Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2006 Sep 1;11(3):326–337. doi: 10.2478/s11658-006-0026-2

Protein profiling of sickle cell versus control RBC core membrane skeletons by ICAT technology and tandem mass spectrometry

Jose Chou 1,3,4, Pankaj K Choudhary 2,3,4, Steven R Goodman 1,3,4,5,
PMCID: PMC6472844  PMID: 16847560

Abstract

A proteomic approach using a cleavable ICAT reagent and nano-LC ESI tandem mass spectrometry was used to perform protein profiling of core RBC membrane skeleton proteins between sickle cell patients (SS) and controls (AA), and determine the efficacy of this technology. The data was validated through Peptide/Protein Prophet and protein ratios were calculated through ASAPratio. Through an ANOVA test, it was determined that there is no significant difference in the mean ratios from control populations (AA1/AA2) and sickle cell versus control populations (AA/SS). The mean ratios were not significantly different from 1.0 in either comparison for the core skeleton proteins (α spectrin, β spectrin, band 4.1 and actin). On the natural-log scale, the variation (standard deviation) of the method was determined to be 14.1% and the variation contributed by the samples was 13.8% which together give a total variation of 19.7% in the ratios.

Key words: Proteomics, Cleavable ICAT, Ion trap mass spectrometry, RBC membrane skeleton, Sickle cell

Full Text

The Full Text of this article is available as a PDF (513.8 KB).

Abbreviations used

ASAPratio

automated statistical analysis of protein abundance ratios+

cICAT

cleavable isotope coded affinity tag

CID

collision induced dissociation

2D DIGE

two dimension differential gel electrophoresis

ESI

electrospray ionization source

ICAT

isotope coded affinity tag

LC

liquid chromatography

RBC

red blood cell

SD

standard deviation

SILAC

stable isotope labeled amino acids in cell culture

WBCs

white blood cells

Footnotes

Invited paper

References

  • 1.Kakhniashvili D.G., Bulla L.A., Jr, Goodman S.R. The human erythrocyte proteome: analysis by ion trap mass spectrometry. Mol. Cell. Proteomics. 2004;3:501–509. doi: 10.1074/mcp.M300132-MCP200. [DOI] [PubMed] [Google Scholar]
  • 2.Aebersold R., Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207. doi: 10.1038/nature01511. [DOI] [PubMed] [Google Scholar]
  • 3.Shao-En O., Blagoev B., Kratchmarova I., Kristensen D. B., Hanno Steen P. A., Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics. 2002;1:376–386. doi: 10.1074/mcp.M200025-MCP200. [DOI] [PubMed] [Google Scholar]
  • 4.Patterson S.D., Aebersold R.H. Proteomics: the first decade and beyond. Nat. Genet. 2003;33:311–323. doi: 10.1038/ng1106. [DOI] [PubMed] [Google Scholar]
  • 5.Yi E.C., Li X.J., Cooke K., Lee H., Raught B., Page A., Aneliunas V., Hieter P., Goodlett D.R., Aebersold R. Increased quantitative proteome coverage with (13)C/(12)C-based, acid-cleavable isotope-coded affinity tag reagent and modified data acquisition scheme. Proteomics. 2005;5:380–387. doi: 10.1002/pmic.200400970. [DOI] [PubMed] [Google Scholar]
  • 6.Li J., Steen H., Gygi S.P. Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents the yeast salinity stress response. Mol. Cell. Proteomics. 2003;2:1198–1204. doi: 10.1074/mcp.M300070-MCP200. [DOI] [PubMed] [Google Scholar]
  • 7.Molloy M.P., Donohoe S., Brzezinski E.E., Kilby G.W., Stevenson T.I., Baker J.D., Goodlett R.D., Gage D.A. Large-scale evaluation of quantitative reproducibility and proteome coverage using acid cleavable isotope coded affinity tag mass spectrometry for proteomic profiling. Proteomics. 2005;5:1204–1208. doi: 10.1002/pmic.200400994. [DOI] [PubMed] [Google Scholar]
  • 8.Eng J.K., McCormack A. L., Yates J. R., 3rd An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994;5:976–998. doi: 10.1016/1044-0305(94)80016-2. [DOI] [PubMed] [Google Scholar]
  • 9.Keller, A., Nesvihzkii, A., Li, X., Pedroli, P., Eng, J., Hubbley, R., Mallick, P., Zhang, N., Shannon, P., Deutsch, E., Watts, J. and Aebersold R. Computational tools for high throughput proteomics. ISB Symposium, 2003.
  • 10.Keller A., Nesvizhskii A.I., Kolker E., Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002;74:5383–5392. doi: 10.1021/ac025747h. [DOI] [PubMed] [Google Scholar]
  • 11.Li X.J., Zhang H., Ranish J.A., Aebersold R. Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem. 2003;75:6648–6657. doi: 10.1021/ac034633i. [DOI] [PubMed] [Google Scholar]
  • 12.Nesvizhskii A.I., Keller A., Kolker E., Aebersold R. A Statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003;75:4646–4658. doi: 10.1021/ac0341261. [DOI] [PubMed] [Google Scholar]
  • 13.Searle S.R., Casella G., McCulloch . Variance Components. New York: John Wiley; 1992. pp. 168–231. [Google Scholar]
  • 14.Pinheiro J.C., Bates D. M. Mixed-Effects Models in S and S-PLUS. New York: Springer Verlag; 2000. pp. 57–96. [Google Scholar]
  • 15.Lehman E.L. Elements of Large Sample Theory. New York: Springer Verlag; 1998. pp. 277–362. [Google Scholar]
  • 16.Gygi S.P., Rist B., Gerber S.A., Turecek F., Gelb M., Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999;17:994–999. doi: 10.1038/13690. [DOI] [PubMed] [Google Scholar]
  • 17.Zhang R., Sioma C.S., Wang S., Regnier F.E. Fractionation of isotopically labeled peptides in quantitative proteomics. Anal. Chem. 2001;73:5142–5149. doi: 10.1021/ac010583a. [DOI] [PubMed] [Google Scholar]
  • 18.Oda Y., Owa T., Sato T., Boucher B. Quantitative chemical proteomics for identifying candidate drug targets. Anal. Chem. 2003;75:2159–2165. doi: 10.1021/ac026196y. [DOI] [PubMed] [Google Scholar]
  • 19.Hansen K.C., Schmitt-Ulms G., Chalkley R. J., Hirsch J., Baldwin M.A., Burlingame A.L. Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. Mol. Cell Proteomics. 2003;2:299–314. doi: 10.1074/mcp.M300021-MCP200. [DOI] [PubMed] [Google Scholar]
  • 20.Gygi S.P., Corthals G.L., Zhang Y., Rochon Y., Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl. Acad. Sci. USA. 2000;97:9390–9395. doi: 10.1073/pnas.160270797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Wilkins M.R., Gasteiger E., Sanchez J.C., Bairoch A., Hochstrasser D.F. Electrophoresis. 1998;19:1501–1505. doi: 10.1002/elps.1150190847. [DOI] [PubMed] [Google Scholar]
  • 22.Santoni V., Molloy M., Rabilloud T. Membrane proteins and proteomics: Un amour impossible? Electrophoresis. 2000;21:1054–1070. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1054::AID-ELPS1054>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  • 23.Molloy M.P., Phadke N.D., Chen H., Tyldesley R., Garfin D.E., Maddock J.R., Andrews P.C. Profiling the alkaline membrane proteome of Caulobacter crescentus with two-dimensional electrophoresis and mass spectrometry. Proteomics. 2002;2:899–910. doi: 10.1002/1615-9861(200207)2:7<899::AID-PROT899>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  • 24.Kakhniashvili D.G., Griko N.B., Bulla L.A., Jr, Goodman S.R. The proteomics of sickle cell disease: profiling of erythrocyte membrane proteins by 2D-DIGE and tandem mass spectrometry. Exp. Biol. Med. 2005;230:787–792. doi: 10.1177/153537020523001102. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES