Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Sep 1;11(3):424–437. doi: 10.2478/s11658-006-0035-1

Enhanced expression of selenocysteine lyase in acute glomerulonephritis and its regulation by AP-1

Claudia Jafari 1, Ulf Panzer 1, Oliver M Steinmetz 1, Gunther Zahner 1, Rolf AK Stahl 1, Sigrid Harendza 1,
PMCID: PMC6472837  PMID: 16874457

Abstract

Acute glomerulonephritis can lead to chronic glomerulonephritis or resolve without permanent damage to the kidneys. Differential gene expression was studied in a model of acute and chronic glomerulonephritis to identify factors influencing the course of glomerulonephritis towards healing or chronification. One of the differentially expressed genes was identified as SCL, encoding selenocysteine lyase. Its expression was higher in acute glomerulonephritis and lower in chronic glomerulonephritis. The transcriptional regulation of SCL was studied in vitro in rat mesangial cells (MC). SCL RNA expression increased eight-fold compared to the baseline after stimulation with interleukin-1β (IL-1β) for three hours. Luciferase expression and gel shift experiments revealed an enhancer element between bp −152 and −298 of the SCL 5’-regulatory region, with protein binding to an AP-1 binding site that may be involved in the regulation of SCL-RNA in vivo in an endogenous feedback mechanism to the inflammatory reaction in acute glomerulonephritis, leading to resolution of this disease.

Key words: Selenocysteine lyase, Glomerulonephritis, Differential display, Inflammation, Mesangial cells, AP-1, Transcription

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Abbreviations used

ATS

anti-rat thymocyte serum

ESRD

end-stage renal disease

IL-1β

interleukin-1β

LUC

luciferase

MC

mesangial cells

PAS

periodic acid-Schiff

PCR

polymerase chain reaction

SCL

selenocysteine lyase

References

  • 1.Jefferson J.A., Johnson R.J. Experimental mesangial proliferative glomerulonephritis (the anti-Thy-1.1 model) J. Nephrol. 1999;12:297–307. [PubMed] [Google Scholar]
  • 2.Stahl R.A.K., Thaiss F., Wenzel U., Schoeppe W., Helmchen U. A rat model of progressive chronic glomerular sclerosis: the role of thromboxane inhibition. J. Am. Soc. Nephrol. 1992;2:1568–1577. doi: 10.1681/ASN.V2111568. [DOI] [PubMed] [Google Scholar]
  • 3.Harendza S., Schneider A., Helmchen U., Stahl R.A.K. Extracellular matrix deposition and cell proliferation in a model of chronic glomerulonephritis in the rat. Nephrol. Dial. Transplant. 1999;14:2873–2879. doi: 10.1093/ndt/14.12.2873. [DOI] [PubMed] [Google Scholar]
  • 4.Jocks T., Zahner G., Freudenberg J., Wolf G., Thaiss F., Helmchen U., Stahl R.A.K. Prostaglandin E1 reduces the glomerular mRNA expression of monocyte-chemoattractant protein 1 in anti-thymocyte antibody-induced glomerular injury. J. Am. Soc. Nephrol. 1996;7:897–905. doi: 10.1681/ASN.V76897. [DOI] [PubMed] [Google Scholar]
  • 5.Oberle G.P., Niemeyer J., Thaiss F., Schoeppe W., Stahl R.A.K. Increased oxygen radical and eicosanoid formation in immune-mediated mesangial cell injury. Kidney Int. 1992;42:69–74. doi: 10.1038/ki.1992.262. [DOI] [PubMed] [Google Scholar]
  • 6.Stahl R.A.K., Thaiss F., Disser M., Helmchen U., Hora K., Schlöndorff D. Increased expression of monocyte chemoattractant protein-1 in anti-thymocyte antibody-induced glomerulonephritis. Kidney Int. 1993;44:1036–1047. doi: 10.1038/ki.1993.346. [DOI] [PubMed] [Google Scholar]
  • 7.Schneider A., Panzer U., Zahner G., Wenzel U., Wolf G., Thaiss F., Helmchen U., Stahl R.A.K. Monocyte-chemoattractant protein-1 mediates collagen deposition in experimental glomerulonephritis by transforming growth factor-beta. Kidney Int. 1999;56:135–144. doi: 10.1046/j.1523-1755.1999.00543.x. [DOI] [PubMed] [Google Scholar]
  • 8.Esaki N., Nakamura T., Tanaka H., Soda K. Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine. J. Biol. Chem. 1982;157:4386–4391. [PubMed] [Google Scholar]
  • 9.Arnér E.S.J., Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000;267:6102–6109. doi: 10.1046/j.1432-1327.2000.01701.x. [DOI] [PubMed] [Google Scholar]
  • 10.Brigelius-Flohé R. Tissue-specific functions of individual glutathione peroxidases. Free Radic. Biol. Med. 1999;27:951–965. doi: 10.1016/S0891-5849(99)00173-2. [DOI] [PubMed] [Google Scholar]
  • 11.Mosley K., Waddington S.N., Ebrahim H., Cook C., Cattell V. Inducible nitric oxide synthase induction in Thy-1 glomerulonephritis is complement and reactive oxygen species dependent. Exp. Nephrol. 1999;7:26–34. doi: 10.1159/000020581. [DOI] [PubMed] [Google Scholar]
  • 12.Stahl R.A.K., Thaiss F., Oberle G., Brecht H.M., Schoeppe W., Wenzel U., Helmchen U.M. The platelet activating factor receptor antagonist WEB 2170 improves glomerular hemodynamics and morphology in a proliferative model of mesangial injury. J. Am. Soc. Nephrol. 1991;2:37–44. doi: 10.1681/ASN.V2137. [DOI] [PubMed] [Google Scholar]
  • 13.Burlington H., Cronkite E.P. Characteristics of cell cultures derived from renal glomeruli. Proc. Soc. Exp. Bio Med. 1973;142:143–149. doi: 10.3181/00379727-142-36977. [DOI] [PubMed] [Google Scholar]
  • 14.Harper P.A., Robinson J.M., Hoover R.L., Wright T.C., Karnovsky M. J. Improved methods for culturing rat glomerular cells. Kidney Int. 1984;26:875–880. doi: 10.1038/ki.1984.231. [DOI] [PubMed] [Google Scholar]
  • 15.Chirgwin J.M., Przybyla A.E., MacDonald R.J., Rutter W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979;18:5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  • 16.Boussif O., Lezoualc’h F., Zanta M.A., Mergny M.D., Scherman D., Demeneix B., Behr J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimime. Proc. Natl. Acad. Sci. USA. 1995;92:7297–7301. doi: 10.1073/pnas.92.16.7297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Brasier A.R., Tate J.E., Habener J.F. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. BioTechniques. 1989;7:1116–1122. [PubMed] [Google Scholar]
  • 18.Rosenthal N. Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol. 1987;152:704–720. doi: 10.1016/0076-6879(87)52075-4. [DOI] [PubMed] [Google Scholar]
  • 19.Dignam J.D., Lebovitz R.M., Roeder R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983;11:1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Wallenstein S., Zucker C.L., Fleiss J.L. Some statistical methods useful in circulation research. Circ. Res. 1980;47:1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  • 21.Daher R., Van Lente F. Characterization of selenocysteine lyase in human tissues and its relationship to tissue selenium concentrations. J. Trace Elem. Electrolytes Health Dis. 1992;6:189–194. [PubMed] [Google Scholar]
  • 22.Tesch G.H., Yang N., Yu H., Lan H.Y., Foti R., Chadban S.J., Atkins R.C., Nikolic-Paterson D.J. Intrinsic renal cells are the major source of interleukin-1 beta synthesis in normal and diseased rat kidney. Nephrol. Dial. Transplant. 1997;12:1109–1115. doi: 10.1093/ndt/12.6.1109. [DOI] [PubMed] [Google Scholar]
  • 23.Gaertner S.A., Janssen U., Ostendorf T., Koch K.-M., Floege J., Gwinner W. Glomerular oxidative and antioxidative systems in experimental mesangioproliferative glomerulonephritis. J. Am. Soc. Nephrol. 2002;13:2930–2937. doi: 10.1097/01.ASN.0000034908.43113.5D. [DOI] [PubMed] [Google Scholar]
  • 24.Wingender E., Chen X., Hehl R., Karas I., Liebich I., Matys V., Meinhardt T., Pruss M., Reuter I., Schacherer F. TRANSFAC: an integrated system for gene expression regulation. Nucl. Acids Res. 2000;28:316–331. doi: 10.1093/nar/28.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Gimble J.M., Flanagan F.R., Recker D., Max E.E. Identification and partial purification of a protein binding to the human immunoglobulin kappa enhancer κE2 site. Nucl. Acids Res. 1988;11:4967–4988. doi: 10.1093/nar/16.11.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Kitamura M., Ishikawa Y., Moreno-Manzano V., Xu Q., Konta T., Lucio-Cazana J., Furusu A., Nakayama K. Intervention by retinoic acid in oxidative stress-induced apoptosis. Nephrol. Dial. Transplant. 2002;17:84–87. doi: 10.1093/ndt/17.suppl_9.84. [DOI] [PubMed] [Google Scholar]
  • 27.Karin M., Liu Z., Zandi E. AP-1 function and regulation. Curr. Op. Cell. Biol. 1997;9:240–246. doi: 10.1016/S0955-0674(97)80068-3. [DOI] [PubMed] [Google Scholar]
  • 28.Panzer U., Schneider A., Guan Y., Reinking R., Zahner G., Harendza S., Wolf G., Thaiss F., Stahl R.A.K. Effects of different PPARgamma-agonists on MCP-1 expression and monocyte recruitment in experimental glomerulonephritis. Kidney Int. 2002;62:455–464. doi: 10.1046/j.1523-1755.2002.00476.x. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES