Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Sep 1;11(3):348–359. doi: 10.2478/s11658-006-0029-z

Genotyping of recombinant Pichia pastoris strains

José M Viader-Salvadó 1,, Eddy L Cab-Barrera 1, Luis J Galán-Wong 1, Martha Guerrero-Olazarán 1
PMCID: PMC6472830  PMID: 16847557

Abstract

A simplified amplified-fragment length polymorphism (AFLP) method was used to genotype Pichia pastoris strains obtained by transformation of P. pastoris strain GS115 with a single integration vector. A total of 14 transformants and 3 control strains were analyzed, which generated 16 different band patterns. A clonal variation was obtained after the transformation process due to genetic differences generated during the transformation event of the host strain. Furthermore, the cluster analysis showed that the transformants with lesser genetic differences with respect to the P. pastoris host strain are the recombinant strains with the highest level of recombinant protein production.

Key words: Pichia pastoris, Amplified-fragment length polymorphism (AFLP), Clonal variation

Full Text

The Full Text of this article is available as a PDF (559.0 KB).

Abbreviations used

AFLP

amplified-fragment length polymorphism

AOX1

alcohol oxidase 1 gene

BMG

growth medium: 100 mM potassium phosphate, pH 6.0, 0.4 mg/l biotin, 1.34% YNB, 1% glycerol

BMM

expression medium: 100 mM potassium phosphate, pH 6.0, 0.4 mg/l biotin, 1.34% YNB, 0.75% (v/v) methanol

DMT-off

without dimethoxytrityl

n.d.

not determined

PCR

polymerase chain reaction

RDB

1 M sorbitol, 1.34% YNB, 2% dextrose, 0.4 mg/l biotin, 0.005% amino acids without histidine

r2

coefficient of determination

RP

recombinant protein

SDS

sodium dodecyl sulphate

TE buffer

10 mM Tris-Cl, 1 mM EDTA, pH 8.0

TP

total protein

XA-1 and XA-2

XhoI site cohesive-ended complementary oligonucleotides to generate the XhoI restriction fragment adapter

XP-G

PCR primer used in the AFLP reactions directed at the adapter tail and with a G as selective nucleotide at the 3′-end

YNB

yeast nitrogen base

YPD

1% yeast extract, 2% peptone, 2% dextrose

References

  • 1.Romanos M.A. Advances in the use of Pichia pastoris for high level gene expression. Curr. Opin. Biotechnol. 1995;6:527–533. doi: 10.1016/0958-1669(95)80087-5. [DOI] [Google Scholar]
  • 2.Escamilla-Treviño L.L., Viader-Salvadó J.M., Guerrero-Olazarán M. Producción de proteínas recombinantes en Pichia pastoris. CIENCIA UANL. 1999;2:27–33. [Google Scholar]
  • 3.Cregg J.M., Barringer K.J., Hessler A.Y., Madden K.R. Pichia pastoris as a host for transformations. Mol. Cell. Biol. 1985;5:3376–3385. doi: 10.1128/mcb.5.12.3376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Clare J.J., Rayment F.B., Ballantine S.P., Sreekrishna K., Romanos M.A. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology. 1991;9:455–60. doi: 10.1038/nbt0591-455. [DOI] [PubMed] [Google Scholar]
  • 5.Clare J.J., Sreekrishna K., Romanos M. Expression of tetanus toxin fragment C. Methods Mol. Biol. 1998;103:193–208. doi: 10.1385/0-89603-421-6:193. [DOI] [PubMed] [Google Scholar]
  • 6.Brankamp R.G., Sreekrishna K., Smith P.L., Blankenship D.T., Cardin A.D. Expression of a synthetic gene encoding the anticoagulant-antimetastatic proteinghilanten by the methylotropic yeast Pichia pastoris. Protein Expr. Purif. 1995;6:813–820. doi: 10.1006/prep.1995.0013. [DOI] [PubMed] [Google Scholar]
  • 7.Romanos M., Scorer C., Sreekrishna K., Clare J. The generation of multicopy recombinant strains. In: Higgins D.R., Cregg J.M., editors. Pichia Protocols. Methods in Molecular Biology. Totowa, NJ: Humana Press Inc; 1998. pp. 55–72. [DOI] [PubMed] [Google Scholar]
  • 8.Sreekrishna K., Brankamp R.G., Kropp K.E., Blankenship D.L., Tsay J.-T., Smith P.L., Wierschke J.D., Subramaniam A., Birkenberger L.A. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene. 1997;190:55–62. doi: 10.1016/S0378-1119(96)00672-5. [DOI] [PubMed] [Google Scholar]
  • 9.Scorer C.A., Buckholz R.G., Clare J.J., Romanos M.A. The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris. Gene. 1993;136:111–119. doi: 10.1016/0378-1119(93)90454-B. [DOI] [PubMed] [Google Scholar]
  • 10.Scorer C.A., Clare J.J., Macombie R., Romanos M.A., Sreekrishna K. Rapid selection using G418 of high copy number transformats of Pichia pastoris for high-level foreign gene expression. Biotechnology. 1994;12:181–184. doi: 10.1038/nbt0294-181. [DOI] [PubMed] [Google Scholar]
  • 11.Vos P., Hogers R., Bleeker M., Reijans V., Van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Lin J.J., Kuo J. AFLP: a novel PCR-based assay for plant and bacterial DNA fingerprinting. Focus. 1995;17:66–70. [Google Scholar]
  • 13.Becker J., Vos P., Kuiper M., Salamini F., Heun V. Combined mapping of AFLP and RFLP markers in barley. Mol. Gen. Genet. 1995;249:65–73. doi: 10.1007/BF00290237. [DOI] [PubMed] [Google Scholar]
  • 14.Janssen P., Coopman R., Huys G., Swings J., Bleeker M., Vos P., Zabeau M., Kersters K. Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiol. 1996;142:1881–1893. doi: 10.1099/13500872-142-7-1881. [DOI] [PubMed] [Google Scholar]
  • 15.Ganter P.F., de Barros-Lopes M. The use of anonymous DNA markers in assessing worldwide relatedness in the yeast species Pichia kluyveri Bedford and Kudrjavzev. Can. J. Microbiol. 2000;46:967–980. doi: 10.1139/cjm-46-11-967. [DOI] [PubMed] [Google Scholar]
  • 16.Anonymous. Pichia expression kit: a manual of methods for expression of recombinant proteins in Pichia pastoris. Invitrogen. Available from: URL: http://www.invitrogen.com/content/sfs/manuals/pich_man.pdf
  • 17.Cregg J.M., Russell K.A. Transformation. In: Higgins D.R., Cregg J.M., editors. Pichia Protocols. Methods in Molecular Biology. Totowa, NJ: Humana Press Inc; 1998. pp. 27–39. [Google Scholar]
  • 18.Escamilla-Treviño L.L., Viader-Salvadó J.M., Barrera-Saldaña H.A., Guerrero-Olazarán M. Biosynthesis and secretion of recombinant human growth hormone in Pichia pastoris. Biotechnol. Lett. 2000;22:109–114. doi: 10.1023/A:1005675920451. [DOI] [Google Scholar]
  • 19.Hecker K.H., Roux K.H. High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. BioTechniques. 1996;20:478–485. doi: 10.2144/19962003478. [DOI] [PubMed] [Google Scholar]
  • 20.Felsenstein J. PHYLIP Phylogeny Inference Package (Version 3.2) Cladistics. 1989;5:164–166. [Google Scholar]
  • 21.Sneath P.H.A., Sokal R.R. Numerical Taxonomy: the principles and practice of numerical classification. San Francisco: W.H. Freeman and Company; 1973. pp. 230–234. [Google Scholar]
  • 22.Sreekrishna K. Strategies for optimizing protein expression and secretion in the methylotrophic yeast Pichia pastoris. In: Balz R.H., Hegeman G.D., Skatrud P.L., editors. Industrial microorganisms: basic and applied molecular genetics. Washington, D.C.: American Society for Microbiology; 1993. pp. 119–126. [Google Scholar]
  • 23.Knorr C., Cheng H.H., Dodgson J.B. DNA cloning and sequence analysis of chicken AFLP. Anim. Genet. 2001;32:156–159. doi: 10.1046/j.1365-2052.2001.00748.x. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES