Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Sep 1;11(3):312–325. doi: 10.2478/s11658-006-0027-1

The heterogeneity of ion channels in chromaffin granule membranes

Renata Hordejuk 1, Adam Szewczyk 2, Krzysztof Dołowy 1,
PMCID: PMC6472833  PMID: 16847559

Abstract

Chromaffin granules are involved in catecholamine synthesis and traffic in the adrenal glands. The transporting membrane proteins of chromaffin granules play an important role in the ion homeostasis of these organelles. In this study, we characterized components of the electrogenic 86Rb+ flux observed in isolated chromaffin granules. In order to study single channel activity, chromaffin granules from the bovine adrenal medulla were incorporated into planar lipid bilayers. Four types of cationic channel were found, each with a different conductance. The unitary conductances of the potassium channels are 360 ± 10 pS, 220 ± 8 pS, 152 ± 8 pS and 13 ± 3 pS in a gradient of 450/150 mM KCl, pH 7.0. A multiconductance potassium channel with a conductivity of 110 ± 8 pS and 31 ± 4 pS was also found. With the exception of the 13 pS conductance channel, all are activated by depolarizing voltages. One type of chloride channel was also found. It has a unitary conductance of about 250 pS in a gradient of 500/150 mM KCl, pH 7.0.

Key words: Chromaffin granule, Intracellular channel, Potassium channel, Chloride channel, Black lipid membrane

Full Text

The Full Text of this article is available as a PDF (594.5 KB).

Abbreviations used

BLM

black lipid membrane technique

I

single-channel current amplitude

KCG

large conductance potassium channel

Po

open-probability

U

potential

Urev

reversal potential

γ

ion conductance

τo

mean open lifetime

τo

mean closed lifetime

References

  • 1.Szewczyk A. The intracellular potassium and chloride channels: properties, pharmacology and function. Mol. Membr. Biol. 1998;15:49–58. doi: 10.3109/09687689809027518. [DOI] [PubMed] [Google Scholar]
  • 2.Kicinska A., Debska G., Kunz W., Szewczyk A. Mitochondrial potassium and chloride channels. Acta Biochim. Pol. 2000;47:541–551. [PubMed] [Google Scholar]
  • 3.Szewczyk A., Marban E. Mitochondria: a new target for potassium channel openers? Trends Pharm. Sci. 1999;20:157–161. doi: 10.1016/S0165-6147(99)01301-2. [DOI] [PubMed] [Google Scholar]
  • 4.Szewczyk A., Wojtczak L. Mitochondria as a pharmacological target. Pharm. Rev. 2002;54:101–127. doi: 10.1124/pr.54.1.101. [DOI] [PubMed] [Google Scholar]
  • 5.O’Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circulation Res. 2004;94:420–432. doi: 10.1161/01.RES.0000117583.66950.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Facundo H.T., Fornazari M., Kowaltowski A.J. Tissue protection mediated by mitochondrial K+ channels. Biochim. Biophys. Acta. 2006;1762:202–212. doi: 10.1016/j.bbadis.2005.06.003. [DOI] [PubMed] [Google Scholar]
  • 7.Rahamimoff R., DeRiemer S.A., Sakmann B., Stadler H., Yakir N. Ion channels in synaptic vesicles from Torpedo electric organ. Proc. Nat. Acad. Sci. USA. 1988;85:5310–5314. doi: 10.1073/pnas.85.14.5310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Thévenod F. Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am. J. Physiol. 2002;283:C651–C672. doi: 10.1152/ajpcell.00600.2001. [DOI] [PubMed] [Google Scholar]
  • 9.Garlid K.D., Paucek P. Mitochondrial potassium transport: the K+ cycle. Biochim. Biophys. Acta. 2003;1606:23–41. doi: 10.1016/S0005-2728(03)00108-7. [DOI] [PubMed] [Google Scholar]
  • 10.Estevez R., Jentsch T.J. CLC chloride channels: correlating structure with function. Curr. Op. Struct. Biol. 2002;12:531–539. doi: 10.1016/S0959-440X(02)00358-5. [DOI] [PubMed] [Google Scholar]
  • 11.Parsons S.M. Transport mechanisms in acetylcholine and monoamine storage. FASEB J. 2000;14:2423–2434. doi: 10.1096/fj.00-0203rev. [DOI] [PubMed] [Google Scholar]
  • 12.Arispe N., Pollard H.B., Rojas E. Calcium-independent K+-selective channel from chromaffin granule membranes. J. Membr. Biol. 1992;130:191–202. doi: 10.1007/BF00231896. [DOI] [PubMed] [Google Scholar]
  • 13.Ashley R.H., Brown D.M., Apps D.K., Phillips J.H. Evidence for a K+ channel in bovine chromaffine granule membranes: single-channel properties and possible bioenergetic significance. Eur. Biophys. J. 1994;23:263–275. doi: 10.1007/BF00213576. [DOI] [PubMed] [Google Scholar]
  • 14.Arispe N., De Mazancourt P., Rojas E. Direct control of a large conductance K+-selective channel by G-proteins in adrenal chromaffin granule membranes. J. Membr. Biol. 1995;147:109–119. doi: 10.1007/BF00233540. [DOI] [PubMed] [Google Scholar]
  • 15.Pazoles C.J., Pollard H.B. Evidence for stimulation of anion transport in ATP-evoked transmitter release from isolated secretory vesicles. J. Biol. Chem. 1978;253:3962–3969. [PubMed] [Google Scholar]
  • 16.Pazoles C.J., Creutz C.E., Ramu A., Pollard H.B. Permeant anion activation of MgATPase activity in chromaffin granules. Evidence for direct coupling of proton and anion transport. J. Biol. Chem. 1980;255:7863–7869. [PubMed] [Google Scholar]
  • 17.Gualix J., Alvarez A.M., Pintor J., Miras-Portugal M.T. Studies of chromaffin granule functioning by flow cytometry: transport of fluorescent epsilon-ATP and granular size increase induced by ATP. Receptors Channels. 1999;6:449–461. [PubMed] [Google Scholar]
  • 18.Szewczyk A., Lobanov N.A., Kicińska A., Wójcik G., Nałęcz M.J. ATP-sensitive K+ transport in adrenal chromaffin granules. Acta Neurobiol. Exp. 2001;61:1–12. doi: 10.55782/ane-2001-1378. [DOI] [PubMed] [Google Scholar]
  • 19.Lobanov N.A., Szewczyk A., Wójcik G., Nowotny M., Nałęcz M.J. Effects of K+ channel inhibitors on potassium transport in bovine adrenal chromaffin granules. Biochem. Mol. Biol. Int. 1997;41:679–686. doi: 10.1080/15216549700201721. [DOI] [PubMed] [Google Scholar]
  • 20.Szewczyk A., Lobanov N.A., Nowotny M., Nałęcz M.J. Interaction of sulfhydryl reagents with K+ transport in adrenal chromaffin granules. Acta Neurobiol. Exp. 1997;57:329–332. doi: 10.55782/ane-1997-1242. [DOI] [PubMed] [Google Scholar]
  • 21.Hordejuk R., Lobanov N.A., Kicińska A., Szewczyk A., Dołowy K. pH modulation of large conductance potassium channel from adrenal chromaffin granules. Mol. Membr. Biol. 2004;21:1–7. doi: 10.1080/0968768031000140836. [DOI] [PubMed] [Google Scholar]
  • 22.Brocklehurst K.W., Pollard H.B. Cell biology of secretion. In: Hutton J.C., Siddle K., editors. Peptide Hormone Secretion. A Practical Approach. Oxford, New York, Tokyo: IRL; 1990. pp. 233–255. [Google Scholar]
  • 23.Garty H., Rudy B., Karlish S.J.D. A simple and sensitive procedure for measuring isotope fluxes through ionspecific channels in heterogeneous populations of membrane vesicles. J. Biol. Chem. 1983;258:13094–13099. [PubMed] [Google Scholar]
  • 24.Garty H., Karlish S.J.D. Ion channel-mediated fluxes in membrane vesicles: selective amplification of isotope uptake by electrical diffusion potential. Meth. Enzymol. 1989;172:155–164. doi: 10.1016/s0076-6879(89)72014-0. [DOI] [PubMed] [Google Scholar]
  • 25.Szabo I., Bock J., Jekle A., Soddemann M., Adams C., Lang F., Zoratti M., Gulbins E. A novel potassium channel in lymphocyte mitochondria. J. Biol. Chem. 2005;280:12790–12798. doi: 10.1074/jbc.M413548200. [DOI] [PubMed] [Google Scholar]
  • 26.Inoue I., Nagase H., Kishi K., Higuti T. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature. 1991;352:244–247. doi: 10.1038/352244a0. [DOI] [PubMed] [Google Scholar]
  • 27.Siemen D., Loupatatzis C., Borecky J., Gulbins E., Lang F. Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem. Biophys. Res. Commun. 1999;257:549–554. doi: 10.1006/bbrc.1999.0496. [DOI] [PubMed] [Google Scholar]
  • 28.Fernandez-Salas E., Suh K.S., Speransky V.V., Bowers W.L., Levy J.M., Adams T., Pathak K.R., Edwards L.E., Hayes D.D., Cheng C., Steven A.C., Weinberg W.C., Yusupa S.H. mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol. Cell Biol. 2002;22:3610–3620. doi: 10.1128/MCB.22.11.3610-3620.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Loewen M.E., Forsyth G.W. Structure and function of CLCA proteins. Physiol. Rev. 2005;85:1061–1092. doi: 10.1152/physrev.00016.2004. [DOI] [PubMed] [Google Scholar]
  • 30.El-Maghraby M., Lever J.D. Typification and differentiation of medullary cells in the developing rat adrenal. A histochemical and electron microscopic study. J. Anat. 1980;131:103–120. [PMC free article] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES