., Paramasivam P., Lee S.L. Shear and moment capacity of reinforced steel-fibre-concrete beams. Mag. Concr. Res. 1987;39:148–160. doi: 10.1680/macr.1987.39.140.148. [DOI] [Google Scholar]
  • 45.Lim T.Y., Paramasivam P., Lee S.L. Analytical Model for Tensile Behavior of Steel-Fiber Concrete. ACI Mater. J. 1987;84 doi: 10.14359/1454. [DOI] [Google Scholar]
  • 46.Spinella N. Shear strength of full-scale steel fibre-reinforced concrete beams without stirrups. Comput. Concr. 2013;11:365–382. doi: 10.12989/cac.2013.11.5.365. [DOI] [Google Scholar]
  • 47.Narayanan R., Kareem-Palanjian A.S. Effect of Fibre Addition on Concrete Strengths. Indian Concr. J. 1984;58:100–103. [Google Scholar]
  • 48.Kwak Y.-K., Eberhard M.O., Kim W.-S., Kim J. Shear Strength of Steel Fiber-Reinforced Concrete Beams without Stirrups. ACI Struct. J. 2002;99 doi: 10.14359/12122. [DOI] [Google Scholar]
  • 49.Zsutty T. Shear Strength Prediction for Separate Categories of Simple Beam Tests. ACI J. Proc. 1971;68:138–143. [Google Scholar]
  • 50.Greenough T., Nehdi M. Shear Behavior of Fiber-Reinforced Self-Consolidating Concrete Slender Beams. ACI Mater. J. 2008;105 doi: 10.14359/19976. [DOI] [Google Scholar]
  • 51.Khuntia M., Stojadinovic B., Goel S.C. Shear Strength of Normal and High-Strength Fiber Reinforced Concrete Beams without Stirrups. ACI Struct. J. 1999;96 doi: 10.14359/620. [DOI] [Google Scholar]
  • 52.Sharma A.K. Shear Strength of Steel Fiber Reinforced Concrete Beams. ACI J. Proc. 1986;83 doi: 10.14359/10559. [DOI] [Google Scholar]
  • 53.Wright P.J.F. Comments on an indirect tensile test on concrete cylinders. Mag. Concr. Res. 1956;8:48–49. doi: 10.1680/macr.1956.8.22.48. [DOI] [Google Scholar]
  • 54.Mansur M.A., Ong K.C.G., Paramasivam P. Shear Strength of Fibrous Concrete Beams Without Stirrups. J. Struct. Eng. 1986;112:2066–2079. doi: 10.1061/(ASCE)0733-9445(1986)112:9(2066). [DOI] [Google Scholar]
  • 55.Swamy R.N., Al-Ta’an S.A. Deformation and Ultimate Strength in Flexure of Reinforced Concrete Beams Made with Steel Fiber Concrete. ACI J. Proc. 1981;78 doi: 10.14359/10525. [DOI] [Google Scholar]
  • 56.Cox H.L. The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 1952;3:72. doi: 10.1088/0508-3443/3/3/302. [DOI] [Google Scholar]
  • 57.Swamy R.N., Mangat P.S., Rao C.V.S.K. The Mechanics of Fiber Reinforcement of Cement Matrices. ACI Spec. Publ. 1974;44 doi: 10.14359/17884. [DOI] [Google Scholar]
  • 58.Swamy R.N., Mangat P.S. The interfacial bond stress in steel fiber cement composites. Cem. Concr. Res. 1976;6:641–649. doi: 10.1016/0008-8846(76)90028-4. [DOI] [Google Scholar]
  • 59.Ashour S.A., Hasanain G.S., Wafa F.F. Shear Behavior of High-Strength Fiber Reinforced Concrete Beams. ACI Struct. J. 1992;89 doi: 10.14359/2946. [DOI] [Google Scholar]
  • 60.Arslan G. Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams. KSCE J. Civ. Eng. 2014;18:587–594. doi: 10.1007/s12205-014-0320-x. [DOI] [Google Scholar]
  • 61.Zararis P.D., Papadakis G.C. Diagonal shear failure and size effect in RC beams without web reinforcement. J. Struct. Eng. ASCE. 2001;127:733–742. doi: 10.1061/(ASCE)0733-9445(2001)127:7(733). [DOI] [Google Scholar]
  • 62.Bazant Z.P., Kim J.K. Size Effect in Shear Failure of Longitudinally Reinforced Beams. J. Am. Concr. Inst. 1984;81:456–468. [Google Scholar]
  • 63.Imam M., Vandewalle L., Mortelmans F., Van Gemert D. Shear domain of fibre-reinforced high-strength concrete beams. Eng. Struct. 1997;19:738–747. doi: 10.1016/S0141-0296(96)00150-2. [DOI] [Google Scholar]
  • 64.Yakoub H.E. Shear Stress Prediction: Steel Fiber-Reinforced Concrete Beams without Stirrups. ACI Struct. J. 2011;108 doi: 10.14359/51682346. [DOI] [Google Scholar]
  • 65.Canadian Standards Association . CSA A23.3-04: Design of Concrete Structures. CSA Group; Toronto, ON, Canada: 2004. p. 240. [Google Scholar]
  • 66.RILEM TC 162-TDF. σ-ε-Design Method. Mater. Struct. 2003;36:560–567. doi: 10.1007/BF02480834. [DOI] [Google Scholar]
  • 67.Sahoo D.R., Sharma A. Effect of Steel Fiber Content on Behavior of Concrete Beams with and without Stirrups. ACI Struct. J. 2014;111:1157–1166. doi: 10.14359/51686821. [DOI] [Google Scholar]
  • 68.Shoaib A., Lubell A.S., Bindiganavile V.S. Shear response of lightweight steel fiber reinforced concrete members without stirrups. Mater. Struct. 2015;48:3141–3157. doi: 10.1617/s11527-014-0387-3. [DOI] [Google Scholar]
  • 69.Anand R.M., Sathya S., Sylviya B. Shear strength of high-strength steel fibre reinforced concrete rectangular beams. Int. J. Civ. Eng. Technol. 2017;8:1716–1729. [Google Scholar]
  • 70.Arslan G., Keskin R.S.O., Ulusoy S. An experimental study on the shear strength of SFRC beams without stirrups. J. Theor. Appl. Mech. 2017;55:1205–1217. doi: 10.15632/jtam-pl.55.4.1205. [DOI] [Google Scholar]
  • 71.Parra-Montesinos G.J., Wight J.K., Dinh H.H., Libbrecht A., Padilla C. Shear Strength of Fiber Reinforced Concrete Beams without Stirrups. University of Michigan; Ann Arbor, MI, USA: 2006. p. 39. [Google Scholar]
  • 72.Rosenbusch J., Teutsch M. Trial Beams in Shear Brite/Euram Project 97-4163 Final Report Sub Task 4.2. Technical University of Braunschweig; Braunschweig, Germany: 2003. pp. 105–117. [Google Scholar]
  • 73.Sahoo D.R., Bhagat S., Reddy T.C.V. Experimental study on shear-span to effective-depth ratio of steel fiber reinforced concrete T-beams. Mater. Struct. 2016;49:3815–3830. doi: 10.1617/s11527-015-0756-6. [DOI] [Google Scholar]
  • 74.Amin A., Foster S.J. Shear strength of steel fibre reinforced concrete beams with stirrups. Eng. Struct. 2016;111:323–332. doi: 10.1016/j.engstruct.2015.12.026. [DOI] [Google Scholar]
  • 75.Tahenni T., Chemrouk M., Lecompte T. Effect of steel fibers on the shear behavior of high strength concrete beams. Constr. Build. Mater. 2016;105:14–28. doi: 10.1016/j.conbuildmat.2015.12.010. [DOI] [Google Scholar]
  • 76.Narayanan R., Darwish I.Y.S. Use of Steel Fibers as Shear Reinforcement. ACI Struct. J. 1987;84 doi: 10.14359/2654. [DOI] [Google Scholar]
  • 77.Cucchiara C., La Mendola L., Papia M. Effectiveness of stirrups and steel fibres as shear reinforcement. Cem. Concr. Compos. 2004;26:777–786. doi: 10.1016/j.cemconcomp.2003.07.001. [DOI] [Google Scholar]
  • 78.Lim D.H., Oh B.H. Experimental and theoretical investigation on the shear of steel fibre reinforced concrete beams. Eng. Struct. 1999;21:937–944. doi: 10.1016/S0141-0296(98)00049-2. [DOI] [Google Scholar]
  • 79.Dinh H.H., Parra-Montesinos G.J., Wight J.K. Shear Behavior of Steel Fiber-Reinforced Concrete Beams without Stirrup Reinforcement. ACI Struct. J. 2010;107 doi: 10.14359/51663913. [DOI] [Google Scholar]
  • 80.Lima Araujo D., Tibúrcio Nunes F.G., Toledo Filho R.D., Souza de Andrade M.A. Shear strength of steel fiber-reinforced concrete beams. Acta Sci. 2014;36:389–397. doi: 10.4025/actascitechnol.v36i3.19005. [DOI] [Google Scholar]
  • 81.Casanova P., Rossi P., Schaller l. Can Steel Fibers Replace Transverse Reinforcements in Reinforced Concrete Beams? ACI Mater. J. 1997;94 doi: 10.14359/9874. [DOI] [Google Scholar]
  • 82.Aoude H., Belghiti M., Cook W.D., Mitchell D. Response of Steel Fiber-Reinforced Concrete Beams with and without Stirrups. ACI Struct. J. 2012;109 doi: 10.14359/51683749. [DOI] [Google Scholar]
  • 83.Minelli F., Plizzari G.A. On the Effectiveness of Steel Fibers as Shear Reinforcement. ACI Struct. J. 2013;110 doi: 10.14359/51685596. [DOI] [Google Scholar]
  • 84.Kang T.H.-K., Kim W., Kwak Y.-K., Hong S.-G. Shear Testing of Steel Fiber-Reinforced Lightweight Concrete Beams without Web Reinforcement. ACI Struct. J. 2011;108 doi: 10.14359/51683212. [DOI] [Google Scholar]
  • 85.Casanova P., Rossi P. High-Strength Concrete Beams Submitted to Shear: Steel Fibers Versus Stirrups. ACI Spec. Publ. Struct. Appl. Fiber Reinf. Concr. 1999;182 doi: 10.14359/5521. [DOI] [Google Scholar]
  • 86.Zarrinpour M.R., Chao S.-H. Shear Strength Enhancement Mechanisms of Steel Fiber- Reinforced Concrete Slender Beams. ACI Struct. J. 2017;114 doi: 10.14359/51689449. [DOI] [Google Scholar]
  • 87.Noghabai K. Beams of Fibrous Concrete in Shear and Bending: Experiment and Model. J. Struct. Eng. 2000;126:243–251. doi: 10.1061/(ASCE)0733-9445(2000)126:2(243). [DOI] [Google Scholar]
  • 88.Randl N., Mészöly T., Harsányi P. Shear Behaviour of UHPC Beams with Varying Degrees of Fibre and Shear Reinforcement; Proceedings of the fib Symposium 2017; Maastricht, The Netherlands. 12–14 June 2017. [Google Scholar]
  • 89.Tan K.H., Murugappan K., Paramasivam P. Shear Behavior of Steel Fiber Reinforced Concrete Beams. ACI Struct. J. 1993;90 doi: 10.14359/9646. [DOI] [Google Scholar]
  • 90.Pansuk W., Nguyen T.N., Sato Y., Den Uijl J.A., Walraven J.C. Shear capacity of high performance fiber reinforced concrete I-beams. Constr. Build. Mater. 2017;157:182–193. doi: 10.1016/j.conbuildmat.2017.09.057. [DOI] [Google Scholar]
  • 91.Kim C.-G., Lee H., Park H.-G., Hong G.-H., Kang S.-M. Effect of Steel Fibers on Minimum Shear Reinforcement of High-Strength Concrete Beams. ACI Struct. J. 2017;114 doi: 10.14359/51689782. [DOI] [Google Scholar]
  • 92.Narayanan R., Darwish I.Y.S. Fiber Concrete Deep Beams in Shear. ACI Struct. J. 1988;85 doi: 10.14359/2698. [DOI] [Google Scholar]
  • 93.Li V.C., Ward R., Hamza A.M. Steel and Synthetic Fibers as Shear Reinforcement. ACI Mater. J. 1992;89 doi: 10.14359/1822. [DOI] [Google Scholar]
  • 94.Swamy R.N., Jones R., Chiam A.T.P. Influence of Steel fibers on the Shear Resistance of Lightweight Concrete I-Beams. ACI Struct. J. 1993;90 doi: 10.14359/4201. [DOI] [Google Scholar]
  • 95.Cho S.-H., Kim Y.I.L. Effects of Steel Fibers on Short Beams Loaded in Shear. ACI Struct. J. 2003;100 doi: 10.14359/12843. [DOI] [Google Scholar]
  • 96.Kang T.H.-K., Kim W., Massone L.M., Galleguillos T.A. Shear-Flexure Coupling Behavior of Steel Fiber-Reinforced Concrete Beams. ACI Struct. J. 2012;109 doi: 10.14359/51683863. [DOI] [Google Scholar]
  • 97.Dupont D., Vandewalle L. Shear Capacity of Concrete Beams Containing Longitudinal Reinforcement and Steel Fibers. ACI Spec. Publ. 2003;216 doi: 10.14359/12893. [DOI] [Google Scholar]
  • 98.Dupont D. Ph.D. Thesis. KU Leuven; Leuven, Belgium: Oct, 2003. Modelling and Experimental Validation of the Constitutive Law (σ-ε) and Cracking Behaviour of Steel Fibre Reinforced Concrete. [Google Scholar]
  • 99.Swamy R.N., Bahia H.M. The Effectiveness of Steel Fibers as Shear Reinforcement. Concr. Int. 1985;7:35–40. [Google Scholar]
  • 100.Batson G., Jenkins E., Spatney R. Steel Fibers as Shear Reinforcement in Beams. ACI J. Proc. 1972;69 doi: 10.14359/7151. [DOI] [Google Scholar]
  • 101.Zhao J., Liang J., Chu L., Shen F. Experimental Study on Shear Behavior of Steel Fiber Reinforced Concrete Beams with High-Strength Reinforcement. Materials. 2018;11:1682. doi: 10.3390/ma11091682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Jindal R.L. Shear and Moment Capacities of Steel Fiber Reinforced Concrete Beams. ACI Spec. Publ. 1984;81 doi: 10.14359/6443. [DOI] [Google Scholar]
  • 103.Shin S.-W., Oh J.-G., Ghosh S.K. Shear Behavior of Laboratory-Sized High-Strength Concrete Beams Reinforced With Bars and Steel Fibers. ACI Spec. Publ. 1994;142 doi: 10.14359/3917. [DOI] [Google Scholar]
  • 104.Imam M., Vandewalle L., Mortelmans F. Shear Capacity of Steel Fiber High-Strength Concrete Beams. ACI Spec. Publ. High Perform. Concr. 1994;149 doi: 10.14359/4164. [DOI] [Google Scholar]
  • 105.Imam M., Vandewalle L. Role of Fibers in Controlling Failure Modes of High-Strength Concrete Beams. ACI Spec. Publ. 193: RepairRehabil. Maint. Concr. Struct. Innov. Des. Constr. 2000;193 doi: 10.14359/5841. [DOI] [Google Scholar]
  • 106.Huang C.-K., Zhang H.Z., Guan Z.G. Experimental Study on Shear Resistance of Steel Fiber Reinforced High-Strength Concrete Beams. ACI Spec. Publ. 228: Seventh Int. Symp. Util. High-Strength/High-Perform. Concr. 2005;228 doi: 10.14359/14499. [DOI] [Google Scholar]
  • 107.Kwak K.-H., Suh J., Hsu C.-T.T. Shear-Fatigue Behavior of Steel Fiber Reinforced Concrete Beams. ACI Struct. J. 1991;88 doi: 10.14359/2653. [DOI] [Google Scholar]
  • 108.Roberts T.M., Ho N.L. Shear failure of deep fibre reinforced concrete beams. Int. J. Cem. Compos. Lightweight Concr. 1982;4:145–152. doi: 10.1016/0262-5075(82)90040-9. [DOI] [Google Scholar]
  • 109.Hwang J.-H., Lee D.H., Kim K.S., Ju H., Seo S.-Y. Evaluation of shear performance of steel fibre reinforced concrete beams using a modified smeared-truss model. Mag. Concr. Res. 2013;65:283–296. doi: 10.1680/macr.12.00009. [DOI] [Google Scholar]
  • 110.Spinella N., Colajanni P., Mendola L.L. Nonlinear Analysis of Beams Reinforced in Shear with Stirrups and Steel Fibers. ACI Struct. J. 2012;109 doi: 10.14359/51683494. [DOI] [Google Scholar]
  • 111.Chalioris C.E., Sfiri E.F. Shear Performance of Steel Fibrous Concrete Beams. Procedia Eng. 2011;14:2064–2068. doi: 10.1016/j.proeng.2011.07.259. [DOI] [Google Scholar]
  • 112.Cohen M., Aoude H. Shear behavior of SFRC and SCFRC beams; Proceedings of the 3rd International Structural Specialty Conference; Edmonton, AB, Canada. 6–9 June 2012; pp. 2557–2566. [Google Scholar]
  • 113.Aoude H., Cohen M. Shear response of SFRC beams constructed with SCC and Steel Fibers. Electron. J. Struct. Eng. 2014;14:71–83. [Google Scholar]
  • 114.Qissab M., Salman M.M. Shear strength of non-prismatic steel fiber reinforced concrete beams without stirrups. Struct. Eng. Mech. 2018;67:347–358. [Google Scholar]
  • 115.Furlan S., de Hanai J.B. Shear behaviour of fiber reinforced concrete beams. Cem. Concr. Compos. 1997;19:359–366. doi: 10.1016/S0958-9465(97)00031-0. [DOI] [Google Scholar]
  • 116.Dancygier A.N., Savir Z. Effects of Steel Fibers on Shear Behavior of High-Strength Reinforced Concrete Beams. Adv. Struct. Eng. 2011;14:745–761. doi: 10.1260/1369-4332.14.5.745. [DOI] [Google Scholar]
  • 117.Krassowska J., Kosior-Kazberuk M. Failure mode in shear of steel fiber reinforced concrete beams. MATEC Web Conf. 2018;163:02003. doi: 10.1051/matecconf/201816302003. [DOI] [Google Scholar]
  • 118.Yoo D.-Y., Yang J.-M. Effects of stirrup, steel fiber, and beam size on shear behavior of high-strength concrete beams. Cem. Concr. Compos. 2018;87:137–148. doi: 10.1016/j.cemconcomp.2017.12.010. [DOI] [Google Scholar]
  • 119.Gali S., Subramaniam K.V.L. Shear behavior of steel fiber reinforced concrete using full-field displacements from digital image correlation. MATEC Web Conf. 2017;120:04003. doi: 10.1051/matecconf/201712004003. [DOI] [Google Scholar]
  • 120.Zamanzadeh Z., Lourenço L., Barros J. Recycled Steel Fibre Reinforced Concrete failing in bending and in shear. Constr. Build. Mater. 2015;85:195–207. doi: 10.1016/j.conbuildmat.2015.03.070. [DOI] [Google Scholar]
  • 121.Shoaib A., Lubell A.S., Bindiganavile V.S. Size Effect in Shear for Steel Fiber-Reinforced Concrete Members without Stirrups. ACI Struct. J. 2014;111:1081–1089. doi: 10.14359/51686813. [DOI] [Google Scholar]
  • 122.Shoaib A. Ph.D. Thesis. University of Alberta; Edmonton, AB, Canada: Nov, 2012. Shear in Steel Fiber Reinforced Concrete without Stirrups. [Google Scholar]
  • 123.Bae B.I., Choi H.K., Choi C.S. Flexural and Shear Capacity Evaluation of Reinforced Ultra-High Strength Concrete Members with Steel Rebars. Key Eng. Mater. 2014;577–578:17–20. doi: 10.4028/www.scientific.net/KEM.577-578.17. [DOI] [Google Scholar]
  • 124.Abdul-Zaher A.S., Abdul-Hafez L.M., Tawfic Y.R., Hammed O. Shear behavior of fiber reinforced concrete beams. J. Eng. Sci. Assiut Univ. 2016;44:132–144. [Google Scholar]
  • 125.Keskin R.S.O., Arslan G., Sengun K. Influence of CFRP on the shear strength of RC and SFRC beams. Constr. Build. Mater. 2017;153:16–24. doi: 10.1016/j.conbuildmat.2017.06.170. [DOI] [Google Scholar]
  • 126.Khan S. Performance of steel fibre reinforced concrete specimens under the combined state of flexure, torsion and shear, varying its geometry. Int. J. Civ. Eng. Technol. 2017;8:1034–1043. [Google Scholar]
  • 127.Adebar P., Mindess S., Pierre D.S., Olund B. Shear Tests of Fiber Concrete Beams without Stirrups. ACI Struct. J. 1997;94 doi: 10.14359/462. [DOI] [Google Scholar]
  • 128.Leone M., Centonze G., Colonna D., Micelli F., Aiello M.A. Fiber-reinforced concrete with low content of recycled steel fiber: Shear behaviour. Constr. Build. Mater. 2018;161:141–155. doi: 10.1016/j.conbuildmat.2017.11.101. [DOI] [Google Scholar]
  • 129.Shioya T., Iguro M., Nojiri Y., Akiyama H., Okada T. Shear strength of large reinforced concrete beams. Fract. Mech. Appl. Concr. 1989;118:259–279. [Google Scholar]
  • 130.Bazant Z.P., Kazemi M.T. Size effect on Diagonal Shear Failure of Beams without Stirrups. ACI Struct. J. 1991;88:268–276. [Google Scholar]
  • 131.Ghazavy-Khorasgany M., Gopalaratnam V. Shear Strength of Concrete—Size and other influences; Proceedings of the JCI International Workshop on Size Effect in Concrete Structures; Sendai, Japan. 31 October–2 November 1993; pp. 51–62. [Google Scholar]
  • 132.Walraven J.C. Size Effects: Their nature and their recognition in building codes; Proceedings of the JCI International Workshop on Size Effect in Concrete Structures; Sendai, Japan. 31 October–2 November 1993; pp. 295–314. [Google Scholar]
  • 133.Collins M.P., Kuchma D. How safe are our large, lightly reinforced concrete beams, slabs, and footings? ACI Struct. J. 1999;96:482–490. [Google Scholar]
  • 134.Angelakos D., Bentz E.C., Collins M.P. Effect of concrete strength and minimum stirrups on shear strength of large members. ACI Struct. J. 2001;98:290–300. [Google Scholar]
  • 135.Dulacska H. Dowel Action of Reinforcement Crossing Cracks in Concrete. ACI J. Proc. 1972;69:754–757. [Google Scholar]
  • 136.Reineck K.H. Ultimate shear force of structural concrete members without transverse reinforcement derived from a mechanical model. ACI Struct. J. 1991;88:592–602. [Google Scholar]
  • 137.McCabe S.L., Niwa J. Size effect in reinforced concrete members subjected to shear loading; Proceedings of the JCI International Workshop on Size Effect in Concrete Structures; Sendai, Japan. 31 October–2 November 1993; pp. 335–358. [Google Scholar]
  • 138.Walraven J., Lehwalter N. Size Effects in Short Beams Loaded in Shear. ACI Struct. J. 1994;91:585–593. [Google Scholar]
  • 139.Alexander S.D.B., Simmonds S.H. Bond Model for Concentric Punching Shear. ACI Struct. J. 1992;89:325–334. [Google Scholar]
  • 140.Olonisakin A.A., Alexander S.D.B. Mechanism of shear transfer in a reinforced concrete beam. Can. J. Civ. Eng. 1999;26:810–817. doi: 10.1139/l99-044. [DOI] [Google Scholar]
  • 141.Reissen K., Classen M., Hegger J. Shear in reinforced concrete slabs—Experimental investigations in the effective shear width of one-way slabs under concentrated loads and with different degrees of rotational restraint. Struct. Concr. 2018;19:36–48. doi: 10.1002/suco.201700067. [DOI] [Google Scholar]
  • 142.Lantsoght E.O.L. Literature Review on the Shear Capacity of Steel Fiber Reinforced Concrete Beams. Universidad San Francisco de Quito; Quito, Ecuador: 2019. p. 150. [Google Scholar]
  • 143.Sherwood E.G., Bentz E.C., Collins M.R. Effect of aggregate size on beam-shear strength of thick slabs. ACI Struct. J. 2007;104:180–190. [Google Scholar]
  • 144.Yang K.-H., Sim J.-I., Choi B.-J., Lee E.-T. Effect of Aggregate Size on Shear Behavior of Lightweight Concrete Continuous Slender Beams. ACI Mater. J. 2011;108:501–509. [Google Scholar]
  • 145.Thomas J., Ramaswamy A. Mechanical Properties of Steel Fiber-Reinforced Concrete. J. Mater. Civ. Eng. 2007;19:385–392. doi: 10.1061/(ASCE)0899-1561(2007)19:5(385). [DOI] [Google Scholar]
  • 146.Filian Abad B., Lantsoght E.O.L., Yang Y. Shear Capacity of Steel Fiber Reinforced Concrete; Proceedings of the fib Symposium 2019; Cracow, Poland. 27–29 May 2019. [Google Scholar]
  • 147.Yang Y., Den Uijl J.A., Walraven J. The Critical Shear Displacement theory: On the way to extending the scope of shear design and assessment for members without shear reinforcement. Struct. Concr. 2016;17:790–798. doi: 10.1002/suco.201500135. [DOI] [Google Scholar]
  • 148.Zarate-Garnica G. Master’s Thesis. Delft University of Technology; Delft, The Netherlands: Oct 15, 2018. Analysis of Shear Transfer Mechanisms in Concrete Members without Shear Reinforcement Based on Kinematic Measurements. [Google Scholar]
  • 149.Zárate Garnica G. Assessment of Crack Kinematics in Concrete Beams Using Digiatal Image Correlation. Delft University of Technology; Delft, The Netherlands: Feb 6, 2018. p. 69. [Google Scholar]
  • 150.Yang Y., Zárate Garnica G., Lantsoght E.O.L., Hordijk D.A. Calibration of the shear stop criteria based on crack kinematics of reinforced concrete beams without shear reinforcement; Proceedings of the fib Conference 2018; Melbourne, Australia. 7–11 October 2018. [Google Scholar]
  • 151.Romualdi J.P., Mandel J.A. Tensile Strength of Concrete Affected by Uniformly Distributed and Closely Spaced Short Lengths of Wire Reinforcement. ACI J. Proc. 1964;61 doi: 10.14359/7801. [DOI] [Google Scholar]

Articles from Materials are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES