Abstract
The narrow-leafed lupin possesses valuable traits for environment-friendly agriculture and for the production of unconventional agricultural products. Despite various genetic and environmental studies, the breeding of improved cultivars has been slow due to the limited knowledge of its genomic structure. Further advances in genomics require, among other things, the availability of a genomic DNA library with large inserts. We report here on the construction of the first DNA library cloned in a BAC (bacterial artificial chromosome) vector from diploid Lupinus angustifolius L. cv. Sonet. The high molecular weight DNA used for its preparation was isolated from interphase nuclei that were purified by flow cytometry. The library comprises 55,296 clones and is ordered in 144×384-well microtitre plates. With an average insert size of 100 kb, the library represents six haploid genome equivalents. Thanks to the purification of the nuclei by flow cytometry, contamination with chloroplast DNA and mitochondrial DNA was negligible. The availability of a BAC library opens avenues for the development of a physical contig map and positional gene cloning, as well as for the analysis of the plant’s genome structure and evolution.
Key words: BAC, Genomic DNA library, Lupinus angustifolius, Narrow-leafed lupin
Full Text
The Full Text of this article is available as a PDF (447.2 KB).
Abbrevations used
- BAC
bacterial artificial chromosome
- DAPI
4′,6-diamidino-2-phenylindole
- FISH
fluorescence in situ hybridization
- HMW
high molecular weight
- PAC
artificial bacteriophage P1 chromosome
- PFGE
pulsed field gel electrophoresis
- PRINS
primed in situ DNA labeling
- YAC
yeast artificial chromosome
References
- 1.Gladstones, J.S. Lupins of the Mediterranean region and Africa. Technical Bull. 26, Dept. of Agriculture Western Australia, 1974.
- 2.López-Bellido L., Fuentes M., Lhamby J.C.B., Castillo J.E. Growth and yield of white lupin (L. albus) under Mediterranean conditions: effect of sowing date. Field Crops Res. 1994;36:87–94. doi: 10.1016/0378-4290(94)90057-4. [DOI] [Google Scholar]
- 3.Edwards A.C., van Barneveld R.J. Lupins for livestock and fish. In: Gladstones J.S., Atkins C., Hamblin J., editors. Lupins as Crop Plants: Biology, Production and Utilisation. London: CAB International; 1998. pp. 385–411. [Google Scholar]
- 4.Bhardwaj H.L. Evaluation of lupin as a new food/feed crop in the Mid-Atlantic region. In: Janick J., Whipkey A., editors. Trends In New Crops and New Uses. Aleksandria: ASHS Press; 2002. pp. 115–119. [Google Scholar]
- 5.Herridge D.F., Doyle A.D. The narrow-leafed lupin (Lupinus angustifolius L.) as a nitrogen-fixing rotation crop for cereal production. II Estimates of fixation by field-grown crops. Austr. J. Agri. Res. 1988;39:1017–1028. doi: 10.1071/AR9881017. [DOI] [Google Scholar]
- 6.Petterson D.S., Harris D.J. Cadmium and lead content of lupin seed grown in Western Australia. Austr. J. Exp. Agric. 1995;35:403–407. doi: 10.1071/EA9950403. [DOI] [Google Scholar]
- 7.Wink M., Meißner C., Witte L. Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry. 1995;38:139–153. doi: 10.1016/0031-9422(95)91890-D. [DOI] [Google Scholar]
- 8.Kachlicki P., Marczak, Kerhoas L., Einhorn J., Stobiecki M. Profiling isoflavone conjugates in root extracts of lupine species with LC/ESI/MSn systems. J. Mass Spectrom. 2005;40:1088–1103. doi: 10.1002/jms.884. [DOI] [PubMed] [Google Scholar]
- 9.Wink M. Chemical defence of Lupinus. Mollusc-repellent properties of quinolizinidine alkaloids. Z. Naturforsch. 1993;39c:553–558. [Google Scholar]
- 10.Folkman W., Szrechan J., Gulewicz K. Preparations of alkaloid-rich lupin in plant protection: an effect of the preparations on feeding and development of Piersi brassicaceae L. and Piersi rapae L. J. Plant Prot. Res. 2002;42:143–155. [Google Scholar]
- 11.Wolko B., Weeden N.F. Proceedings of the VIIth International Lupin Conference. Portugal: Evora; 1993. Linkage map of isozymes and RAPD markers for L. angustifolius L. pp. 42–49. [Google Scholar]
- 12.Kruszka K., Wolko B. Linkage maps of morphological and molecular markers in lupins. In: van Santen E., Wink M., Weissmann S., Roemer P., editors. Proceedings of the 9th International Lupin Conference, An Ancient Crop for the New Millenium. Germany: Klink/Müritz; 1999. pp. 100–110. [Google Scholar]
- 13.Boersma J.G., Pallotta M., Li C., Buirchell B.J., Sivasithamparam K., Yang H. Construction of a genetic linkage map using MFLP, and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus angustifolius) Cell. Mol. Biol. Lett. 2005;10:331–344. [PubMed] [Google Scholar]
- 14.You M., Boersma J.G., Buirchell B.J., Sweetingham M.W., Siddique K.H.M., Yang H. A PCR-based molecular marker applicable for marker-assisted selection for anthracnose disease resistance in lupin breeding. Cell. Mol. Biol. Lett. 2005;10:123–134. [PubMed] [Google Scholar]
- 15.Pazy B., Heyn C.C., Hermstadt I., Plitmann U. Studies in populations of the Old World Lupinus species. Chromosomes of the East-Mediterranean lupines. Israel J. Bot. 1977;26:115–127. [Google Scholar]
- 16.Carstairs S.A., Buirchell B.J., Cowling W.A. Chromosome number, size and interspecific crossing ability of three Old World lupins, Lupinus princei Harms, L. atlanticus Gladstones and L. digitatus Forskal, and implications for cyto-systematic relationships among the rough-seeded lupins. J. R. Soc. West. Aust. 1992;75:83–88. [Google Scholar]
- 17.Naganowska B., Zielińska A. Physical mapping of 18S–25S rDNA and 5S rDNA in Lupinus by fluorescent in situ hybridization. Cell. Mol. Biol. Lett. 2002;7:665–670. [PubMed] [Google Scholar]
- 18.Naganowska B., Doležel J., Święcicki W.K. Development of molecular cytogenetics and physical mapping of ribosomal RNA genes in Lupinus. Biol. Plant. 2003;46:211–215. doi: 10.1023/A:1022846526246. [DOI] [Google Scholar]
- 19.Hajdera I., Siwińska D., Hasterok R., Małuszyńska J. Molecular cytogenetic analysis of genome structure in Lupinus angustifolius and Lupinus cosentinii. Theor. Appl. Genet. 2003;107:988–996. doi: 10.1007/s00122-003-1303-3. [DOI] [PubMed] [Google Scholar]
- 20.Naganowska B., Kaczmarek A. Repetitive DNA sequences in cytogenetic studies of the Lupinus genome. In: van Santen E., Hill G.D., editors. Mexico, Where Old and New World Lupins Meet. Proceedings of the 11th International Lupin Conference. Canterbury, New Zealand: International Lupin Association; 2005. pp. 27–29. [Google Scholar]
- 21.Obermayer R., Święcicki W.K., Greilhuber J. Flow Cytometric Determination of Genome Size in some Old World Lupinus Species (Fabaceae) Plant Biol. 1999;1:403–407. [Google Scholar]
- 22.Naganowska B., Wolko B., Śliwińska E., Kaczmarek Z. Nuclear DNA Content Variation and Species Relationships in the Genus Lupinus (Fabaceae) Ann. Bot. 2003;92:349–355. doi: 10.1093/aob/mcg145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Primrose, S.B. Principles of Genome Analysis. A guide to Mapping and Sequencing DNA from Different Organisms. Blackwell Sciences Ltd Second Edition, 1998, 54–60.
- 24.Zhang, H.B., Woo, S.S. and Wing, R.A. BAC, YAC and cosmid library construction. in: Plant Gene Isolation. Principles and Practice (Foster G.D. and Twell, D. Eds.), John Wiley and Sons Ltd., 1996, 75–99.
- 25.Peterson D.G., Tompkins J.P., Wing R.A., Paterson A.H. Construction of plant bacterial artificial chromosome (BAC) libraries: An illustrated guide. J. Agric. Genom. 2000;5:1–100. [Google Scholar]
- 26.Choi S., Creelman R.A., Mullet J.E., Wing R.A. Construction and characterization of bacterial artificial chromosome library of Arabidopsis thaliana. Plant Mol. Biol. Rep. 1995;13:124–128. [Google Scholar]
- 27.Yang D., Parco A., Nandi S., Subudhi P., Zhu Y., Wang G., Huang N. Construction of a bacterial artificial chromosome (BAC) library and identification of overlapping BAC clones with chromosome 4-specific RFLP markers in rice. Theor. Appl. Genet. 1997;95:1147–1154. doi: 10.1007/s001220050675. [DOI] [Google Scholar]
- 28.Nam Y.W., Penmesta R. V., Endre G., Uribe P., Kim D., Cook D.R. Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes. Theor. Appl. Genet. 1999;98:638–646. doi: 10.1007/s001220051115. [DOI] [Google Scholar]
- 29.Lijavetzky D., Muzzi G., Wicker T., Keller B., Wing R., Dubcovsky J. Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome. 1999;42:1176–1182. doi: 10.1139/gen-42-6-1176. [DOI] [PubMed] [Google Scholar]
- 30.Allouis S., Moore G., Bellec A., Sharp R., Faivre P., Montimer K., Pateyron S., Foote T., Griffiths S., Caboche M., Chalhoub B. Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm “Chinese Spring”. Cereal. Res. Comm. 2003;31:331–338. [Google Scholar]
- 31.Tomkins, J.P., Frisch, D.A., Byrum, J.R., Jenkins, M.R., Barnett, L.J., Wicker, T., Luo, M. and Wing, R.A. Construction and characterization of a maize bacterial artificial chromosome (BAC) library for the inbred line LH132. Maize Genet. Coop. News Lett. (2000) 74 www.agron.missouri.edu/mnl/74.
- 32.Yu Y., Tomkins J.P., Waugh R., Frisch D.A., Kudrna D., Kleinhofs A., Brueggeman R.S., Muehlbauer G.J., Wise R.P., Wing R.A. A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor. Appl. Genet. 2000;101:1093–1099. doi: 10.1007/s001220051584. [DOI] [Google Scholar]
- 33.Danesh D., Peňula S., Mudge J., Denny R.L., Nordstrom H., Martinez J.P., Young N.D. A bacterial artificial chromosome library for soybean and identification of clones near a major cyst nematode resistance gene. Theor. Appl. Genet. 1998;96:196–202. doi: 10.1007/s001220050727. [DOI] [Google Scholar]
- 34.Song J., Dong F., Jiang J. Construction of a bacterial artificial chromosome (BAC) library for potato molecular cytogenetic research. Genome. 2000;43:199–204. doi: 10.1139/gen-43-1-199. [DOI] [PubMed] [Google Scholar]
- 35.Vanhouten W., MacKenzie S. Construction and characterization of a common bean bacterial artificial chromosome library. Plant Mol. Biol. 1999;40:977–983. doi: 10.1023/A:1006234823105. [DOI] [PubMed] [Google Scholar]
- 36.Folkertsma R.T., Spassova M. I., Prins M., Stevens M.R., Hille J., Goldbach R.W. Construction of a bacterial artificial library of Lycopersicon esculentum cv. Stevens and its application to physically map the Sw-5 locus. Mol. Breed. 1999;5:197–207. doi: 10.1023/A:1009650424891. [DOI] [Google Scholar]
- 37.Doležel J., Číhalíková J., Lucretti S. A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta. 1992;188:93–98. doi: 10.1007/BF01160717. [DOI] [PubMed] [Google Scholar]
- 38.Doležel J., Číhalíková J., Weiserowa J., Lucretti S. Cell cycle synchronization in plant root meristems. Methods Cell Sci. 1999;21:95–107. doi: 10.1023/A:1009876621187. [DOI] [PubMed] [Google Scholar]
- 39.Šimková H., Číhalíková J., Vrána J., Lysák M.A., Doležel J. Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol. Plant. 2003;46:369–373. doi: 10.1023/A:1024322001786. [DOI] [Google Scholar]
- 40.Šafář J., Noa-Carrazana J.C., Vrána J., Bartoš J., Alkhimova O., Lheureux F., Šimková H., Caruana M.L., Doležel J., Piffanelli P. Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome. Genome. 2004;47:1182–1191. doi: 10.1139/g04-062. [DOI] [PubMed] [Google Scholar]
- 41.Woo S.S., Jiang J., Gill B.S., Paterson A.H., Wing R.A. Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res. 1994;22:4922–4931. doi: 10.1093/nar/22.23.4922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Sambrook J., Russell D.W. Molecular Cloning. A Laboratory Manual. Third Edition. Cold Spring Harbor, N.Y., USA: Cold Spring Harbor Laboratory Press; 2001. p. A 2.4. [Google Scholar]
- 43.Yang H., McLeese J., Weisbart M., Dionne J.-L., Aubin R.A. Simplified high throughput protocol for Northern hybridization. Nucleic Acids Res. 1993;21:3337–3338. doi: 10.1093/nar/21.14.3337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Doležel J., Bartoš J., Voglmayr H., Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry. 2003;51:127–128. doi: 10.1002/cyto.a.10013. [DOI] [PubMed] [Google Scholar]
- 45.Clarke L., Carbon J. A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell. 1976;9:91–99. doi: 10.1016/0092-8674(76)90055-6. [DOI] [PubMed] [Google Scholar]
- 46.Wolko B., Kasprzak A., Doležel J., Naganowska B. Proc. of the 11th International Lupin Conference: Mexico, Where Old and New World Lupins Meet. Mexico: Guadalajara; 2005. Screening a Narrow-Leafed Lupin BAC Library to Search for Clones Containing Nodulation and Disease Resistance Genes; pp. 49–51. [Google Scholar]
- 47.Mozo T., Dewar K., Dunn P., Ecker J.R., Fischer S., Kloska S., Lehrach H., Marra M., Martienssen R., Meier-Ewert S., Altmann T. A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat. Genet. 1999;22:271–275. doi: 10.1038/10334. [DOI] [PubMed] [Google Scholar]
- 48.Islam-Faridi M.N., Childs K.L., Klein P.E., Hodnett G., Menz M.A., Klein R.R., Rooney W.L., Mullet J.E., Stelly D.M., Price H.J. A molecular cytogenetic map of sorghum chromosome 1: fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics. 2002;161:345–353. doi: 10.1093/genetics/161.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Suzuki G., Ura A., Saito N., Do G.S., Yamamoto M., Mukai Y., Seo B.B. BAC FISH analysis in Allium cepa. Genes Genet. Syst. 2001;76:251–255. doi: 10.1266/ggs.76.251. [DOI] [PubMed] [Google Scholar]
- 50.Zhang P., Li W., Fellers J., Friebe B., Gill B.S. BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma. 2004;112:288–299. doi: 10.1007/s00412-004-0273-9. [DOI] [PubMed] [Google Scholar]