Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2007 Nov 13;13(4):405–422. doi: 10.1111/j.1527-3458.2007.00022.x

TDIQ (5,6,7,8–tetrahydro‐1,3‐dioxolo [4,5‐g]isoquinoline): Discovery, Pharmacological Effects, and Therapeutic Potential

Richard Young 1
PMCID: PMC6494129  PMID: 18078426

ABSTRACT

Chemically, TDIQ (5,6,7,8–tetrahydro‐1,3‐dioxolo[4,5‐g]isoquinoline) can be viewed as a conformationally restricted phenylalkylamine that is related in structure to amphetamine but does not stimulate (or depress) locomotor activity in rodents. In radioligand binding studies TDIQ displays selective affinity for α2‐adrenergic receptor subsites (i.e., α2A‐, α2B‐, and α2C‐adrenergic receptors), and behavioral data suggest that it might exert an agonist (or partial agonist) effect at α2‐adrenergic receptors or interact at α2‐adrenergic heteroreceptors. Drug discrimination studies in rats indicate that TDIQ: (1) serves as a discriminative stimulus, (2) may be useful in the treatment of symptoms associated with the abuse of cocaine, and (3) exhibits a low potential for abuse. In addition, TDIQ exhibits a dose‐dependent and wide dissociation between doses that produce an anxiolytic‐like effect or an inhibition of “snack” consumption in mice and doses that produce minimal, if any, effects in tests that measure a potential for disruption of coordinated movement or motor activity. Also, TDIQ displays negligible effects on the heart rate (HR) and blood pressure (BP) of mice. Taken together, the preclinical data suggest that TDIQ exhibits a favorable ratio of therapeutic‐like effects (anxiolytic, therapeutic adjunct in the treatment of cocaine abuse, and appetite suppression) to side effect‐like activities (behavioral impairment, drug abuse, or adverse cardiovascular effect). As such, TDIQ could: (1) be a forerunner for a new type of chemical entity in the treatment of certain forms of anxiety and/or obesity and (2) serve as a structural template in the discovery and development of additional agents that might be selective for α2‐adrenergic receptors.

Keywords: α2‐Adrenergic receptors, Anxiety disorders, Binge eating, Cocaine, Drug abuse, Eating disorders, Feeding, Norepinephrine, Obesity, Stimulants

Full Text

The Full Text of this article is available as a PDF (179.3 KB).

Acknowledgments

Acknowledgment These studies were supported, in part, by the A.D. Williams Fund of Virginia Commonwealth University.

Conflict of interest: The author has no conflict of interest.

REFERENCES

  1. Anderson F, Paluzzi P, Lee J, Huggins G, Svikis D (1997) Illicit use of clonidine in opiate‐abusing pregnant women. Obstet Gynecol 90:790‐794. [DOI] [PubMed] [Google Scholar]
  2. Arnsten AF, Steere JC, Hunt RD (1996) The contribution of α2‐noradrenergic mechanisms of prefrontal cortical cognitive function. Potential significance for attention‐deficit hyperactivity disorder. Arch Gen Psychiatry 53:448‐455. [DOI] [PubMed] [Google Scholar]
  3. Aston‐Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46:1309‐1320. [DOI] [PubMed] [Google Scholar]
  4. Baraban JM, Aghajanian GK (1980) Suppression of firing activity of 5‐HT neurons in the dorsal raphe by alpha‐adrenoceptor antagonists. Neuropharmacology 19:355‐363. [DOI] [PubMed] [Google Scholar]
  5. Berlin I, Stalla‐Bourdillon A, Thuillies Y, Turpin G, Puech AJ (1986) Lack of efficacy of yohimbine in the treatment of obesity. J Pharmacol 17:343‐347. [PubMed] [Google Scholar]
  6. Berridge CW, Waterhouse BD (2003) The locus coeruleus‐noradrenergic system: Modulation of behavioral state and state‐dependent cognitive processes. Brain Res Rev 42:33‐84. [DOI] [PubMed] [Google Scholar]
  7. Bremner JD, Krystal JH, Southwick SM, Charney DS (1996) Noradrenergic mechanisms in stress and anxiety: I Preclinical studies. Synapse 23:28‐51. [DOI] [PubMed] [Google Scholar]
  8. Broekkamp CL, Rijk HW, Joly‐Gelouin D, Lloyd KL (1986) Major tranquilizers can be distinguished from minor tranquilizers on the basis of effects on marble burying and swim‐induced grooming in mice. Eur J Pharmacol 126:223‐229. [DOI] [PubMed] [Google Scholar]
  9. Brunetti L, Michelotto B, Orlando G, Vacca M (1999) Leptin inhibits norepinephrine and dopamine release from rat hypothalamic neuronal endings. Eur J Pharmacol 372:237‐240. [DOI] [PubMed] [Google Scholar]
  10. Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Trendelenburg U (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121‐136. [PubMed] [Google Scholar]
  11. Callado LF, Gabilondo AM, Meana JJ (1996) [3H]RX821002(2‐methoxyidazoxan) binds to alpha 2‐adrenoceptor subtypes and a non‐adrenoceptor imidazoline binding site in rat kidney. Eur J Pharmacol 316:359‐368. [DOI] [PubMed] [Google Scholar]
  12. Carnwath T, Hardman J (1998) Randomized double‐blind comparison of lofexidine and clonidine in the outpatient treatment of opiate withdrawal. Drug Alcohol Depend 50:251‐254. [DOI] [PubMed] [Google Scholar]
  13. Crow S, Meller W, Praus B, Raatz S, Mitchell J (1998) Failure of clonidine to stimulate feeding in healthy humans. Pharmacol Biochem Behav 61:317‐321. [DOI] [PubMed] [Google Scholar]
  14. Currie PJ, Wilson LM (1992) Yohimbine attenuates clonidine‐induced feeding and macronutrient selection in genetically obese (ob/ob) mice. Pharmacol Biochem Behav 43:1039‐1046. [DOI] [PubMed] [Google Scholar]
  15. Davids E, Zhang K, Tarazi FI, Baldessarini RJ (2003) Animal models of attention‐deficit hyperactivity disorder. Brain Res Rev 42:1‐21. [DOI] [PubMed] [Google Scholar]
  16. Docherty JR (1998) Subtypes of functional α1‐ and α2‐adrenoceptors. Eur J Pharmacol 136:1‐15. [DOI] [PubMed] [Google Scholar]
  17. Dourish CT (1993) 5‐HT subtypes and feeding behaviour In: Bradley PB, Handley SL, Cooper SJ, Key BJ, Barnes NM, Coote JH. (Eds), Serotonin, CNS receptors and brain function. Oxford : Pergamon Press, 179‐202. [Google Scholar]
  18. Ferrone RA, Antonaccio MJ (1979) Prevention of the development of spontaneous hypertension in rats by captopril (SQ 14,225). Eur J Pharmacol 60:131‐137. [DOI] [PubMed] [Google Scholar]
  19. Fischman MW, Haney M (1999) Neurobiology of stimulants In: Ganalter M, Kleber HD. (Eds), Textbook of Substance Abuse Treatment. Washington , DC : American Psychiatric Press, 21‐31. [Google Scholar]
  20. Foote SL, Bloom FE, Aston‐Jones G (1983) Nucleus locus ceruleus: New evidence anatomical and physiological specificity Physiol Rev 63: 844‐914. [DOI] [PubMed] [Google Scholar]
  21. Fortepiani LA, Zhang H, Racusen L, Roberts LJ 2nd, Reckelhoff JF (2003) Characterization of an animal model of postmenopausal hypertension in spontaneously hypertensive rats. Hypertension 41:640‐645. [DOI] [PubMed] [Google Scholar]
  22. Garcia J, Koelling RA (1967) A comparison of aversions induced by X‐rays, toxins, and drugs in the rat. Radiat Res Suppl 7:439‐450. [PubMed] [Google Scholar]
  23. Gavras I, Manolis AJ, Gavras H (2001) The α2‐adrenergic receptors in hypertension and heart failure: Experimental and clinical studies. J Hypertens 19:2115‐2124. [DOI] [PubMed] [Google Scholar]
  24. Glennon RA, Rosecrans JA, Young R (1983) Drug‐induced discrimination: A description of the paradigm and a review of its specific application to the study of hallucinogenic agents. Med Res Rev 3:289‐340. [DOI] [PubMed] [Google Scholar]
  25. Glennon RA, Higgs R, Young R, Issa H (1992) Further studies on N‐methyl‐(3,4‐methyleledioxyphenyl)‐2‐aminopropane as a discriminative stimulus: Antagonism by 5‐hydroxytryptamine3 antagonists. Pharmacol Biochem Behav 43:1099‐1106. [DOI] [PubMed] [Google Scholar]
  26. Glennon RA, Young R, Rangisetty JB (2002) Further characterization of the stimulus properties of 5,6,7,8‐tetrahydro‐1,3‐dioxolo[4,5‐g]isoquinoline. Pharmacol Biochem Behav 72:379‐387. [DOI] [PubMed] [Google Scholar]
  27. Gogerty JH, Griot RG, Habeck D, Iorio LC, Houlihan WJ (1977) Synthesis and central nervous system evaluation of some 6‐alkoxy‐3H‐1,4‐benzodiazepin‐2(1H)‐ones. J Med Chem 20:952‐956. [DOI] [PubMed] [Google Scholar]
  28. Goldman CK, Marion L, Leibowitz SF (1985) Postsynaptic α2‐noradrenergic receptors mediate feeding induced by paraventricular nucleus injection of norepinephrine and clonidine. Eur J Pharmacol 115:11‐19. [DOI] [PubMed] [Google Scholar]
  29. Goźlińska B, Czyzewska‐Szafran H (1999) Clonidine action in spontaneously hypertensive rats (SHR) depends on the GABAergic system function. Amino Acids 17:131‐138. [DOI] [PubMed] [Google Scholar]
  30. Gresch PJ, Sved A, Zigmond MJ, Finlay JM (1995) Local influence of endogenous norepinephrine on extracellular dopamine in rat medial prefrontal cortex. J Neurochem 65:111‐116. [DOI] [PubMed] [Google Scholar]
  31. Guyenet PG (1997) Is the hypotensive effect of clonidine and related drugs due to imidazoline binding sites? Am J Physiol Reg Integ Comp Physiol 273:R1580‐R1584. [DOI] [PubMed] [Google Scholar]
  32. Hall FS, Li XF, Sora I, Xu F, Caron M, Lesch KP, Murphy DL, Uhl GR (2002) Cocaine mechanisms: Enhanced cocaine, fluoxetine and nisoxetine place preferences following monoamine transporter deletions. Neuroscience 115:153‐161. [DOI] [PubMed] [Google Scholar]
  33. Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM (2004) Prevalence of overweight and obesity among United States children, adolescents, and adults, 1999‐2002. JAMA 291:2847‐2850. [DOI] [PubMed] [Google Scholar]
  34. Heninger GR, Charney DS, Price LH (1988) Noradrenergic and serotonergic receptor system function in panic disorder and depression. Acta Psychiatr Scand 341:138‐150. [DOI] [PubMed] [Google Scholar]
  35. Hoehn‐Saric R, Merchant AF, Keyser ML, Smith VK (1981) Effects of clonidine on anxiety disorders. Arch Gen Psychiatry 38:1278‐1282. [DOI] [PubMed] [Google Scholar]
  36. Hollander E, DeCaria C, Nitescu A, Cooper T, Stover B, Gully R (1991) Noradrenergic function in obsessive‐compulsive disorder: Behavioral and neuroendocrine responses to clonidine and comparison to healthy controls. Psychiatry Res 37:161‐177. [DOI] [PubMed] [Google Scholar]
  37. Khorana N, Pullagurla MR, Young R, Glennon RA (2004) Comparison of the discriminative stimulus effects of 3,4‐methylenedioxymethamphetamine (MDMA) and cocaine: Asymmetric generalization. Drug Alcohol Depend 74:281‐287. [DOI] [PubMed] [Google Scholar]
  38. Korf J (1976) Locus coeruleus, noradrenaline metabolism, and stress In: Usdin E, Kvetnansky R, Kopin IJ. (Eds), Catecholamines and Stress. New York : Pergamon, 105‐111. [Google Scholar]
  39. Kucio C, Jonderko K, Piskorska D (1991) Does yohimbine act as a slimming drug? Isr J Med Sci 27:550‐556. [PubMed] [Google Scholar]
  40. Lähdesmaki J, Sallinen J, MacDonald E, Scheinin M (2004) Alpha2A‐adrenoceptors are important modulators of the effects of D‐amphetamine on startle reactivity and brain monoamines. Neuropsychopharmacology 29:1282‐1293. [DOI] [PubMed] [Google Scholar]
  41. Le Douarec JC, Schmitt H (1964) Comparaison pharmacologique de sept médicaments anorexigènes. Thérapie 19:831‐837. [PubMed] [Google Scholar]
  42. Leibowitz SF, Brown LL (1980) Histochemical and pharmacological analysis of noradrenergic projections to the paraventricular hypothalamus in relation to feeding stimulation. Brain Res 201:289‐314. [DOI] [PubMed] [Google Scholar]
  43. Leibowitz SF, Brown O, Tretter JR, Kirschgessner A (1985) Norepinephrine, clonidine, and tricyclic antidepressants selectively stimulate carbohydrate ingestion through noradrenergic system of the paraventricular nucleus. Pharmacol Bichem Behav 23:541‐550. [DOI] [PubMed] [Google Scholar]
  44. Leo D, Sorrentino E, Volpicelli F, Eyman M, Greco D, Viggiano D, Di Porzio U, Perrone‐Capano C (2003) Altered midbrain dopaminergic neurotransmission during development in animal model of ADHD. Neurosci Biobehav Rev 27:661‐669. [DOI] [PubMed] [Google Scholar]
  45. Lovenberg W (1986) The importance of rat models in hypertensive research. J Hypertens 4:S3‐S6. [PubMed] [Google Scholar]
  46. MacDonald E, Kobilka BK, Scheinin M (1997) Gene targeting—homing in on α2‐ adrenoceptor‐subtype function. Trends Pharmacol Sci 18:211‐219. [DOI] [PubMed] [Google Scholar]
  47. Malmusi L, Dukat M, Young R, Teitler M, Darmani NA, Ahmad B, Smith C, Glennon RA (1996a) 1,2,3,4‐Tetrahydroisoquinoline analogs of phenylalkylamine stimulants and hallucinogens. Med Chem Res 6:400‐411. [Google Scholar]
  48. Malmusi L, Dukat M, Young R, Teitler M, Darmani N, Ahmad B, Smith C, Glennon RA (1996b) 1,2,3,4‐Tetrahydroisoquinolines and related analogs of the phenylalkylamine designer drug MDMA. Med Chem Res 6:412‐426. [Google Scholar]
  49. Martin GE, Myers RD (1975) Evoked release of [14C]norepinephrine from the rat hypothalamus during feeding. Am J Physiol 229:1547‐1555. [DOI] [PubMed] [Google Scholar]
  50. McCance EF (1997) Overview of potential treatment medications for cocaine dependence In: Tai B, Chiang N, Bridge P. (Eds), Medication Development for the Treatment of Cocaine Dependence: Issues in Clinical Efficacy Trials. Rockville , MD : National Institute on Drug Abuse Monograph, 36‐72. [PubMed] [Google Scholar]
  51. McDougle C, Black J, Malison R, Zimmerman R, Kosten T, Heninger G, Price L (1994) Noradrenergic dysregulation during discontinuation of cocaine use in addicts. Arch Gen Psychiatry 51:713‐719. [DOI] [PubMed] [Google Scholar]
  52. Mertens IL, Van Gaal LF (2000) Promising new approaches to the management of obesity. Drugs 60:1‐9. [DOI] [PubMed] [Google Scholar]
  53. Millan MJ, Dekeyne A, Newman‐Tancredi A, Cussac D, Audinot V, Milligan G, Duqueyroix D, Girardon S, Mullot J, Boutin JA, et al (2000) S18616, a highly potent, spiroimidazoline agonist at α2‐adrenoceptors: I. Receptor profile, antinociceptive and hypothermic actions in comparison with dexmedetomidine and clonidine. J Pharmacol Exp Ther 295:1192‐1205. [PubMed] [Google Scholar]
  54. Milner TA, Rosin DL, Lee A, Aicher SA (1999) Alpha2A‐adrenergic receptors are primarily presynaptic heteroreceptors in the C1 area of the rat rostral ventrolateral medulla. Brain Res 821:200‐211. [DOI] [PubMed] [Google Scholar]
  55. Miralles A, Olmos G, Sastre M, Barturen F, Martin I, Garcia‐Sevilla JA (1993) Discrimination and pharmacological characterization of I2‐imidazoline sites with [3H]RX821002(2‐methoxyidazoxan) in the human and rat brain. J Pharmacol Exp Ther 264:1187‐1197. [PubMed] [Google Scholar]
  56. Newman‐Tancredi A, Nicolas J‐P, Audinot V, Gavaudan S, Verriele L, Touzard M, Chaput C, Richard N, Millan MJ (1998) Actions of α2‐adreoceptor ligands at α2A and 5‐HT1A receptors: The antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for α2A‐adrenoceptors. Naunyn-Schmiedeberg's Arch Pharmacol 358:197‐206. [DOI] [PubMed] [Google Scholar]
  57. Nilsson LC, Eriksson E, Carlsson M, Soderpalm B (1985) Clonidine for relief of premenstrual syndrome. Lancet 2:549‐550. [DOI] [PubMed] [Google Scholar]
  58. Njung'e K, Handley SL (1991) Evaluation of marble burying as a model of anxiety. Pharmacol Biochem Behav 38:63‐67. [DOI] [PubMed] [Google Scholar]
  59. Parker V, Morinan A (1986) The socially isolated rat as a model for anxiety. Neuropharmacology 25:663‐664. [Google Scholar]
  60. Redmond DEJ, Huang YH (1979) Locus coeruleus and anxiety. Life Sci 25:2149‐2162. [DOI] [PubMed] [Google Scholar]
  61. Reis DJ, Piletz JE (1997) The imidazoline receptor in control of blood pressure by clonidine and allied drugs. Am J Physiol 273:R1569‐R1571. [DOI] [PubMed] [Google Scholar]
  62. Rocha BA (2003) Stimulant and reinforcing effects of cocaine in monoamine transporter knockout mice. Eur J Pharmacol 479:107‐115. [DOI] [PubMed] [Google Scholar]
  63. Rothman RB, Baumann MH (2003) Monoamine transporters and psychostimulant drugs. Eur J Pharmacol. 479:23‐40. [DOI] [PubMed] [Google Scholar]
  64. Sax L (1991) Yohimbine does not affect fat distribution in men. Int J Obes 15:561‐565. [PubMed] [Google Scholar]
  65. Schaut J, Schnoll SH (1983) Four cases of clonidine abuse. Am J Psychiatry 140:1625‐1627. [DOI] [PubMed] [Google Scholar]
  66. Scheibner J, Trendelenburg A, Hein L, Starke K (2001) Alpha(2)‐adrenoceptors modulating neuronal serotonin release: A study in α2‐adrenoceptor subtype‐deficient mice. Br J Pharmacol 132:925‐933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Scheinin M, Lomasney JW, Hayden‐Hixson DM, Schambra UB, Caron MG, Lefkowitz RJ, Fremeau RT (1994) Distribution of α2‐adrenergic receptor subtype gene expression in rat brain. Mol Brain Res 21:133‐149. [DOI] [PubMed] [Google Scholar]
  68. Southwick SM, Morgan CA 3rd, Bremner AD, Grillon CG, Krystal JH, Nagy LM, Charney DS (1997) Noradrenergic alterations in posttraumatic stress disorder. Ann N Y Acad Sci 821:125‐141. [DOI] [PubMed] [Google Scholar]
  69. Steiner JA (1988) Antihypertensive drugs In: Meyler's Side Effects of Drugs: An Encyclopedia of Adverse Reactions and Interactions, 11th Edition New York : Elsevier, 397‐415. [Google Scholar]
  70. Takeda K, Nakagawa Y, Haashimoto T, Sakurai S, Imai S (1979) Effects of several beta‐blocking agents on the development of hypertension in spontaneously hypotensive rats. Jpn J Pharmacol 29:171‐178. [DOI] [PubMed] [Google Scholar]
  71. Tao R, Hjorth S (1992) α2‐Adrenoceptor modulation of rat ventral hippocampal 5‐hydroxytryptamine release in vivo. Naunyn-Schmiedeberg's Arch Pharmac 345:137‐143. [DOI] [PubMed] [Google Scholar]
  72. Trendelenburg AU, Trendelenburg M, Starke K, Limberger N (1994a) Release inhibiting α2‐adrenoceptors at serotonergic axons in rat and rabbit brain cortex: Evidence for pharmacological activity with α2‐autoreceptors. Naunyn-Schmiedeberg's Arch Pharmac 349:225‐233. [DOI] [PubMed] [Google Scholar]
  73. Trendelenburg AU, Starke K, Limberger N (1994b) Presynaptic α2A‐adrenoceptors inhibit the release of endogenous dopamine in rabbit caudate nucleus slices. Naunyn-Schmiedeberg's Arch Pharmac 350:473‐481. [DOI] [PubMed] [Google Scholar]
  74. Wainscott DB, Sasso DA, Kursar JD, Baez M, Lucaites VL, Nelson DL (1998) [3H]Rauwolscine: An antagonist radioligand for the cloned 5‐hydroxytryptamine2B(5‐HT2B) receptor. Naunyn Schmiedeberg's Arch Pharmacol 357:17‐24. [DOI] [PubMed] [Google Scholar]
  75. Weerts EM, Griffiths RR (1999) Evaluation of the intravenous reinforcing effects of clonidine in baboons. Drug Alcohol Depend 53:207‐214. [DOI] [PubMed] [Google Scholar]
  76. Wellman PJ (2000) Norepinephrine and the control of food intake. Nutrition 16:837‐842. [DOI] [PubMed] [Google Scholar]
  77. Woolverton WL, Wessinger WD, Balster RL (1982) Reinforcing properties of clonidine in rhesus monkeys. Psychopharmacology 77:17‐23. [DOI] [PubMed] [Google Scholar]
  78. Young R, Glennon RA (1986) Discriminative stimulus properties of amphetamine and structurally related phenalkylamines. Med Res Rev 6:99‐130. [DOI] [PubMed] [Google Scholar]
  79. Young R, Glennon RA (2002) The stimulus effect of 5,6,7,8‐tetrahydro‐1,3‐dioxolo[4,5‐g]isoquinoline is similar to that of cocaine but different from that of amphetamine. Pharmacol Biochem Behav 71:205‐213. [DOI] [PubMed] [Google Scholar]
  80. Young R, Dukat M, Malmusi L, Glennon RA (1999) Stimulus properties of PMMA: Effect of optical isomers and conformational restriction. Pharmacol Biochem Behav 64:449‐453. [DOI] [PubMed] [Google Scholar]
  81. Young R, Khorana N, Bondareva T, Glennon RA (2005) Pizotyline effectively antagonizes the stimulus effects of N‐methyl‐3,4‐methylenedioxyamphetamine (MDMA). Pharmacol Biochem Behav 82:404‐410. [DOI] [PubMed] [Google Scholar]
  82. Young R, Batkai S, Dukat M, Glennon RA (2006a) TDIQ (5,6,7,8‐tetrahydro‐1,3‐dioxolo[4,5‐g]isoquinoline) exhibits anxiolytic‐like activity in a marble‐burying assay in mice. Pharmacol Biochem Behav 84:62‐73. [DOI] [PubMed] [Google Scholar]
  83. Young R, Rothman RB, Rangisetty JB, Partilla JS, Dukat M, Glennon RA (2006b) TDIQ (5,6,7,8‐tetrahydro‐1,3‐dioxolo[4,5‐g]isoquinoline) inhibits the consumption of “snacks” in mice. Pharmacol Biochem Behav 84:74‐83. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES