Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Sep 1;11(3):438–448. doi: 10.2478/s11658-006-0037-z

Emulsions of oil from Adenanthera pavonina L. seeds and their protective effect

Anna Jaromin 1,, Robert Żarnowski 2, Arkadiusz Kozubek 1
PMCID: PMC6472839  PMID: 16874455

Abstract

In our previous study, we developed very stable formulations of submicron oil-in-water emulsions from Adenanthera pavonina L. (family Leguminosae, subfamily Mimosoideae) seed oil, stabilised with soybean lecithin (SPC). Continuing our research, we introduced an additional co-emulsifier, Tween 80, to those formulations in order to decrease the size of the emulsion particles and improve their stability. Formulations with a mean particle size ranging from 43.6 to 306.5 nm and a negative surface charge from −45.3 to −28.5 mV were obtained. Our stability experiments also revealed that most of the tested formulations had a very good degree of stability over a 3-month storage period, both at 4°C and at room temperature.

Since many intravenous injectable drugs exhibit lytic activity against erythrocytes, we examined this activity for the emulsion form of cardol, a natural compound with already proven hemolytic properties. The incorporation of this agent into the emulsion caused an evident decrease in hemolytic activity (97–99%). This highly protective effect, observed against sheep erythrocytes, was independent of both the composition and the particle size of the emulsions used. Our studies suggest that nonionic surfactant/phospholipid-based emulsions containing this edible oil of A. pavonina L. may be useful as an alternative formulation matrix for pharmaceutical, nutritional or cosmetic applications of otherwise membrane-acting components.

Key words: Adenanthera pavonina L, Submicron oil-in-water emulsion, Hemolysis, Cardol

Full Text

The Full Text of this article is available as a PDF (449.8 KB).

Abbreviations used

H

hemolysis

PI

polydispersity index

SPC

soybean lecithin

References

  • 1.Jumaa M., Müller B.W. Lipid emulsions as a novel system to reduce the hemolytic activity of lytic agents: mechanism of the protective effect. Eur. J. Pharm. Sci. 2000;9:285–290. doi: 10.1016/S0928-0987(99)00071-8. [DOI] [PubMed] [Google Scholar]
  • 2.Zarnowski R., Jaromin A., Certik M., Czabany T., Fontaine J., Jakubik T., Iqbal M.C.M., Grandmougin-Ferjani A., Kozubek A., Pietr S.J. The oil of Adenanthera pavonina L. seeds and its emulsions. Z. Naturforsch. 2004;59c:321–326. doi: 10.1515/znc-2004-5-605. [DOI] [PubMed] [Google Scholar]
  • 3.Lam J.M., Pwee K.H., Sun W.Q., Chua Y.L., Wang X.J. Enzyme-stabilizing activity of seed trypsin inhibitors during desiccation. Plant Sci. 1999;142:209–218. doi: 10.1016/S0168-9452(99)00007-2. [DOI] [Google Scholar]
  • 4.Santos I.S., Da Cunha M., Machado O.L.T., Gomes V.M. A chitinase from Adenanthera pavonina L. seeds: purification, characterisation and immunolocalisation. Plant Sci. 2004;167:1203–1210. doi: 10.1016/j.plantsci.2004.04.021. [DOI] [Google Scholar]
  • 5.Ali M.S., Ahmed F., Azhar I., Pervez M.K. Pavonin: a new five-membered lactone from Advenanthera pavonina Linn. (Mimoaceae) Nat. Prod. Res. 2005;19:37–40. doi: 10.1081/14786410310001643830. [DOI] [PubMed] [Google Scholar]
  • 6.Olajide O.A., Echianu C.A., Adedapo A.D., Makinde J.M. Anti-inflammatory studies on Adenanthera pavonina seed extract. Inflammopharmacology. 2004;12:196–202. doi: 10.1163/1568560041352310. [DOI] [PubMed] [Google Scholar]
  • 7.Burkill I.H. A Dictionary of the Economic Products of the Malay Peninsula. 2nd edition. Kuala Lumpur: A-H. Government of Malaysia and Singapore; 1966. [Google Scholar]
  • 8.Kan P., Chen Z.B., Lee C.J., Chu I.M. Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system. J. Control. Release. 1999;58:271–278. doi: 10.1016/S0168-3659(98)00164-3. [DOI] [PubMed] [Google Scholar]
  • 9.Lundberg B.B., Risovic V., Ramaswamy M., Wasan K.M. A lipophilic paclitaxel derivative incorporated in a lipid emulsion for parenteral administration. J. Control. Release. 2003;86:93–100. doi: 10.1016/S0168-3659(02)00323-1. [DOI] [PubMed] [Google Scholar]
  • 10.Kang B.K., Chon S.K., Kim S.H., Jeong S.Y., Kim M.S., Cho S.H., Lee H.B., Khang G. Controlled release of paclitaxel from microemulsion containing PLGA and evaluation of anti-tumor activity in vitro and in vivo. Int. J. Pharm. 2004;286:147–156. doi: 10.1016/j.ijpharm.2004.08.008. [DOI] [PubMed] [Google Scholar]
  • 11.Kim S.J., Choi H.K., Lee Y.B. Pharmacokinetic and pharmacodynamic evaluation of cyclosporin A O/W-emulsion in rats. Int. J. Pharm. 2002;249:149–156. doi: 10.1016/S0378-5173(02)00490-8. [DOI] [PubMed] [Google Scholar]
  • 12.Klang S.H., Baszkin A., Benita S. The stability of piroxicam incorporated in a positively-charged submicron emulsion for ocular administration. Int. J. Pharm. 1996;132:33–44. doi: 10.1016/0378-5173(95)04324-1. [DOI] [Google Scholar]
  • 13.Tamilvanan S., Benita S. The potential of lipid emulsion for ocular delivery of lipophilic drugs. Eur. J. Pharm. Biopharm. 2004;58:357–368. doi: 10.1016/j.ejpb.2004.03.033. [DOI] [PubMed] [Google Scholar]
  • 14.Pape W.J.W., Pfannenbecker U., Hoppe U. Validation of the red blood cell test system as in vitro assay for the rapid screening of irritation potential of surfactants. Mol. Toxicol. 1987;1:525–536. [PubMed] [Google Scholar]
  • 15.Kozubek A., Tyman J.H. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 1999;99:1–26. doi: 10.1021/cr970464o. [DOI] [PubMed] [Google Scholar]
  • 16.Kozubek A. Isolation of 5-n-alkyl-, 5-n-alkenyl-and 5-n-alkdienyl-resorcinol homologs from rye grains. Acta Aliment. Polon. 1985;9:185–198. [Google Scholar]
  • 17.Zarnowski R., Kozubek A. Alkylresorcinol homologs in Pisum sativum L. varieties. Z. Naturforsch. 1999;54c:44–48. [Google Scholar]
  • 18.Weingarten C., Magahaes N.S.S., Baszkin A., Benita S., Seiller M. Interaction of non-ionic ABA copolymer surfactant with phospholipid monolayers: possible relevance to emulsion stabilization. Int. J. Pharm. 1991;75:171–179. doi: 10.1016/0378-5173(91)90191-P. [DOI] [Google Scholar]
  • 19.Jumaa M., Müller B.W. Influence of non-ionic surfactant PEG-660-12-hydroxy stearate on the surface properties of phospholipid monolayers and their effect on lipid emulsion stability. Col. Polym. Sci. 1999;277:347–353. doi: 10.1007/s003960050391. [DOI] [Google Scholar]
  • 20.Jumaa M., Müller B.W. Physicochemical properties of chitosan-lipid emulsions and their stability during the autoclaving process. Int. J. Pharm. 1999;183:175–184. doi: 10.1016/S0378-5173(99)00086-1. [DOI] [PubMed] [Google Scholar]
  • 21.Chung H., Kim T.W., Kwon M., Kwon I.C., Jeong S.Y. Oil components modulate physical characteristics and function of the natural oil emulsions as drug or gene delivery system. J. Control. Release. 2001;71:339–350. doi: 10.1016/S0168-3659(00)00363-1. [DOI] [PubMed] [Google Scholar]
  • 22.Yamaguchi T., Nishizaki K., Itai S., Hayashi H., Ohshima H. Physicochemical characterization of parenteral lipid emulsion: influence of cosurfactants on flocculation and coalescence. Pharm. Res. 1995;12:1273–1278. doi: 10.1023/A:1016205203264. [DOI] [PubMed] [Google Scholar]
  • 23.Jumaa M., Müller B.W. In vitro investigation of the effect of various isotonic substances in parenteral emulsions on human erythrocytes. Eur. J. Pharm. Sci. 1999;9:207–212. doi: 10.1016/S0928-0987(99)00059-7. [DOI] [PubMed] [Google Scholar]
  • 24.Nagasaka Y., Ishii F. Interaction between erythrocytes from three different animals and emulsions prepared with various lecithins and oils. Col. Surf. B: Biointerfaces. 2001;22:141–147. doi: 10.1016/S0927-7765(01)00148-5. [DOI] [PubMed] [Google Scholar]
  • 25.Sznitowska M., Dabrowska E.A., Janicki S. Solubilizing potential of submicron emulsions and aqueous dispersions of lecithin. Int. J. Pharm. 2002;246:203–206. doi: 10.1016/S0378-5173(02)00395-2. [DOI] [PubMed] [Google Scholar]
  • 26.Kan P., Chen Z.B., Kung R.Y., Lee C.J., Chu I.M. Study on the formulation of o/w emulsion as carriers for lipophilic drugs. Col. Surf. B: Biointerfaces. 1999;15:117–125. doi: 10.1016/S0927-7765(99)00048-X. [DOI] [Google Scholar]
  • 27.Liu F., Liu D. Amphipathic polyethylene glycol stabilized emulsions (o/w): physical characterization and in vivo distribution. Int. J. Pharm. 1995;125:73–80. doi: 10.1016/0378-5173(95)00117-2. [DOI] [Google Scholar]
  • 28.Lundberg B.B., Mortimer B.C., Redgrave T.G. Submicron lipid emulsions containing amphipathic polyethylene glycol for use as drug-carriers with prolonged circulation time. Int. J. Pharm. 1996;134:119–127. doi: 10.1016/0378-5173(96)04456-0. [DOI] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES