Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Aug 29;12(2):149–166. doi: 10.1111/j.1527-3458.2006.00149.x

Metabotropic Glutamate Receptor Subtype 5 Antagonists MPEP and MTEP

Paul M Lea IV 1, Alan I Faden 2,
PMCID: PMC6494124  PMID: 16958988

ABSTRACT

Glutamate regulates the function of central nervous system (CNS), in part, through the cAMP and/or IP3/DAG second messenger‐associated metabotropic glutamate receptors (mGluRs). The mGluR5 antagonist 2‐methyl‐6‐(phenylethynyl)‐pyridine (MPEP) has been extensively used to elucidate potential physiological and pathophysiological functions of mGluR5. Unfortunately, recent evidence indicates significant non‐specific actions of MPEP, including inhibition of NMDA receptors. In contrast, in vivo and in vitro characterization of the newer mGluR5 antagonist 3‐[(2‐methyl‐1,3‐thiazol‐4‐yl)ethynyl]pyridine (MTEP) indicates that it is more highly selective for mGluR5 over mGluR1, has no effect on other mGluR subtypes, and has fewer off‐target effects than MPEP. This article reviews literature on both of these mGluR5 antagonists, which suggests their possible utility in neurodegeneration, addiction, anxiety and pain management.

Keywords: Apoptosis, Excitatory amino acids, mGluRs, MPEP, MTEP, Neurodegeneration, Neuroprotection, NMDA receptors, Phosphoinositols

Full Text

The Full Text of this article is available as a PDF (117.0 KB).

REFERENCES

  • 1. Agrawal SK, Theriault E, Fehlings MG. Role of group I metabotropic glutamate receptors in traumatic spinal cord white matter injury. J Neurotrauma 1998;15: 929–941. [DOI] [PubMed] [Google Scholar]
  • 2. Akbas SH, Yegin A, Ozben T. E. Clin Biochem 2005;38: 1009–1014. [DOI] [PubMed] [Google Scholar]
  • 3. Alagarsamy S, Marino MJ, Rouse ST, Gereau, RWt , Heinemann, SF , Conn PJ. Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nat Neurosci 1999;2: 234–240. [DOI] [PubMed] [Google Scholar]
  • 4. Al‐Ghoul WM, Meeker RB, Greenwood RS. Kindled seizures increase metabotropic glutamate receptor expression and function in the rat supraoptic nucleus. J Neurosci Res 1998;54: 412–423. [DOI] [PubMed] [Google Scholar]
  • 5. Allen JW, Eldadah BA, Faden AI. Beta‐amyloid‐induced apoptosis of cerebellar granule cells and cortical neurons: exacerbation by selective inhibition of group I metabotropic glutamate receptors. Neuropharmacology 1999;38: 1243–1252. [DOI] [PubMed] [Google Scholar]
  • 6. Allen JW, Knoblach SM, Faden AI. A in vitro. Cell Death Differ 2000;7: 470–476. [DOI] [PubMed] [Google Scholar]
  • 7. Anderson JJ, Bradbury MJ, Giracello DR, et al. In vivo receptor occupancy of mGlu5 receptor antagonists using the novel radioligand [3H]3‐methoxy‐5‐(pyridin‐2‐ylethynyl)pyridine). Eur J Pharmacol 2003;473: 35–40. [DOI] [PubMed] [Google Scholar]
  • 8. Anderson JJ, Rao SP, Rowe B, et al. [3H]Methoxymethyl‐3‐[(2–methyl‐1,3‐thiazol‐4‐yl)ethynyl]pyridine binding to metabotropic glutamate receptor subtype 5 in rodent brain: in vitro and in vivo characterization. J Pharmacol Exp Ther 2002;303: 1044–1051. [DOI] [PubMed] [Google Scholar]
  • 9. Anwyl R. Metabotropic glutamate receptors: Electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 1999;29: 83–120. [DOI] [PubMed] [Google Scholar]
  • 10. Armentero MT, Fancellu R, Nappi G, Bramanti P, Blandini F. Prolonged blockade of NMDA or mGluR5 glutamate receptors reduces nigrostriatal degeneration while inducing selective metabolic changes in the basal ganglia circuitry in a rodent model of Parkinson's disease. Neurobiol Dis 2005;22: 1–9. [DOI] [PubMed] [Google Scholar]
  • 11. Aronica E, Dell'Albani P, Condorelli DF, Nicoletti F, Hack N, Balazs R. M echanisms underlying developmental changes in the expression of metabotropic glutamate receptors in cultured cerebellar granule cells: Homologous desensitization and interactive effects involving N‐methyl‐D‐aspartate receptors. Mol Pharmacol 1993;44: 981–989. [PubMed] [Google Scholar]
  • 12. Aronica EM, Gorter JA, Paupard MC, Grooms SY, Bennett MV, Zukin RS. Status epilepticus‐induced alterations in metabotropic glutamate receptor expression in young and adult rats. J Neurosci 1997;17: 8588–8595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Aschrafi A, Cunningham BA, Edelman GM, Vanderklish PW. The fragile X mental retardation protein and group I metabotropic glutamate receptors regulate levels of mRNA granules in brain. Proc Natl Acad Sci USA 2005;102: 2180–2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Backstrom P, Bachteler D, Koch S, Hyytia P, Spanagel R. mGluR5 antagonist MPEP reduces ethanol‐seek‐ing and relapse behavior. Neuropsychopharmacology 2004;29: 921–928. [DOI] [PubMed] [Google Scholar]
  • 15. Ballard TM, Woolley ML, Prinssen E, Huwyler J, Porter R, Spooren W. The effect of the mGlu5 receptor antagonist MPEP in rodent tests of anxiety and cognition: A comparison. Psychopharmacology (Berl) 2005; 179: 218–229. [DOI] [PubMed] [Google Scholar]
  • 16. Bao WL, Williams AJ, Faden AI, Tortella FC. Selective mGluR5 receptor antagonist or agonist provides neuroprotection in a rat model of focal cerebral ischemia. Brain Res 2001;922: 173–179. [DOI] [PubMed] [Google Scholar]
  • 17. Barton ME, Peters SC, Shannon HE. Comparison of the effect of glutamate receptor modulators in the 6 Hz and maximal electroshock seizure models. Epilepsy Res 2003;56: 17–26. [DOI] [PubMed] [Google Scholar]
  • 18. Baskys A, Bayazitov I, Fang L, Blaabjerg M, Poulsen FR, Zimmer J. Group I metabotropic glutamate receptors reduce excitotoxic injury and may facilitate neurogenesis. Neuropharmacology 2005;49(Suppl 1):146–156. [DOI] [PubMed] [Google Scholar]
  • 19. Battaglia G, Bruno V, Pisani A, et al. Selective blockade of type‐1 metabotropic glutamate receptors induces neuroprotection by enhancing gabaergic transmission. Mol Cell Neurosci 2001; 17: 1071–1083. [DOI] [PubMed] [Google Scholar]
  • 20. Battaglia G, Busceti CL, Molinaro G, et al. Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro‐striatal damage induced by 1–methyl‐4–phenyl‐1,2,3,6–tetra‐hydropyridine in mice. J Neurosci 2004;24: 828–835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Bayer KU, De Koninck P, Leonard AS, Hell JW, Schulman H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 2001;411: 801–805. [DOI] [PubMed] [Google Scholar]
  • 22. Berrino L, Oliva P, Rossi F, Palazzo E, Nobili B, Maione S. Interaction between metabotropic and NMDA glutamate receptors in the periaqueductal grey pain modulatory system. Naunyn Schmiedeberg's Arch Pharmacol 2001;364: 437–443. [DOI] [PubMed] [Google Scholar]
  • 23. Berthele A, Boxall SJ, Urban A, et al. Distribution and developmental changes in metabotropic glutamate receptor messenger RNA expression in the rat lumbar spinal cord. Brain Res Dev Brain Res 1999;112: 39–53. [DOI] [PubMed] [Google Scholar]
  • 24. Bianchi R, Rezzani R, Borsani E, Rodella L. mGlu5 receptor antagonist decreases Fos expression in spinal neurons after noxious visceral stimulation. Brain Res 2003;960: 263–266. [DOI] [PubMed] [Google Scholar]
  • 25. Binns KE, Salt TE. Actions of the systemically active metabotropic glutamate antagonist MPEP on sensory responses of thalamic neurones. Neuropharmacology 2001;40: 639–644. [DOI] [PubMed] [Google Scholar]
  • 26. Blaabjerg M, Fang L, Zimmer J, Baskys A. Neuroprotection against NMDA excitotoxicity by group I meta‐botropic glutamate receptors is associated with reduction of NMDA stimulated currents. Exp Neurol 2003; 183: 573–580. [DOI] [PubMed] [Google Scholar]
  • 27. Blumcke I, Becker AJ, Klein C, et al. Temporal lobe epilepsy associated up‐regulation of metabotropic glutamate receptors: Correlated changes in mGluR1 mRNA and protein expression in experimental animals and human patients. JNeuropathol Exp Neurol 2000;59: 1–10. [DOI] [PubMed] [Google Scholar]
  • 28. Bordi F, Ugolini A. Involvement of mGluR(5) on acute nociceptive transmission. Brain Res 2000;871: 223–233. [DOI] [PubMed] [Google Scholar]
  • 29. Bradbury MJ, Giracello DR, Chapman DF, et al. Metabotropic glutamate receptor 5 antagonist‐induced stimulation of hypothalamic‐pituitary‐adrenal axis activity: Interaction with serotonergic systems. Neurophar-macology 2003;44: 562–572. [DOI] [PubMed] [Google Scholar]
  • 30. Brakeman PR, Lanahan AA, O'Brien R, et al. Homer: A protein that selectively binds metabotropic glutamate receptors [see comments]. Nature 1997;386: 284–288. [DOI] [PubMed] [Google Scholar]
  • 31. Breysse N, Amalric M, Salin P. Metabotropic glutamate 5 receptor blockade alleviates akinesia by normalizing activity of selective basal‐ganglia structures in parkinsonian rats. JNeurosci 2003;23: 8302–8309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Breysse N, Baunez C, Spooren W, Gasparini F, Amalric M. Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J Neurosci 2002;22: 5669–5678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Brodkin J, Bradbury M, Busse C, Warren N, Bristow LJ, Varney MA. Reduced stress‐induced hyperthermia in mGluR5 knockout mice. Eur J Neurosci 2002;16: 2241–2244. [DOI] [PubMed] [Google Scholar]
  • 34. Brodkin J, Busse C, Sukoff SJ, Varney MA. Anxiolytic‐like activity of the mGluR5 antagonist MPEP a comparison with diazepam and buspirone. PharmacolBiochem Behav 2002;73: 359–366. [DOI] [PubMed] [Google Scholar]
  • 35. Bruno V, Battaglia G, Copani A, et al. Metabotropic glutamate receptor subtypes as targets for neuroprotect‐ive drugs. J Cereb Blood Flow Metab 2001;21: 1013–1033. [DOI] [PubMed] [Google Scholar]
  • 36. Bruno V, Battaglia G, Kingston A, et al. Neuroprotective activity of the potent and selective mGlu1a metabotropic glutamate receptor antagonist, (+)‐2–methyl‐4 carboxyphenylglycine (LY367385): Comparison with LY357366, a broader spectrum antagonist with equal affinity for mGlu1a and mGlu5 receptors. Neuropharmacology 1999;38: 199–207. [DOI] [PubMed] [Google Scholar]
  • 37. Bruno V, Copani A, Knopfel T, et al. Activation of metabotropic glutamate receptors coupled to inositol phospholipid hydrolysis amplifies NMDA‐induced neuronal degeneration in cultured cortical cells. Neuropharmacology 1995;34: 1089–1098. [DOI] [PubMed] [Google Scholar]
  • 38. Bruno V, Ksiazek I, Battaglia G, et al. Selective blockade of metabotropic glutamate receptor subtype 5 is neuroprotective. Neuropharmacology 2000;39: 2223–2230. [DOI] [PubMed] [Google Scholar]
  • 39. Busse CS, Brodkin J, Tattersall D, et al. The behavioral profile of the potent and selective mGlu5 receptor antagonist 3–[(2–methyl‐1,3–thiazol‐4–yl)ethynyl]pyridine (MTEP) in rodent models of anxiety. Neuro-psychopharmacology 2004;29: 1971–1979. [DOI] [PubMed] [Google Scholar]
  • 40. Carmody RJ, McGowan AJ, Cotter TG. R in vitro. Exp Cell Res 1999;248: 520–530. [DOI] [PubMed] [Google Scholar]
  • 41. Catania MV, Landwehrmeyer GB, Testa CM, Standaert DG, Penney, JB , Young, AB Metabotropic glutamate receptors are differentially regulated during development. Neuroscience 1994;61: 481–495. [DOI] [PubMed] [Google Scholar]
  • 42. Cebers G, Zhivotovsky B, Ankarcrona M, Liljequist S. AMPA neurotoxicity in cultured cerebellar granule neurons: Mode of cell death. Brain Res Bull 1997;43: 393–403. [DOI] [PubMed] [Google Scholar]
  • 43. Cha JH, Kosinski CM, Kerner JA, et al. Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. Proc Natl Acad Sci USA 1998;95: 6480–6485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Chan SL, Griffin WS, Mattson MP. Evidence for caspase‐mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer's disease. J Neurosci Res 1999;57: 315–323. [DOI] [PubMed] [Google Scholar]
  • 45. Chang M, Zhang L, Tam JP, Sanders‐Bush E. D issecting G protein‐coupled receptor signaling pathways with membrane‐ permeable blocking peptides. Endogenous 5‐HT2C receptors in choroid plexus epithelial cells. J Biol Chem 2000;275: 7021–7029. [DOI] [PubMed] [Google Scholar]
  • 46. Chen N, Luo T, Raymond LA. Subtype‐dependence of NMDA receptor channel open probability. J Neurosci 1999; 19: 6844–6854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Chiamulera C, Epping‐Jordan MP, Zocchi A, et al. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 2001;4: 873–874. [DOI] [PubMed] [Google Scholar]
  • 48. Choi DW, Yokoyama M, Koh J. Zinc neurotoxicity in cortical cell culture. Neuroscience 1988;24: 67–79. [DOI] [PubMed] [Google Scholar]
  • 49. Chojnacka‐Wojcik E, Klodzinska A, Pilc A. Glutamate receptor ligands as anxiolytics. Curr Opin Invest Drugs 2001;2: 1112–1119. [PubMed] [Google Scholar]
  • 50. Coccurello R, Breysse N, Amalric M. Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology 2004;29: 1451–1461. [DOI] [PubMed] [Google Scholar]
  • 51. Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol To-xicol 1997;37: 205–237. [DOI] [PubMed] [Google Scholar]
  • 52. Copani A, Bruno V, Battaglia G, et al. Activation of metabotropic glutamate receptors protects cultured neurons against apoptosis induced by beta‐amyloid peptide. Mol Pharmacol 1995;47: 890–897. [PubMed] [Google Scholar]
  • 53. Cosford ND, Roppe J, Tehrani L, et al. [3H]‐methoxymethyl‐MTEP and [3H]‐methoxy‐PEPy: potent and selective radioligands for the metabotropic glutamate subtype 5 (mGlu5) receptor. Bioorg Med Chem Lett 2003;13: 351–354. [DOI] [PubMed] [Google Scholar]
  • 54. Cosford ND, Tehrani L, Roppe J, et al. 3–[(2–Methyl‐1,3–thiazol‐4–yl)ethynyl]‐pyridine: Apotent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J Med Chem 2003; 46: 204–206. [DOI] [PubMed] [Google Scholar]
  • 55. Cowen MS, Djouma E, Lawrence AJ. The metabotropic glutamate 5 receptor antagonist 3–[(2–methyl‐1,3–thiazol‐4–yl)ethynyl]‐pyridine reduces ethanol self‐administration in multiple strains of alcohol‐preferring rats and regulates olfactory glutamatergic systems. J Pharmacol Exp Ther 2005;315: 590–600. [DOI] [PubMed] [Google Scholar]
  • 56. Davis PK, Johnson GV. Energy metabolism and protein phosphorylation during apoptosis: A phosphorylation study of tau and high‐molecular‐weight tau in differentiated PC 12 cells. Biochem J 1999;340: 51–58. [PMC free article] [PubMed] [Google Scholar]
  • 57. De Labra C, Rivadulla C, Cudeiro J. Modulatory effects mediated by metabotropic glutamate receptor 5 on lateral geniculate nucleus relay cells. Eur J Neurosci 2005;21: 403–410. [DOI] [PubMed] [Google Scholar]
  • 58. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999;51: 7–61. [PubMed] [Google Scholar]
  • 59. Dolan S, Kelly JG, Monteiro AM, Nolan AM. Up‐regulation of metabotropic glutamate receptor subtypes 3 and 5 in spinal cord in a clinical model of persistent inflammation and hyperalgesia. Pain 2003;106: 501–512. [DOI] [PubMed] [Google Scholar]
  • 60. Domenici MR, Potenza RL, Martire A, et al. Chronic treatment with the mGlu5R antagonist MPEP reduces the functional effects of the mGlu5R agonist CHPG in the striatum of 6‐hydroxydopamine‐lesioned rats: Possible relevance to the effects of mGlu5R blockade in Parkinson's disease. J Neurosci Res 2005;80: 646–654. [DOI] [PubMed] [Google Scholar]
  • 61. Faden A, Allen J, Knoblach S. Exacerbation of neuronal death by activation of group I metabotropic glutamate receptors: Role of NMDA receptors and arachidonic acid release. Abstracts of the Annual Meeting of the Society for Neuroscience; Miami Beach , FL , 1999;Abs 112.10. [Google Scholar]
  • 62. Faden AI, Demediuk P, Panter SS, Vink R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 1989;244: 798–800. [DOI] [PubMed] [Google Scholar]
  • 63. Faden AI, O'Leary DM, Fan L, Bao W, Mullins PG, Movsesyan VA. S elective blockade of the mGluR1 receptor reduces traumatic neuronal injury in vitro and improves outcome after brain trauma. Exp Neurol 2001;167: 435–444. [DOI] [PubMed] [Google Scholar]
  • 64. Ferraguti F, Corti C, Valerio E, Mion S, Xuereb J. Activated astrocytes in areas of kainate‐induced neuronal injury upregulate the expression of the metabotropic glutamate receptors 2/3 and 5. Exp Brain Res 2001; 137: 1–11. [DOI] [PubMed] [Google Scholar]
  • 65. Flor PJ, Battaglia G, Nicoletti F, Gasparini F, Bruno V. Neuroprotective activity of metabotropic glutamate receptor ligands. Adv Exp Med Biol 2002;513: 197–223. [DOI] [PubMed] [Google Scholar]
  • 66. Francesconi A, Duvoisin RM. O pposing effects of protein kinase C and protein kinase A on metabotropic glutamate receptor signaling: Selective desensitization of the inositol trisphosphate/([a‐z])a2+ pathway by phosphorylation of the receptor‐G protein‐coupling domain. Proc Natl Acad Sci USA 2000;97: 6185–6190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Friberg IK, Young AB, Standaert DG. Differential localization of the mRNAs for the pertussis toxin insensitive G‐protein alpha sub‐units Gq, G11, and Gz in the rat brain, and regulation of their expression after striatal deafferentation. Brain Res Mol Brain Res 1998;54: 298–310. [DOI] [PubMed] [Google Scholar]
  • 68. Gasparini F, Floersheim P, Flor PJ, et al. Discovery and characterization of non‐competitive antagonists of group I metabotropic glutamate receptors. Farmaco 2001;56: 95–99. [DOI] [PubMed] [Google Scholar]
  • 69. Gasparini F, Lingenhohl K, Stoehr N, et al. 2‐Methyl‐6‐(phenylethynyl)‐pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 1999;38: 1493–1503. [DOI] [PubMed] [Google Scholar]
  • 70. Ghasemzadeh MB, Nelson LC, Lu XY, Kalivas PW. Neuroadaptations in ionotropic and metabotropic glutamate receptor mRNAproduced by cocaine treatment. JNeurochem 1999;72: 157–165. [DOI] [PubMed] [Google Scholar]
  • 71. Ghosh PK, Baskaran, N , Van Den Pol, AN. Developmentally regulated gene expression of all eight metabotropic glutamate receptors in hypothalamic suprachiasmatic and arcuate nuclei — a PCR analysis. Brain Res Dev Brain Res 1997;102: 1–12. [DOI] [PubMed] [Google Scholar]
  • 72. Goforth P, Ellis E, Satin L. Enhancement of AMPA‐mediated current after traumatic injury in cortical neurons. J Neurosci 1999;19: P7367–7374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Goforth PB, Ellis EF, Satin LS. Loss of AMPA receptor desensitization after mechanical injury of cortical neurons is dependent upon NMDA receptors and CAMKII. Abstracts of the Annual Meeting of the Society for Neuroscience; New Orleans , 2000; Abs 186.13. [Google Scholar]
  • 74. Golembiowska K, Konieczny J, Ossowska K, Wolfarth S. The role of striatal metabotropic glutamate receptors in degeneration of dopamine neurons: Review article. Amino Acids 2002;23: 199–205. [DOI] [PubMed] [Google Scholar]
  • 75. Golembiowska K, Konieczny J, Wolfarth S, Ossowska K. Neuroprotective action of MPEP, a selective mGluR5 antagonist, in methamphetamine‐induced dopaminergic neurotoxicity is associated with a decrease in dopamine outflow and inhibition of hyperthermia in rats. Neuropharmacology 2003;45: 484–492. [DOI] [PubMed] [Google Scholar]
  • 76. Gong QZ, Phillips LL, Lyeth BG. Metabotropic glutamate receptor protein alterations after traumatic brain injury in rats. J Neurotrauma 1999;16: 893–902. [DOI] [PubMed] [Google Scholar]
  • 77. Green MD, Yang X, Cramer M, King CD. In vitro metabolic studies on the selective metabotropic glutamate receptor sub‐type 5 (mGluR5) antagonist 3‐[(2–methyl‐1,3‐thiazol‐4‐yl) ethynyl]‐pyridine (MTEP). Neurosci Lett 2006;391: 91–95. [DOI] [PubMed] [Google Scholar]
  • 78. Hama AT. Acute activation of the spinal cord metabotropic glutamate subtype‐5 receptor leads to cold hypersensitivity in the rat. Neuropharmacology 2003;44: 423–430. [DOI] [PubMed] [Google Scholar]
  • 79. Hama AT, Urban MO. Antihyperalgesic effect of the cannabinoid agonist WIN 55,212‐2 is mediated through an interaction with spinal metabotropic glutamate‐5 receptors in rats. Neurosci Lett 2004;358: 21–24. [DOI] [PubMed] [Google Scholar]
  • 80. Harrison AA, Gasparini F, Markou A. Nicotine potentiation of brain stimulation reward reversed by DH beta E and SCH 23390, but not by eticlopride, LY 314582 or MPEP in rats. Psychopharmacology (Berl) 2002;160: 56–66. [DOI] [PubMed] [Google Scholar]
  • 81. Heidbreder CA, Bianchi M, Lacroix LP, et al. E in vivo. Synapse 2003;50: 269–276. [DOI] [PubMed] [Google Scholar]
  • 82. Hendricson AW, Guth PS. Signal discrimination in the semicircular canals: A role for group I metabotropic glutamate receptors. Neuroreport 2002;13: 1765–1768. [DOI] [PubMed] [Google Scholar]
  • 83. Herzig V, Capuani EM, Kovar KA, Schmidt WJ. Effects of MPEP on expression of food‐, MDMA‐ or amphetamine‐conditioned place preference in rats. Addict Biol 2005;10: 243–249. [DOI] [PubMed] [Google Scholar]
  • 84. Herzig V, Schmidt WJ. Effects of MPEP on locomotion, sensitization and conditioned reward induced by cocaine or morphine. Neuropharmacology 2004;47: 973–984. [DOI] [PubMed] [Google Scholar]
  • 85. Hodge CW, Miles MF, Sharko AC, et al. The mGluR5 antagonist MPEP selectively inhibits the onset and maintenance of ethanol self‐administration in C57BL/6J mice. Psychopharmacology (Berl) 2006;183: 429–438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Holohean AM, Hackman JC, Davidoff RA. Mechanisms involved in the metabotropic glutamate receptor‐enhancement of NMDA‐mediated motoneurone responses in frog spinal cord. Br J Pharmacol 1999;126: 333–341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Homayoun H, Stefani MR, Adams BW, Tamagan GD, Moghaddam B. Functional interaction between NMDA and mGlu5 Receptors: Effects on working memory, instrumental learning, motor behaviors, and dopamine release. Neuropsychopharmacology 2004;29: 1259–1269. [DOI] [PubMed] [Google Scholar]
  • 88. Hudson LJ, Bevan S, McNair K, et al. Metabotropic glutamate receptor 5 upregulation in A‐fibers after spinal nerve injury: 2‐Methyl‐6‐(phenylethynyl)‐pyridine (MPEP) reverses the induced thermal hyperalgesia. J Neurosci 2002;22: 2660–2668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Hyman SE. Addiction: A disease of learning and memory. Am J Psychiatry 2005;162: 1414–1422. [DOI] [PubMed] [Google Scholar]
  • 90. Iijima M, Chaki S. Separation‐induced ultrasonic vocalization in rat pups: Further pharmacological characterization. Pharmacol Biochem Behav 2005;82: 652–657. [DOI] [PubMed] [Google Scholar]
  • 91. Kachroo A, Orlando LR, Grandy DK, Chen JF, Young AB, Schwarzschild MA. Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J Neurosci 2005;25: 10414–10419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Kammermeier PJ, Xiao B, Tu JC, Worley PF, Ikeda SR. Homer proteins regulate coupling of group I metabotropic glutamate receptors to N‐type calcium and M‐type potassium channels. J Neurosci 2000;20: 7238–7245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Kawabata S, Kohara A, Tsutsumi R, et al. Diversity of calcium signaling by metabotropic glutamate receptors. J Biol Chem 1998;273: 17381–17385. [DOI] [PubMed] [Google Scholar]
  • 94. Kenny PJ, Paterson NE, Boutrel B, et al. Metabotropic glutamate 5 receptor antagonist MPEP decreased nicotine and cocaine self‐administration but not nicotine and cocaine‐induced facilitation of brain reward function in rats. Ann NY Acad Sci 2003;1003: 415–418. [DOI] [PubMed] [Google Scholar]
  • 95. Kew JN. Positive and negative allosteric modulation of metabotropic glutamate receptors: Emerging therapeutic potential. Pharmacol Ther 2004;104: 233–244. [DOI] [PubMed] [Google Scholar]
  • 96. Kim JH, Vezina P. Metabotropic glutamate receptors in the rat nucleus accumbens contribute to amphetamine‐induced locomotion. J Pharmacol Exp Ther 1998;284: 317–322. [PubMed] [Google Scholar]
  • 97. Klodzinska A, Tatarczynska E, Chojnacka‐Wojcik E, Nowak G, Cosford ND, Pilc A. Anxiolytic‐like effects of MTEP, a potent and selective mGlu5 receptor agonist does not involve GABA(A) signaling. Neuropharmacology 2004;47: 342–350. [DOI] [PubMed] [Google Scholar]
  • 98. Klodzinska A, Tatarczynska E, Chojnacka‐Wojcik E, Pilc A. Anxiolytic‐like effects of group I metabotropic glutamate antagonist 2‐methyl‐6‐(phenylethynyl)‐pyridine (MPEP) in rats. Pol J Pharmacol 2000;52: 463–466. [PubMed] [Google Scholar]
  • 99. Kozela E, Pilc A, Popik P. I nhibitory effects of MPEP, an mGluR5 antagonist, and memantine, an N‐methyl‐D‐aspartate receptor antagonist, on morphine antinociceptive tolerance in mice. Psychopharmacology (Berl) 2003;165: 245–251. [DOI] [PubMed] [Google Scholar]
  • 100. Krupp JJ, Vissel B, Thomas CG, Heinemann SF, Westbrook GL. I nteractions of calmodulin and alpha‐actinin with the NR1 subunit modulate Ca2+‐dependent inactivation of NMDA receptors. J Neurosci 1999;19: 1165–1178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. Lan JY, Skeberdis VA, Jover T, Zheng X, Bennett MV, Zukin RS. Activation of metabotropic glutamate receptor 1 accelerates NMDA receptor trafficking. J Neurosci 2001;21: 6058–6068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Lea PM, Custer SJ, Stoica BA, Faden AI. Modulation of stretch‐induced enhancement of neuronal NMDA receptor current by mGluR1 depends upon presence of glia. J Neurotrauma 2003;20: 1233–1249. [DOI] [PubMed] [Google Scholar]
  • 103. Lea PM, Custer SJ, Vicini S, Faden AI. Neuronal and glial mGluR5 modulation prevents stretch‐induced enhancement of NMDA receptor current. Pharmacol Biochem Behav 2002;73: 287–298. [DOI] [PubMed] [Google Scholar]
  • 104. Lea PM, Faden AI. Modulation of metabotropic glutamate receptors as potential treatment for acute and chronic neurodegenerative disorders. Drug News Persp 2003;16: 513–522. [DOI] [PubMed] [Google Scholar]
  • 105. Lea PM, Movsesyan VA, Faden AI. Neuroprotective activity of the mGluR5 antagonists MPEP and MTEP against acute excitotoxicity differs and does not reflect actions at mGluR5 receptors. Br J Pharmacol 2005;145: 527–534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Lee AC, Wong RK, Chuang SC, Shin HS, Bianchi R. Role of synaptic metabotropic glutamate receptors in epileptiform discharges in hippocampal slices. J Neurophysiol 2002;88: 1625–1633. [DOI] [PubMed] [Google Scholar]
  • 107. Lee B, Platt DM, Rowlett JK, Adewale AS, Spealman RD. Attenuation of behavioral effects of cocaine by the metabotropic glutamate receptor 5 antagonist 2‐methyl‐6‐(phenylethynyl)‐pyridine in squirrel monkeys: Comparison with dizocilpine. J Pharmacol Exp Ther 2005;312: 1232–1240. [DOI] [PubMed] [Google Scholar]
  • 108. Li W, Neugebauer V. Differential roles of mGluR1 and mGluR5 in brief and prolonged nociceptive processing in central amygdala neurons. J Neurophysiol 2004;91: 13–24. [DOI] [PubMed] [Google Scholar]
  • 109. Lojkova D, Mares P. Anticonvulsant action of an antagonist of metabotropic glutamate receptors mGluR5 MPEP in immature rats. Neuropharmacology 2005;49(Suppl 1):219–229. [DOI] [PubMed] [Google Scholar]
  • 110. Lyeth BG, Gong QZ, Shields S, Muizelaar JP, Berman RF. Group I metabotropic glutamate antagonist reduces acute neuronal degeneration and behavioral deficits after traumatic brain injury in rats. Exp Neurol 2001;169: 191–199. [DOI] [PubMed] [Google Scholar]
  • 111. Malherbe P, Kratochwil N, Zenner MT, et al. Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2‐methyl‐6‐(phenylethynyl)‐pyridine. Mol Pharmacol 2003;64: 823–832. [DOI] [PubMed] [Google Scholar]
  • 112. Mares P, Folbergrova J, Kubova H. Excitatory aminoacids and epileptic seizures in immature brain. Physiol Res 2004;53(Suppl 1):S115–124. [PubMed] [Google Scholar]
  • 113. Mares P, Mikulecka A. MPEP, an antagonist of metabotropic glutamate receptors, exhibits anticonvulsant action in immature rats without a serious impairment of motor performance. Epilepsy Res 2004;60: 17–26. [DOI] [PubMed] [Google Scholar]
  • 114. Meli E, Picca R, Attucci S, et al. A in vivo. Pharmacol Biochem Behav 2002;73: 439–446. [DOI] [PubMed] [Google Scholar]
  • 115. Merlin LR. Differential roles for mGluR1 and mGluR5 in the persistent prolongation of epileptiform bursts. J Neurophysiol 2002;87: 621–625. [DOI] [PubMed] [Google Scholar]
  • 116. Micheli F. Methylphenylethynylpyridine (MPEP) Novartis. Curr Opin Invest Drugs 2000;1: 355–359. [PubMed] [Google Scholar]
  • 117. Miller S, Romano C, Cotman CW. Growth factor upregulation of a phosphoinositide‐coupled metabotropic glutamate receptor in cortical astrocytes. J Neurosci 1995;15: 6103–6109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118. Mills CD, Fullwood SD, Hulsebosch CE. Changes in metabotropic glutamate receptor expression following spinal cord injury. Exp Neurol 2001;170: 244–257. [DOI] [PubMed] [Google Scholar]
  • 119. Mills CD, Johnson KM, Hulsebosch CE. Group I metabotropic glutamate receptors in spinal cord injury: Roles in neuroprotection and the development of chronic central pain. J Neurotrauma 2002;19: 23–42. [DOI] [PubMed] [Google Scholar]
  • 120. Moldrich RX, Chapman AG, De Sarro G, Meldrum BS. Glutamate metabotropic receptors as targets for drug therapy in epilepsy. Eur J Pharmacol 2003;476: 3–16. [DOI] [PubMed] [Google Scholar]
  • 121. Montoliu C, Llansola M, Cucarella C, Grisolia S, Felipo V. Activation of the metabotropic glutamate receptor mGluR5 prevents glutamate toxicity in primary cultures of cerebellar neurons. J Pharmacol Exp Ther 1997;281: 643–647. [PubMed] [Google Scholar]
  • 122. Movsesyan VA, O'Leary DM, Fan L, et al. m GluR5 antagonists 2‐methyl‐6–(phenylethynyl)‐pyridine and (E)‐2‐methyl‐6‐(2‐phenylethenyl)‐pyridine reduce traumatic neuronal injury in vitro and in vivo by antagonizing N‐methyl‐D‐aspartate receptors. J Pharmacol Exp Ther 2001;296: 41–47. [PubMed] [Google Scholar]
  • 123. Mukhin A, Fan L, Faden AI. Activation of metabotropic glutamate receptor subtype mGluR1 contributes to post‐traumatic neuronal injury. J Neurosci 1996;16: 6012–6020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124. Nagaraja RY, Becker A, Reymann KG, Balschun D. Repeated administration of group I mGluR antagonists prevents seizure‐induced long‐term aberrations in hippocampal synaptic plasticity. Neuropharmacology 2005;49(Suppl 1):179–187. [DOI] [PubMed] [Google Scholar]
  • 125. Narita M, Suzuki M, Niikura K, et al. Involvement of spinal metabotropic glutamate receptor 5 in the development of tolerance to morphine‐induced antinociception. J Neurochem 2005;94: 1297–1305. [DOI] [PubMed] [Google Scholar]
  • 126. Nestler EJ. Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol Sci 2004;25: 210–218. [DOI] [PubMed] [Google Scholar]
  • 127. Neugebauer V, Chen PS, Willis WD. Role of metabotropic glutamate receptor subtype mGluR1 in brief nociception and central sensitization of primate STT cells. J Neurophysiol 1999;82: 272–282. [DOI] [PubMed] [Google Scholar]
  • 128. Neugebauer V, Li W, Bird GC, Bhave G, Gereau RWt Synaptic plasticity in the amygdala in a model of arthritic pain: Differential roles of metabotropic glutamate receptors 1 and 5. J Neurosci 2003;23: 52–63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129. Neugebauer V, Lucke T, Schaible HG. Requirement of metabotropic glutamate receptors for the generation of inflammation‐evoked hyperexcitability in rat spinal cord neurons. Eur J Neurosci 1994;6: 1179–1186. [DOI] [PubMed] [Google Scholar]
  • 130. Nicotera P, Lipton SA. Excitotoxins in neuronal apoptosis and necrosis. J Cereb Blood Flow Metab 1999;19: 583–591. [DOI] [PubMed] [Google Scholar]
  • 131. Ohishi H, Shigemoto R, Nakanishi S, Mizuno N. Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. Neuroscience 1993;53: 1009–1018. [DOI] [PubMed] [Google Scholar]
  • 132. Ohishi H, Shigemoto R, Nakanishi S, Mizuno N. D istribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: An in situ hybridization study. J Comp Neurol 1993;335: 252–266. [DOI] [PubMed] [Google Scholar]
  • 133. Oka A, Takashima S. The up‐regulation of metabotropic glutamate receptor 5 (mGluR5) in Down's syndrome brains. Acta Neuropathol (Berl) 1999;97: 275–278. [DOI] [PubMed] [Google Scholar]
  • 134. O'Leary DM, Movsesyan V, Vicini S, Faden AI. Selective mGluR5 antagonists MPEP and SIB‐1893 decrease NMDA or glutamate‐mediated neuronal toxicity through actions that reflect NMDA receptor antagonism. Br J Pharmacol 2000;131: 1429–1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135. Olive MF, McGeehan AJ, Kinder JR, et al. The mGluR5 antagonist 6‐methyl‐2‐(phenylethynyl)pyridine decreases ethanol consumption via a protein kinase C epsilon‐dependent mechanism. Mol Pharmacol 2005;67: 349–355. [DOI] [PubMed] [Google Scholar]
  • 136. Orlando LR, Dunah AW, Standaert DG, Young AB. Tyrosine phosphorylation of the metabotropic glutamate receptor mGluR5 in striatal neurons. Neuropharmacology 2002;43: 161–173. [DOI] [PubMed] [Google Scholar]
  • 137. Ossowska K, Konieczny J, Wardas J, Golembiowska K, Wolfarth S, Pilc A. The role of striatal metabotropic glutamate receptors in Parkinson's disease. Amino Acids 2002;23: 193–198. [DOI] [PubMed] [Google Scholar]
  • 138. Ossowska K, Konieczny J, Wolfarth S, Pilc A. MTEP, a new selective antagonist of the metabotropic glutamate receptor subtype 5 (mGluR5), produces antiparkinsonian‐like effects in rats. Neuropharmacology 2005;49: 447–455. [DOI] [PubMed] [Google Scholar]
  • 139. Ossowska K, Konieczny J, Wolfarth S, Wieronska J, Pilc A. Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian‐like effects in rats. Neuropharmacology 2001;41: 413–420. [DOI] [PubMed] [Google Scholar]
  • 140. Oueslati A, Breysse N, Amalric M, Kerkerian‐Le Goff L, Salin P. Dysfunction of the cortico‐basal ganglia‐cortical loop in a rat model of early parkinsonism is reversed by metabotropic glutamate receptor 5 antagonism. Eur J Neurosci 2005;22: 2765–2774. [DOI] [PubMed] [Google Scholar]
  • 141. Pagano A, Ruegg D, Litschig S, et al. T he non‐competitive antagonists 2‐methyl‐6‐(phenylethynyl)pyridine and 7–hydroxyiminocyclopropan[b]chromen‐1a‐carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J Biol Chem 2000;275: 33750–33758. [DOI] [PubMed] [Google Scholar]
  • 142. Page ME, Szeliga P, Gasparini F, Cryan JF. Blockade of the mGlu5 receptor decreases basal and stress‐induced cortical norepinephrine in rodents. Psychopharmacology (Berl) 2005;179: 240–246. [DOI] [PubMed] [Google Scholar]
  • 143. Palazzo E, De Novellis V, Marabese I, et al. Interaction between vanilloid and glutamate receptors in the central modulation of nociception. Eur J Pharmacol 2002;439: 69–75. [DOI] [PubMed] [Google Scholar]
  • 144. Palazzo E, Marabese I, De Novellis V, et al. Metabotropic and NMDA glutamate receptors participate in the cannabinoid‐induced antinociception. Neuropharmacology 2001;40: 319–326. [DOI] [PubMed] [Google Scholar]
  • 145. Palucha A, Branski P, Pilc A. Selective mGlu5 receptor antagonist MTEP attenuates naloxone‐induced morphine withdrawal symptoms. Pol J Pharmacol 2004;56: 863–866. [PubMed] [Google Scholar]
  • 146. Paterson NE, Markou A. The metabotropic glutamate receptor 5 antagonist MPEP decreased break points for nicotine, cocaine and food in rats. Psychopharmacology (Berl) 2005;179: 255–261. [DOI] [PubMed] [Google Scholar]
  • 147. Paterson NE, Semenova S, Gasparini F, Markou A. The mGluR5 antagonist MPEP decreased nicotine self‐administration in rats and mice. Psychopharmacology (Berl) 2003;167: 257–264. [DOI] [PubMed] [Google Scholar]
  • 148. Pietraszek M, Rogoz Z, Wolfarth S, Ossowska K. Opposite influence of MPEP, an mGluR5 antagonist, on the locomotor hyperactivity induced by PCP and amphetamine. J Physiol Pharmacol 2004;55: 587–593. [PubMed] [Google Scholar]
  • 149. Pietraszek M, Sukhanov I, Maciejak P, et al. Anxiolytic‐like effects of mGlu1 and mGlu5 receptor antagonists in rats. Eur J Pharmacol 2005;514: 25–34. [DOI] [PubMed] [Google Scholar]
  • 150. Pike B, Zhao X, Newcomb J, Glenn C, Anderson D, Hayes R. Stretch injury causes calpain and caspase‐3 activation and necrotic and apoptotic cell death in septo‐hippocampal cell cultures. J Neurotrauma 2000;17: P283–298. [DOI] [PubMed] [Google Scholar]
  • 151. Pilc A, Klodzinska A, Branski P, et al. Multiple MPEP administrations evoke anxiolytic‐ and antide‐pressant‐like effects in rats. Neuropharmacology 2002;43: 181–187. [DOI] [PubMed] [Google Scholar]
  • 152. Pisani A, Gubellini P, Bonsi P, et al. M etabotropic glutamate receptor 5 mediates the potentiation of N‐methyl‐D‐aspartate responses in medium spiny striatal neurons. Neuroscience 2001;106: 579–587. [DOI] [PubMed] [Google Scholar]
  • 153. Porter RH, Jaeschke G, Spooren W, et al. Fenobam: A clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J Pharmacol Exp Ther 2005;315: 711–721. [DOI] [PubMed] [Google Scholar]
  • 154. Rao AM, Hatcher JF, Dempsey RJ. Neuroprotection by group I metabotropic glutamate receptor antagonists in forebrain ischemia of gerbil. Neurosci Lett 2000;293: 1–4. [DOI] [PubMed] [Google Scholar]
  • 155. Reid SN, Romano C, Hughes T, Daw NW. Developmental and sensory‐dependent changes of phosphoino‐sitide‐linked metabotropic glutamate receptors. J Comp Neurol 1997;389: 577–583. [DOI] [PubMed] [Google Scholar]
  • 156. Richardson‐Burns SM, Haroutunian V, Davis KL, Watson SJ, Meador‐Woodruff JH. Metabotropic glutamate receptor mRNA expression in the schizophrenic thalamus. Biol Psychiatry 2000;47: 22–28. [DOI] [PubMed] [Google Scholar]
  • 157. Ritzen A, Mathiesen JM, Thomsen C. Molecular pharmacology and therapeutic prospects of metabotropic glutamate receptor allosteric modulators. Basic Clin Pharmacol Toxicol 2005;97: 202–213. [DOI] [PubMed] [Google Scholar]
  • 158. Rodrigues RJ, Alfaro TM, Rebola N, Oliveira CR, Cunha RA. Co‐localization and functional interaction between adenosine A(2A) and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J Neurochem 2005;92: 433–441. [DOI] [PubMed] [Google Scholar]
  • 159. Rorick‐Kehn LM, Hart JC, McKinzie DL. Pharmacological characterization of stress‐induced hyperthermia in DBA/2 mice using metabotropic and ionotropic glutamate receptor ligands. Psychopharmacology (Berl) 2005;183: 226–240. [DOI] [PubMed] [Google Scholar]
  • 160. Salt TE, Binns KE, Turner JP, Gasparini F, Kuhn R. Antagonism of the mGlu5 agonist 2‐chloro‐5‐hydroxyphenylglycine by the novel selective mGlu5 antagonist 6‐methyl‐2‐(phenylethynyl)‐pyridine (MPEP) in the thalamus. Br J Pharmacol 1999;127: 1057–1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161. Saugstad JA, Marino MJ, Folk JA, Hepler JR, Conn PJ. RGS4 inhibits signaling by group I metabotropic glutamate receptors. J Neurosci 1998;18: 905–913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162. Schiefer J, Sprunken A, Puls C, et al. The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of Huntington's disease. Brain Res 2004;1019: 246–254. [DOI] [PubMed] [Google Scholar]
  • 163. Schoepp DD, Jane DE, Monn JA. Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 1999;38: 1431–1476. [DOI] [PubMed] [Google Scholar]
  • 164. Schroeder JP, Overstreet DH, Hodge CW. The mGluR5 antagonist MPEP decreases operant ethanol self‐administration during maintenance and after repeated alcohol deprivations in alcohol‐preferring (P) rats. Psychopharmacology (Berl) 2005;179: 262–270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165. Schulz B, Fendt M, Gasparini F, Lingenhohl K, Kuhn R, Koch M. The metabotropic glutamate receptor antagonist 2‐methyl‐6‐(phenylethynyl)‐pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 2001;41: 1–7. [DOI] [PubMed] [Google Scholar]
  • 166. Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH. P referential Zn2+ influx through Ca2+‐permeable AMPA/([a‐z])ainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci USA 1999;96: 2414–2419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167. Sensi SL, Yin HZ, Weiss JH. G lutamate triggers preferential Zn2+ flux through Ca2+ permeable AMPA channels and consequent ROS production. Neuroreport 1999;10: 1723–1727. [DOI] [PubMed] [Google Scholar]
  • 168. Sheng M, Kim E. The Shank family of scaffold proteins. J Cell Sci 2000;113(Pt 11):1851–1856. [DOI] [PubMed] [Google Scholar]
  • 169. Shigemoto R, Nakanishi S, Mizuno N. D istribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: An in situ hybridization study in adult and developing rat. J Comp Neurol 1992;322: 121–135. [DOI] [PubMed] [Google Scholar]
  • 170. Simonian NA, Getz RL, Leveque JC, Konradi C, Coyle JT. Kainate induces apoptosis in neurons. Neuroscience 1996;74: 675–683. [DOI] [PubMed] [Google Scholar]
  • 171. Simonian NA, Getz RL, Leveque JC, Konradi C, Coyle JT. Kainic acid induces apoptosis in neurons. Neuroscience 1996;75: 1047–1055. [DOI] [PubMed] [Google Scholar]
  • 172. Simonyi A, Miller LA, Sun GY. Region‐specific decline in the expression of metabotropic glutamate receptor 7 mRNA in rat brain during aging. Brain Res Mol Brain Res 2000;82: 101–106. [DOI] [PubMed] [Google Scholar]
  • 173. Simonyi A, Schachtman TR, Christoffersen GR. The role of metabotropic glutamate receptor 5 in learning and memory processes. Drug News Persp 2005;18: 353–361. [DOI] [PubMed] [Google Scholar]
  • 174. Simonyi A, Xia J, Igbavboa U, Wood WG, Sun GY. Age differences in the expression of metabotropic glutamate receptor 1 and inositol 1,4,5‐trisphosphate receptor in mouse cerebellum. Neurosci Lett 1998;244: 29–32. [DOI] [PubMed] [Google Scholar]
  • 175. Simonyi A, Zhang JP, Sun GY. Changes in mRNA levels for group I metabotropic glutamate receptors following inutero hypoxia‐ischemia. Brain Res Dev Brain Res 1999;112: 31–37. [DOI] [PubMed] [Google Scholar]
  • 176. Skeberdis VA, Lan J, Opitz T, Zheng X, Bennett MV, Zukin RS. mGluR1‐mediated potentiation of NMDA receptors involves a rise in intracellular calcium and activation of protein kinase C. Neuropharmacology 2001;40: 856–865. [DOI] [PubMed] [Google Scholar]
  • 177. Slassi A, Isaac M, Edwards L, et al. Recent advances in non‐competitive mGlu5 receptor antagonists and their potential therapeutic applications. Curr Top Med Chem 2005;5: 897–911. [DOI] [PubMed] [Google Scholar]
  • 178. Smolders I, Lindekens H, Clinckers R, et al. In vivo modulation of extracellular hippocampal glutamate and GABA levels and limbic seizures by group I and II metabotropic glutamate receptor ligands. J Neurochem 2004;88: 1068–1077. [DOI] [PubMed] [Google Scholar]
  • 179. Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, Bear MF. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 2001;4: 1079–1085. [DOI] [PubMed] [Google Scholar]
  • 180. Spooren W, Gasparini F. mGlu5 receptor antagonists: A novel class of anxiolytics Drug News Persp 2004;17: 251–257. [DOI] [PubMed] [Google Scholar]
  • 181. Spooren WP, Gasparini F, Bergmann R, Kuhn R. Effects of the prototypical mGlu(5) receptor antagonist 2‐methyl‐6‐(phenylethynyl)‐pyridine on rotarod, locomotor activity and rotational responses in unilateral 6‐OHDA‐lesioned rats. Eur J Pharmacol 2000;406: 403–410. [DOI] [PubMed] [Google Scholar]
  • 182. Spooren WP, Schoeffter P, Gasparini F, Kuhn R, Gentsch C. Pharmacological and endocrinological characterisation of stress‐induced hyperthermia in singly housed mice using classical and candidate anxiolytics (LY314582, MPEP and NKP608). Eur J Pharmacol 2002;435: 161–170. [DOI] [PubMed] [Google Scholar]
  • 183. Spooren WP, Vassout A, Neijt HC, et al. Anxiolytic‐like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2‐methyl‐6‐(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 2000;295: 1267–1275. [PubMed] [Google Scholar]
  • 184. Steckler T, Lavreysen H, Oliveira AM, et al. Effects of mGlu1 receptor blockade on anxiety‐related behaviour in the rat lick suppression test. Psychopharmacology (Berl) 2005;179: 198–206. [DOI] [PubMed] [Google Scholar]
  • 185. Steckler T, Oliveira AF, Van Dyck C, et al. Metabotropic glutamate receptor 1 blockade impairs acquisition and retention in a spatial Water maze task. Behav Brain Res 2005;164: 52–60. [DOI] [PubMed] [Google Scholar]
  • 186. Stefani A, Pisani A, Mercuri NB, Calabresi P. The modulation of calcium currents by the activation of mGluRs. Functional implications. Mol Neurobiol 1996;13: 81–95. [DOI] [PubMed] [Google Scholar]
  • 187. Stoop R, Conquet F, Pralong E. D etermination of group I metabotropic glutamate receptor subtypes involved in the frequency of epileptiform activity in vitro using mGluR1 and mGluR5 mutant mice. Neuropharmacology 2003;44: 157–162. [DOI] [PubMed] [Google Scholar]
  • 188. Strasser U, Lobner D, Behrens MM, Canzoniero LM, Choi DW. Antagonists for group I mGluRs attenuate excitotoxic neuronal death in cortical cultures. Eur J Neurosci 1998;10: 2848–2855. [DOI] [PubMed] [Google Scholar]
  • 189. Swanson CJ, Baker DA, Carson D, Worley PF, Kalivas PW. Repeated cocaine administration attenuates group I metabotropic glutamate receptor‐mediated glutamate release and behavioral activation: A potential role for Homer. J Neurosci 2001;21: 9043–9052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190. Tambeli CH, Young A, Levine JD, Gear RW. Contribution of spinal glutamatergic mechanisms in hetero‐segmental antinociception induced by noxious stimulation. Pain 2003;106: 173–179. [DOI] [PubMed] [Google Scholar]
  • 191. Tan S, Sagara Y, Liu Y, Maher P, Schubert D. The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 1998;141: 1423–1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192. Tatarczynska E, Klodzinska A, Chojnacka‐Wojcik E, et al. Potential anxiolytic‐ and antidepressant‐like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 2001;132: 1423–1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193. Tavalin SJ, Ellis EF, Satin LS. Inhibition of the electrogenic Na pump underlies delayed depolarization of cortical neurons after mechanical injury or glutamate. J Neurophysiol 1997;77: 632–638. [DOI] [PubMed] [Google Scholar]
  • 194. Temple MD, OLeary DM, Faden AI. The role of glutamate receptors in the pathophysiology of traumatic central nervous system injury In: Miller LA, Hayes RL, Newcomb JK, Eds. Head trauma: basic, pre‐clinical, and clinical directions. New York : John Wiley & Sons, Inc., 2001;87–113. [Google Scholar]
  • 195. Tessari M, Pilla M, Andreoli M, Hutcheson DM, Heidbreder CA. Antagonism at metabotropic glutamate 5 receptors inhibits nicotine‐ and cocaine‐taking behaviours and prevents nicotine‐triggered relapse to nicotine‐seeking. Eur J Pharmacol 2004;499: 121–133. [DOI] [PubMed] [Google Scholar]
  • 196. Testa CM, Standaert DG, Young AB, Penney, JB Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 1994;14: 3005–3018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197. Thomas LS, Jane DE, Gasparini F, Croucher MJ. G lutamate release inhibiting properties of the novel mGlu(5) receptor antagonist 2‐methyl‐6‐(phenylethynyl)‐pyridine (MPEP): Complementary in vitro and in vivo evidence. Neuropharmacology 2001;41: 523–527. [DOI] [PubMed] [Google Scholar]
  • 198. Thuault SJ, Davies CH, Randall AD, Collingridge GL. Group I mGluRs modulate the pattern of non‐synaptic epileptiform activity in the hippocampus. Neuropharmacology 2002;43: 141–146. [DOI] [PubMed] [Google Scholar]
  • 199. Tu JC, Xiao B, Naisbitt S, et al. Coupling of mGluR/([A‐Z])omer and PSD‐95 complexes by the Shank family of postsynaptic density proteins. Neuron 1999;23: 583–592. [DOI] [PubMed] [Google Scholar]
  • 200. Tu JC, Xiao B, Yuan JP, et al. Homer binds a novel proline‐rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 1998;21: 717–726. [DOI] [PubMed] [Google Scholar]
  • 201. Turle‐Lorenzo N, Breysse N, Baunez C, Amalric M. Functional interaction between mGlu 5 and NMDA receptors in a rat model of Parkinson's disease. Psychopharmacology (Berl) 2005;179: 117–127. [DOI] [PubMed] [Google Scholar]
  • 202. Varney MA, Gereau RWt Metabotropic glutamate receptor involvement in models of acute and persistent pain: Prospects for the development of novel analgesics. Curr Drug Targets CNS Neurol Disord 2002;1: 283–296. [DOI] [PubMed] [Google Scholar]
  • 203. Varty GB, Grilli M, Forlani A, et al. The antinociceptive and anxiolytic‐like effects of the metabotropic glutamate receptor 5 (mGluR5) antagonists, MPEP and MTEP, and the mGluR1 antagonist, LY456236, in rodents: A comparison of efficacy and side‐effect profiles. Psychopharmacology (Berl) 2005;179: 207–217. [DOI] [PubMed] [Google Scholar]
  • 204. Vernon AC, Palmer S, Datla KP, Zbarsky V, Croucher MJ, Dexter DT. Neuroprotective effects of metabotropic glutamate receptor ligands in a 6‐hydroxydopamine rodent model of Parkinson's disease. Eur J Neurosci 2005;22: 1799–1806. [DOI] [PubMed] [Google Scholar]
  • 205. Vezina P, Kim JH. Metabotropic glutamate receptors and the generation of locomotor activity: Interactions with midbrain dopamine. Neurosci Biobehav Rev 1999;23: 577–589. [DOI] [PubMed] [Google Scholar]
  • 206. Walker K, Reeve A, Bowes M, et al. mGlu5 receptors and nociceptive function II. mGlu5 receptors functionally expressed on peripheral sensory neurones mediate inflammatory hyperalgesia. Neuropharmacology 2001;40: 10–19. [DOI] [PubMed] [Google Scholar]
  • 207. Wardas J, Pietraszek M, Wolfarth S, Ossowska K. The role of metabotropic glutamate receptors in regulation of striatal proenkephalin expression: Implications for the therapy of Parkinson's disease. Neuroscience 2003;122: 747–756. [DOI] [PubMed] [Google Scholar]
  • 208. Weber JT, Rzigalinski BA, Willoughby KA, Moore SF, Ellis EF. Alterations in calcium‐mediated signal transduction after traumatic injury of cortical neurons. Cell Calcium 1999;26: 289–299. [DOI] [PubMed] [Google Scholar]
  • 209. Wieronska JM, Smialowska M, Branski P, et al. I n the amygdala anxiolytic action of mGlu5 receptors antagonist MPEP involves neuropeptide Y but not GABAA signaling. Neuropsychopharmacology 2004;29: 514–521. [DOI] [PubMed] [Google Scholar]
  • 210. Wilson CL, Puntis M, Lacey MG. Overwhelmingly asynchronous firing of rat subthalamic nucleus neurones in brain slices provides little evidence for intrinsic interconnectivity. Neuroscience 2004;123: 187–200. [DOI] [PubMed] [Google Scholar]
  • 211. Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP. Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 2005;49: 1053–1066. [DOI] [PubMed] [Google Scholar]
  • 212. Yang X, Chen W. In vitro microsomal metabolic studies on a selective mGluR5 antagonist MTEP: Characterization of in vitro metabolites and identification of a novel thiazole ring opening aldehyde metabolite. Xenobiotica 2005;35: 797–809. [DOI] [PubMed] [Google Scholar]
  • 213. Yu SP, Yeh CH, Sensi SL, et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 1997;278: 114–117. [DOI] [PubMed] [Google Scholar]
  • 214. Zakharova ES, Danysz W, Bespalov AY. Drug discrimination analysis of NMDA receptor channel blockers as nicotinic receptor antagonists in rats. Psychopharmacology (Berl) 2005;179: 128–135. [DOI] [PubMed] [Google Scholar]
  • 215. Zhang L, Rzigalinski BA, Ellis EF, Satin LS. R eduction of voltage‐dependent Mg2+ blockade of NMDA current in mechanically injured neurons. Science 1996;274: 1921–1923. [DOI] [PubMed] [Google Scholar]
  • 216. Zhong J, Gerber G, Kojic L, Randic M. Dual modulation of excitatory synaptic transmission by agonists at group I metabotropic glutamate receptors in the rat spinal dorsal horn. Brain Res 2000;887: 359–377. [DOI] [PubMed] [Google Scholar]
  • 217. Zhu CZ, Hsieh G, Ei‐Kouhen O, et al. Role of central and peripheral mGluR5 receptors in post‐operative pain in rats. Pain 2005;114: 195–202. [DOI] [PubMed] [Google Scholar]
  • 218. Zhu CZ, Wilson SG, Mikusa JP, et al. Assessing the role of metabotropic glutamate receptor 5 in multiple nociceptive modalities. Eur J Pharmacol 2004;506: 107–118. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES