Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2007 Dec 7;13(4):475–501. doi: 10.1111/j.1527-3458.2007.00025.x

Pharmacology of the β‐Carboline FG‐7142, a Partial Inverse Agonist at the Benzodiazepine Allosteric Site of the GABAA Receptor: Neurochemical, Neurophysiological, and Behavioral Effects

Andrew K Evans 1, Christopher A Lowry 1
PMCID: PMC6494137  PMID: 18078430

ABSTRACT

Given the well‐established role of benzodiazepines in treating anxiety disorders, β‐carbolines, spanning a spectrum from full agonists to full inverse agonists at the benzodiazepine allosteric site for the GABAA receptor, can provide valuable insight into the neural mechanisms underlying anxiety‐related physiology and behavior. FG‐7142 is a partial inverse agonist at the benzodiazepine allosteric site with its highest affinity for the α1 subunit‐containing GABAA receptor, although it is not selective. FG‐7142 also has its highest efficacy for modulation of GABA‐induced chloride flux mediated at the α1 subunit‐containing GABAA receptor. FG‐7142 activates a recognized anxiety‐related neural network and interacts with serotonergic, dopaminergic, cholinergic, and noradrenergic modulatory systems within that network. FG‐7142 has been shown to induce anxiety‐related behavioral and physiological responses in a variety of experimental paradigms across numerous mammalian and non‐mammalian species, including humans. FG‐7142 has proconflict actions across anxiety‐related behavioral paradigms, modulates attentional processes, and increases cardioacceleratory sympathetic reactivity and neuroendocrine reactivity. Both acute and chronic FG‐7142 treatment are proconvulsive, upregulate cortical adrenoreceptors, decrease subsequent actions of GABA and β‐carboline agonists, and increase the effectiveness of subsequent GABAA receptor antagonists and β‐carboline inverse agonists. FG‐7142, as a partial inverse agonist, can help to elucidate individual components of full agonism of benzodiazepine binding sites and may serve to identify the specific GABAA receptor subtypes involved in specific behavioral and physiological responses.

Keywords: Anxiety, Benzodiazepine binding site, Carbolines, FG‐7142, GABAA receptors

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

The authors have no conflict of interest.

REFERENCES

  1. Ableitner A, Herz A (1987) Changes in local cerebral glucose utilization induced by the beta‐carbolines FG 7142 and DMCM reveal brain structures involved in the control of anxiety and seizure activity. J Neurosci 7:1047‐1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abrams JK, Johnson PL, Hay‐Schmidt A, Mikkelsen JD, Shekhar A, Lowry CA (2005) Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience 133:983‐997. [DOI] [PubMed] [Google Scholar]
  3. Adamec RE (2000a) Evidence that long‐lasting potentiation in limbic circuits mediating defensive behaviour in the right hemisphere underlies pharmacological stressor (FG‐7142) induced lasting increases in anxiety‐like behaviour: Role of benzodiazepine receptors. J Psychopharmacol 14:307‐322. [DOI] [PubMed] [Google Scholar]
  4. Adamec RE (2000b) Evidence that long‐lasting potentiation of amygdala efferents in the right hemisphere underlies pharmacological stressor (FG‐7142) induced lasting increases in anxiety‐like behaviour: Role of GABA tone in initiation of brain and behavioural changes. J Psychopharmacol 14:323‐339. [DOI] [PubMed] [Google Scholar]
  5. Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8:365‐371. [DOI] [PubMed] [Google Scholar]
  6. Arora PK, Hanna EE, Paul SM, Skolnick P (1987) Suppression of the immune response by benzodiazepine receptor inverse agonists. J Neuroimmunol 15:1‐9. [DOI] [PubMed] [Google Scholar]
  7. Atack JR, Bayley PJ, Seabrook GR, Wafford KA, McKernan RM, Dawson GR (2006a) L‐655,708 enhances cognition in rats but is not proconvulsant at a dose selective for alpha5‐containing GABAA receptors. Neuropharmacology 51:1023‐1029. [DOI] [PubMed] [Google Scholar]
  8. Atack JR, Hutson PH, Collinson N, Marshall G, Bentley G, Moyes C, Cook SM, Collins I, Wafford K, McKernan RM, et al. (2005) Anxiogenic properties of an inverse agonist selective for alpha3 subunit‐containing GABA A receptors. Br J Pharmacol 144:357‐366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Atack JR, Smith AJ, Emms F, McKernan RM (1999) Regional differences in the inhibition of mouse in vivo [3h]Ro 15–1788 binding reflect selectivity for alpha 1 versus alpha 2 and alpha 3 subunit‐containing GABAA receptors. Neuropsychopharmacology 20:255‐262. [DOI] [PubMed] [Google Scholar]
  10. Atack JR, Wafford KA, Tye SJ, Cook SM, Sohal B, Pike A, Sur C, Melillo D, Bristow L, Bromidge F, et al. (2006b) TPA023 [7‐(1,1‐dimethylethyl)‐6‐(2‐ethyl‐2H‐1,2,4‐triazol‐3‐ylmethoxy)‐3‐(2‐fluor ophenyl)‐1,2,4‐triazolo[4,3‐b]pyridazine], an agonist selective for alpha2‐ and alpha3‐containing GABAA receptors, is a nonsedating anxiolytic in rodents and primates. J Pharmacol Exp Ther 316:410‐422. [DOI] [PubMed] [Google Scholar]
  11. Bassareo V, Tanda G, Petromilli P, Giua C, Di CG (1996) Non‐psychostimulant drugs of abuse and anxiogenic drugs activate with differential selectivity dopamine transmission in the nucleus accumbens and in the medial prefrontal cortex of the rat. Psychopharmacology (Berl) 124:293‐299. [DOI] [PubMed] [Google Scholar]
  12. Beck CH, Cooper SJ (1986) Beta‐carboline FG 7142‐reduced aggression in male rats: Reversed by the benzodiazepine receptor antagonist, Ro 15–1788. Pharmacol Biochem Behav 24:1645‐1649. [DOI] [PubMed] [Google Scholar]
  13. Berntson GG, Hart S, Ruland S, Sarter M (1996) A central cholinergic link in the cardiovascular effects of the benzodiazepine receptor partial inverse agonist FG 7142. Behav Brain Res 74:91‐103. [DOI] [PubMed] [Google Scholar]
  14. Berntson GG, Sarter M, Cacioppo JT (1998) Anxiety and cardiovascular reactivity: The basal forebrain cholinergic link. Behav Brain Res 94:225‐248. [DOI] [PubMed] [Google Scholar]
  15. Biggio G, Concas A, Mele S, Corda MG (1987) Changes in GABAergic transmission induced by stress, anxiogenic and anxiolytic beta‐carbolines. Brain Res Bull 19:301‐308. [DOI] [PubMed] [Google Scholar]
  16. Birnbaum SG, Podell DM, Arnsten AF (2000) Noradrenergic alpha‐2 receptor agonists reverse working memory deficits induced by the anxiogenic drug, FG7142, in rats. Pharmacol Biochem Behav 67:397‐403. [DOI] [PubMed] [Google Scholar]
  17. Bradberry CW, Lory JD, Roth RH (1991a) The anxiogenic beta‐carboline FG 7142 selectively increases dopamine release in rat prefrontal cortex as measured by microdialysis. J Neurochem 56:748‐752. [DOI] [PubMed] [Google Scholar]
  18. Bradberry CW, Sprouse JS, Sheldon PW, Aghajanian GK, Roth RH (1991b) In vitro microdialysis: A novel technique for stimulated neurotransmitter release measurements. J Neurosci Methods 36:85‐90. [DOI] [PubMed] [Google Scholar]
  19. Braestrup C, Nielsen M, Olsen CE (1980) Urinary and brain beta‐carboline‐3‐carboxylates as potent inhibitors of brain benzodiazepine receptors. Proc Natl Acad Sci U S A–Biol Sci 77:2288‐2292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Brose N, O'Neill RD, Boutelle MG, Anderson SM, Fillenz M (1987) Effects of an anxiogenic benzodiazepine receptor ligand on motor activity and dopamine release in nucleus accumbens and striatum in the rat. J Neurosci 7:2917‐2926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bueno CH, Zangrossi H, Jr ., Nogueira RL, Soares VP, Viana MB (2005) Panicolytic‐like effect induced by the stimulation of GABAA and GABAB receptors in the dorsal periaqueductal grey of rats. Eur J Pharmacol 516:239‐246. [DOI] [PubMed] [Google Scholar]
  22. Butler PD, Weiss JM, Stout JC, Nemeroff CB (1990) Corticotropin‐releasing factor produces fear‐enhancing and behavioral activating effects following infusion into the locus coeruleus. J Neurosci 10:176‐183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325‐340. [DOI] [PubMed] [Google Scholar]
  24. Chambers MS, Atack JR, Broughton HB, Collinson N, Cook S, Dawson GR, Hobbs SC, Marshall G, Maubach A, Pillai GV, et al. (2003) Identification of a novel, selective GABA(A) alpha5 receptor inverse agonist which enhances cognition. J Med Chem 46:2227‐2240. [DOI] [PubMed] [Google Scholar]
  25. Cole BJ, Hillmann M, Seidelmann D, Klewer M, Jones GH (1995) Effects of benzodiazepine receptor partial inverse agonists in the elevated plus maze test of anxiety in the rat. Psychopharmacology (Berl) 121:118‐126. [DOI] [PubMed] [Google Scholar]
  26. Colle LM, Wise RA (1988) Effects of nucleus accumbens amphetamine on lateral hypothalamic brain‐stimulation reward. Brain Res 459:361‐368. [DOI] [PubMed] [Google Scholar]
  27. Collins I, Moyes C, Davey WB, Rowley M, Bromidge FA, Quirk K, Atack JR, McKernan RM, Thompson SA, Wafford K, et al. (2002) 3‐Heteroaryl‐2‐pyridones: Benzodiazepine site ligands with functional Delectivity for alpha 2/alpha 3‐subtypes of human GABAA receptor‐ion channels. J Med Chem 45:1887‐1900. [DOI] [PubMed] [Google Scholar]
  28. Collinson N, Atack JR, Laughton P, Dawson GR, Stephens DN (2006) An inverse agonist selective for alpha 5 subunit‐containing GABA(A) receptors improves encoding and recall but not consolidation in the Morris water maze. Psychopharmacology 188:619‐628. [DOI] [PubMed] [Google Scholar]
  29. Cooper SJ (1987) Bidirectional changes in the consumption of food produced by beta‐carbolines. Brain Res Bull 19:347‐358. [DOI] [PubMed] [Google Scholar]
  30. Cooper SJ, Barber DJ, Gilbert DB, Moores WR (1985) Benzodiazepine receptor ligands and the consumption of a highly palatable diet in non‐deprived male rats. Psychopharmacology (Berl) 86:348‐355. [DOI] [PubMed] [Google Scholar]
  31. Corda MG, Blaker WD, Mendelson WB, Guidotti A, Costa E (1983) Beta‐carbolines enhance shock‐induced suppression of drinking in rats. Proc Natl Acad Sci U S A 80:2072‐2076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Cottone P, Sabino V, Steardo L, Zorrilla EP (2007) FG 7142 specifically reduces meal size and the rate and regularity of sustained feeding in female rats: Evidence that benzodiazepine inverse agonists reduce food palatability. Neuropsychopharmacology 32:1069‐1081. [DOI] [PubMed] [Google Scholar]
  33. Crestani F, Keist R, Fritschy JM, Benke D, Vogt K, Prut L, Bluthmann H, Mohler H, Rudolph U (2002) Trace fear conditioning involves hippocampal alpha5 GABAA receptors. Proc Natl Acad Sci U S A 99:8980‐8985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Crestani F, Martin JR, Mohler H, Rudolph U (2000) Mechanism of action of the hypnotic zolpidem in vivo. Br J Pharmacol 131:1251‐1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Dawson GR, Maubach KA, Collinson N, Cobain M, Everitt BJ, Macleod AM, Choudhury HI, McDonald LM, Pillai G, Rycroft W, et al. (2006) An inverse agonist selective for alpha 5 subunit‐containing GABAA receptors enhances cognition. J Pharmacol Exp Ther 316:1335‐1345. [DOI] [PubMed] [Google Scholar]
  36. Dazzi L, Ladu S, Spiga F, Vacca G, Rivano A, Pira L, Biggio G (2002a) Chronic treatment with imipramine or mirtazapine antagonizes stress‐ and FG7142‐induced increase in cortical norepinephrine output in freely moving rats. Synapse 43:70‐77. [DOI] [PubMed] [Google Scholar]
  37. Dazzi L, Spiga F, Pira L, Ladu S, Vacca G, Rivano A, Jentsch JD, Biggio G (2001) Inhibition of stress‐ or anxiogenic‐drug‐induced increases in dopamine release in the rat prefrontal cortex by long‐term treatment with antidepressant drugs. J Neurochem 76:1212‐1220. [DOI] [PubMed] [Google Scholar]
  38. Dazzi L, Vignone V, Seu E, Ladu S, Vacca G, Biggio G (2002b) Inhibition by venlafaxine of the increase in norepinephrine output in rat prefrontal cortex elicited by acute stress or by the anxiogenic drug FG 7142. J Psychopharmacol 16:125‐131. [DOI] [PubMed] [Google Scholar]
  39. Dorow R (1987) FG 7142 and Its anxiety‐inducing effects in humans. Br J Clin Pharmacol 23:781‐782. [PMC free article] [PubMed] [Google Scholar]
  40. Dorow R, Horowski R, Paschelke G, Amin M (1983) Severe anxiety induced by FG 7142, a beta‐carboline ligand for benzodiazepine receptors. Lancet 2:98‐99. [DOI] [PubMed] [Google Scholar]
  41. Drugan RC, Maier SF, Skolnick P, Paul SM, Crawley JN (1985) An anxiogenic benzodiazepine receptor ligand induces learned helplessness. Eur J Pharmacol 113:453‐457. [DOI] [PubMed] [Google Scholar]
  42. Evans AK, Abrams JK, Bouwknecht JA, Knight DM, Shekhar A, Lowry CA (2006) The anxiogenic drug FG‐7142 increases serotonin metabolism in the rat medial prefrontal cortex. Pharmacol Biochem Behav 84:266‐274. [DOI] [PubMed] [Google Scholar]
  43. Ferretti V, Gilli P, Borea PA (2004) Structural features controlling the binding of beta‐carbolines to the benzodiazepine receptor. Acta Crystallogr B 60:481‐489. [DOI] [PubMed] [Google Scholar]
  44. File SE, Baldwin HA (1987) Effects of beta‐carbolines in animal models of anxiety. Brain Res Bull 19:293‐299. [DOI] [PubMed] [Google Scholar]
  45. File SE, Pellow S (1984) The anxiogenic action of FG 7142 in the social interaction test is reversed by chlordiazepoxide and Ro 15–1788 but not by CGS 8216. Arch Int Pharmacodyn Ther 271:198‐205. [PubMed] [Google Scholar]
  46. Funk D, Li Z, Le AD (2006) Effects of environmental and pharmacological stressors on c‐fos and corticotropin‐releasing factor mRNA in rat brain: Relationship to the reinstatement of alcohol seeking. Neuroscience 138:235‐243. [DOI] [PubMed] [Google Scholar]
  47. Gao B, Fritschy JM, Benke D, Mohler H (1993) Neuron‐specific expression of GABAA‐receptor subtypes: Differential association of the alpha 1‐ and alpha 3‐subunits with serotonergic and GABAergic neurons. Neuroscience 54:881‐892. [DOI] [PubMed] [Google Scholar]
  48. Gardner KL, Thrivikraman KV, Lightman SL, Plotsky PM, Lowry CA (2005) Early life experience alters behavior during social defeat: Focus on serotonergic systems. Neuroscience 136:181‐191. [DOI] [PubMed] [Google Scholar]
  49. Giardino ND, Friedman SD, Dager SR (2007) Anxiety respiration, and cerebral blood flow: Implications for functional brain imaging. Comprehensive Psychiatry 48:103‐112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Graeff FG, Viana MB, Mora PO (1996) Opposed regulation by dorsal raphe nucleus 5‐HT pathways of two types of fear in the elevated t‐maze. Pharmacol Biochem Behav 53:171‐177. [DOI] [PubMed] [Google Scholar]
  51. Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB, Watkins LR, Maier SF (1999) Activation of serotonin‐immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 826:35‐43. [DOI] [PubMed] [Google Scholar]
  52. Gray JA, McNaughton N (2000) The Neuropsychology of Anxiety, 2nd ed Oxford : Oxford Medical Publications. [Google Scholar]
  53. Greco B, Carli M (2006) Reduced attention and increased impulsivity in mice lacking npy y2 receptors: Relation to anxiolytic‐like phenotype. Behav Brain Res 169:325‐334. [DOI] [PubMed] [Google Scholar]
  54. Hackler EA, Turner GH, Gresch PJ, Sengupta S, Deutch AY, Avison MJ, Gore JC, Sanders‐Bush E (2007) 5‐Hydroxytryptamine2c receptor contribution to m‐chlorophenylpiperazine and N‐methyl‐beta‐carboline‐3‐carboxamide‐induced anxiety‐like behavior and limbic brain activation. J Pharmacol Exp Ther 320:1023‐1029. [DOI] [PubMed] [Google Scholar]
  55. Hadingham KL, Wafford KA, Thompson SA, Palmer KJ, Whiting PJ (1995) Expression and pharmacology of human GABA(A) receptors containing gamma 3 subunits. Eur J Pharmacol-Mol Pharmacol Sect 291:301‐309. [DOI] [PubMed] [Google Scholar]
  56. Hajos M, Hoffmann WE, Orban G, Kiss T, Erdi P (2004) Modulation of septo‐hippocampal theta activity by GABAA receptors: An experimental and computational approach. Neuroscience 126:599‐610. [DOI] [PubMed] [Google Scholar]
  57. Harris JA, Westbrook RF (1998) Evidence that GABA transmission mediates context‐specific extinction of learned fear. Psychopharmacology (Berl) 140:105‐115. [DOI] [PubMed] [Google Scholar]
  58. Hart S, Sarter M, Berntson GG (1999) Cholinergic inputs to the rat medial prefrontal cortex mediate potentiation of the cardiovascular defensive response by the anxiogenic benzodiazepine receptor partial inverse agonist FG 7142. Neuroscience 94:1029‐1038. [DOI] [PubMed] [Google Scholar]
  59. Hart S, Sarter M, Berntson GG (1998) Cardiovascular and somatic startle and defense: Concordant and discordant actions of benzodiazepine receptor agonists and inverse agonists. Behav Brain Res 90:175‐186. [DOI] [PubMed] [Google Scholar]
  60. Hijzen TH, Slangen JL (1989) Effects of midazolam, DMCM and lindane on potentiated startle in the rat. Psychopharmacology 99:362‐365. [DOI] [PubMed] [Google Scholar]
  61. Himmelheber AM, Sarter M, Bruno JP (2000) Increases in cortical acetylcholine release during sustained attention performance in rats. Brain Res Cogn Brain Res 9:313‐325. [DOI] [PubMed] [Google Scholar]
  62. Horger BA, Elsworth JD, Roth RH (1996) Blockade of FG 7142‐induced increased dopamine utilization by the glycine/NMDA receptor antagonist (+)‐HA 966. J Neurochem 66:1959‐1962. [DOI] [PubMed] [Google Scholar]
  63. Ida Y, Elsworth JD, Roth RH (1991) Anxiogenic beta‐carboline FG 7142 produces activation of noradrenergic neurons in specific brain regions of rats. Pharmacol Biochem Behav 39:791‐793. [DOI] [PubMed] [Google Scholar]
  64. Jackson HC, Nutt DJ (1991) Comparison of the effects of benzodiazepine and beta‐carboline inverse agonists on body temperature in mice. Eur J Pharmacol 205:213‐216. [DOI] [PubMed] [Google Scholar]
  65. Jackson HC, Nutt DJ (1992) Strain differences in sensitivity to the hypothermic effects of benzodiazepine receptor ligands in mice. Psychopharmacology (Berl) 109:365‐368. [DOI] [PubMed] [Google Scholar]
  66. Jelen P, Soltysik S, Zagrodzka J (2003) 22‐KHz Ultrasonic vocalization in rats as an index of anxiety but not fear: Behavioral and pharmacological modulation of affective state. Behav Brain Res 141:63‐72. [DOI] [PubMed] [Google Scholar]
  67. Kim JH, McNally GP, Richardson R (2006) Recovery of fear memories in rats: Role of gamma‐amino butyric acid (GABA) in infantile amnesia. Behav Neurosci 120:40‐48. [DOI] [PubMed] [Google Scholar]
  68. Kim JH, Richardson R (2007) A developmental dissociation of context and GABA effects on extinguished fear in rats. Behav Neurosci 121:131‐139. [DOI] [PubMed] [Google Scholar]
  69. Knorr AM, Deutch AY, Roth RH (1989) The anxiogenic beta‐carboline FG‐7142 increases in vivo and in vitro tyrosine hydroxylation in the prefrontal cortex. Brain Res 495:355‐361. [DOI] [PubMed] [Google Scholar]
  70. Korpi ER, Grunder G, Luddens H (2002) Drug interactions at GABAA receptors. Prog Neurobiol 67:113‐159. [DOI] [PubMed] [Google Scholar]
  71. Kureta Y, Watanabe S (1996) Influence of social dominance on self‐stimulation behavior in male golden hamsters. Physiol Behav 59:621‐624. [DOI] [PubMed] [Google Scholar]
  72. Leranth C, Vertes RP (1999) Median raphe serotonergic innervation of medial septum diagonal band of Broca (MSDB) parvalbumin‐containing neurons: Possible involvement of the MSDB in the desynchronization of the hippocampal EEG. J Comp Neurol 410:586‐598. [PubMed] [Google Scholar]
  73. Little HJ, Gale R, Sellars N, Nutt DJ, Taylor SC (1988) Chronic benzodiazepine treatment increases the effects of the inverse agonist FG7142. Neuropharmacology 27:383‐389. [DOI] [PubMed] [Google Scholar]
  74. Little HJ, Nutt DJ, Taylor SC (1984) Acute and chronic effects of the benzodiazepine receptor ligand FG 7142: Proconvulsant properties and kindling. Br J Pharmacol 83:951‐958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Little HJ, Nutt DJ, Taylor SC (1986) The effects of drugs acting at the GABAA‐receptor/ionophore after chemical kindling with the benzodiazepine receptor ligand FG 7142. Br J Pharmacol 88:507‐514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Little HJ, Nutt DJ, Taylor SC (1987a) Bidirectional effects of chronic treatment with agonists and inverse agonists at the benzodiazepine receptor. Brain Res Bull 19:371‐378. [DOI] [PubMed] [Google Scholar]
  77. Little HJ, Nutt DJ, Taylor SC (1987b) Selective changes in the in vivo effects of benzodiazepine receptor ligands after chemical kindling with FG 7142. Neuropharmacology 26:25‐31. [DOI] [PubMed] [Google Scholar]
  78. Low K, Crestani F, Keist R, Benke D, Brunig I, Benson JA, Fritschy JM, Rulicke T, Bluethmann H, Mohler H, et al. (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131‐134. [DOI] [PubMed] [Google Scholar]
  79. Maier SF, Busch CR, Maswood S, Grahn RE, Watkins LR (1995a) The dorsal raphe nucleus is a site of action mediating the behavioral effects of the benzodiazepine receptor inverse agonist DMCM. Behav Neurosci 109:759‐766. [DOI] [PubMed] [Google Scholar]
  80. Maier SF, Grahn RE, Maswood S, Watkins LR (1995b) The benzodiazepine receptor antagonists flumazenil and CGS8216 block the enhancement of fear conditioning and interference with escape behavior produced by inescapable shock. Psychopharmacology (Berl) 121:250‐258. [DOI] [PubMed] [Google Scholar]
  81. Maier SF, Seligman ME (1976) Learned helplessness: Theory and evidence. J Exp Psychol: General 105:3‐46. [Google Scholar]
  82. Maier SF, Watkins LR (2005a) Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin‐releasing factor. Neurosci Biobehav Rev 29:829‐841. [DOI] [PubMed] [Google Scholar]
  83. Maier SF, Watkins LR (2005b) Stressor controllability and learned helplessness: The roles of the dorsal raphe nucleus, serotonin, and corticotropin‐releasing factor. Neurosci Biobehav Rev 29:829‐841. [DOI] [PubMed] [Google Scholar]
  84. Malizia AL, Nutt DJ (1995) Psychopharmacology of benzodiazepines—an update. Hum Psychopharmacol Clin Exp 10:S1‐S14. [Google Scholar]
  85. Marek GJ, Aghajanian GK (1998) The electrophysiology of prefrontal serotonin systems: Therapeutic implications for mood and psychosis. Biol Psychiatry 44:1118‐1127. [DOI] [PubMed] [Google Scholar]
  86. Mason K, Heal DJ, Stanford SC (1998) The anxiogenic agents, yohimbine and FG 7142, disrupt the noradrenergic response to novelty. Pharmacol Biochem Behav 60:321‐327. [DOI] [PubMed] [Google Scholar]
  87. McCullough LD, Salamone JD (1992) Anxiogenic drugs beta‐CCE and FG 7142 increase extracellular dopamine levels in nucleus accumbens. Psychopharmacology (Berl) 109:379‐382. [DOI] [PubMed] [Google Scholar]
  88. McGregor IS, Atrens DM (1990) Stressor‐like effects of FG‐7142 on medial prefrontal cortex self‐stimulation. Brain Res 516:170‐174. [DOI] [PubMed] [Google Scholar]
  89. McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, et al. (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor alpha1 subtype. Nat Neurosci 3:587‐592. [DOI] [PubMed] [Google Scholar]
  90. McKernan RM, Whiting PJ (1996) Which GABAA‐receptor subtypes really occur in the brain? Trends Neurosci 19:139‐143. [DOI] [PubMed] [Google Scholar]
  91. Mikkelsen JD, Soderman A, Kiss A, Mirza N (2005) Effects of benzodiazepines receptor agonists on the hypothalamic‐pituitary‐adrenocortical axis. Eur J Pharmacol 519:223‐230. [DOI] [PubMed] [Google Scholar]
  92. Milad MR, Vidal‐Gonzalez I, Quirk GJ (2004) Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behav Neurosci 118:389‐394. [DOI] [PubMed] [Google Scholar]
  93. Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70:83‐244. [DOI] [PubMed] [Google Scholar]
  94. Moore H, Fadel J, Sarter M, Bruno JP (1999) Role of accumbens and cortical dopamine receptors in the regulation of cortical acetylcholine release. Neuroscience 88:811‐822. [DOI] [PubMed] [Google Scholar]
  95. Morris HV, Dawson GR, Reynolds DS, Atack JR, Stephens DN (2006) Both alpha 2 and alpha 3 GABAA receptor subtypes mediate the anxiolytic properties of benzodiazepine site ligands in the conditioned emotional response paradigm. Eur J Neurosc 23:2495‐2504. [DOI] [PubMed] [Google Scholar]
  96. Mumford GK, Holtzman SG (1991) Do adenosinergic substrates mediate methylxanthine effects upon reinforcement thresholds for electrical brain stimulation in the rat? Brain Res 550:172‐178. [DOI] [PubMed] [Google Scholar]
  97. Murphy BL, Arnsten AF, Goldman‐Rakic PS, Roth RH (1996a) Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci U S A 93:1325‐1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Murphy BL, Arnsten AF, Jentsch JD, Roth RH (1996b) Dopamine and spatial working memory in rats and monkeys: Pharmacological reversal of stress‐induced impairment. J Neurosci 16:7768‐7775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Neill DB, Fenton H, Justice JB (2002) Increase in accumbal dopaminergic transmission correlates with response cost not reward of hypothalamic stimulation. Behav Brain Res 137:129‐138. [DOI] [PubMed] [Google Scholar]
  100. Nielsen EB, Jepsen SA, Nielsen M, Braestrup C (1985) Discriminative stimulus properties of methyl 6,7‐dimethoxy‐4‐ethyl‐beta‐carboline‐3‐carboxylate (DMCM), an inverse agonist at benzodiazepine receptors. Life Sci 36:15‐23. [DOI] [PubMed] [Google Scholar]
  101. Ninan PT, Insel TM, Cohen RM, Cook JM, Skolnick P, Paul SM (1982) Benzodiazepine receptor‐mediated experimental “anxiety” in primates. Science 218:1332‐1334. [DOI] [PubMed] [Google Scholar]
  102. Nutt DJ, Lister RG (1988) Strain differences in response to a benzodiazepine receptor inverse agonist (FG 7142) in mice. Psychopharmacology (Berl) 94:335‐336. [DOI] [PubMed] [Google Scholar]
  103. Ongini E, Barzaghi C, Marzanatti M (1983) Intrinsic and antagonistic effects of beta‐carboline FG 7142 on behavioral and EEG actions of benzodiazepines and pentobarbital in cats. Eur J Pharmacol 95:125‐129. [DOI] [PubMed] [Google Scholar]
  104. Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus‐maze: A novel test of anxiety in the rat. Pharmacol Biochem Behav 24:525‐529. [DOI] [PubMed] [Google Scholar]
  105. Pellow S, File SE (1985) The effects of putative anxiogenic compounds (FG 7142, CGS 8216 and Ro 15–1788) on the rat corticosterone response. Physiol Behav 35:587‐590. [DOI] [PubMed] [Google Scholar]
  106. Pellow S, Herberg LJ, File SE (1984) The effects of the beta‐carboline FG 7142, on intracranial self‐stimulation in the rat. Pharmacol Biochem Behav 21:667‐669. [DOI] [PubMed] [Google Scholar]
  107. Pellow S, Johnston AL, File SE (1987) Selective agonists and antagonists for 5‐hydroxytryptamine receptor subtypes, and interactions with yohimbine and FG 7142 using the elevated plus‐maze test in the rat. J Pharm Pharmacol 39:917‐928. [DOI] [PubMed] [Google Scholar]
  108. Petersen EN, Jensen LH (1987) Chronic treatment with lorazepam and FG 7142 may change the effects of benzodiazepine receptor agonists, antagonists and inverse agonists by different mechanisms. Eur J Pharmacol 133:309‐317. [DOI] [PubMed] [Google Scholar]
  109. Phillis JW, Oregan MH (1988) The role of adenosine in the central actions of the benzodiazepines. Prog Neuro-Psychopharmacol Biol Psychiatry 12:389‐404. [DOI] [PubMed] [Google Scholar]
  110. Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABA(A) receptors: Immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815‐850. [DOI] [PubMed] [Google Scholar]
  111. Puig MV, Artigas F, Celada P (2005) Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: Involvement of serotonin and GABA. Cereb Cortex 15:1‐14. [DOI] [PubMed] [Google Scholar]
  112. Quigley KS, Sarter MF, Hart SL, Berntson GG (1994) Cardiovascular effects of the benzodiazepine receptor partial inverse agonist FG 7142 in rats. Behav Brain Res 62:11‐20. [DOI] [PubMed] [Google Scholar]
  113. Quirk GJ, Likhtik E, Pelletier JG, Pare D (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 23:8800‐8807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Rawleigh JM, Kemble ED (1992) Test‐specific effects of FG‐7142 on isolation‐induced aggression in mice. Pharmacol Biochem Behav 42:317‐321. [DOI] [PubMed] [Google Scholar]
  115. Risbrough VB, Geyer MA (2005) Anxiogenic treatments do not increase fear‐potentiated startle in mice. Biol Psychiatry 57:33‐43. [DOI] [PubMed] [Google Scholar]
  116. Rodgers RJ, Cole JC, Aboualfa K, Stephenson LH (1995) Ethopharmacological analysis of the effects of putative ‘anxiogenic’ agents in the mouse elevated plus‐maze. Pharmacol Biochem Behav 52:805‐813. [DOI] [PubMed] [Google Scholar]
  117. Rosenkranz JA, Grace AA (2001) Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J Neurosci 21:4090‐4103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Rosenkranz JA, Moore H, Grace AA (2003) The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci 23:11054‐11064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Rudolph U, Crestani F, Benke D, Brunig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Mohler H (1999) Benzodiazepine actions mediated by specific gamma‐aminobutyric acid(A) receptor subtypes. Nature 401:796‐800. [DOI] [PubMed] [Google Scholar]
  120. Rudolph U, Crestani F, Mohler H (2001) GABA(A) receptor subtypes: Dissecting their pharmacological functions. Trends Pharmacol Sci 22:188‐194. [DOI] [PubMed] [Google Scholar]
  121. Rudolph U, Mohler H (2006) GABA‐based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol 6:18‐23. [DOI] [PubMed] [Google Scholar]
  122. Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort‐related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461‐482. [DOI] [PubMed] [Google Scholar]
  123. Salchner P, Sartori SB, Sinner C, Wigger A, Frank E, Landgraf R, Singewald N (2006) Airjet and FG‐7142‐induced fos expression differs in rats selectively bred for high and low anxiety‐related behavior. Neuropharmacology 50:1048‐1058. [DOI] [PubMed] [Google Scholar]
  124. Sarter M, Bruno JP, Berntson GG (2001a) Psychotogenic properties of benzodiazepine receptor inverse agonists. Psychopharmacology (Berl) 156:1‐13. [DOI] [PubMed] [Google Scholar]
  125. Sarter M, Givens B, Bruno JP (2001b) The cognitive neuroscience of sustained attention: Where top‐down meets bottom‐up. Brain Res Rev 35:146‐160. [DOI] [PubMed] [Google Scholar]
  126. Schwarzer C, Berresheim U, Pirker S, Wieselthaler A, Fuchs K, Sieghart W, Sperk G (2001) Distribution of the major gamma‐aminobutyric acid(A) receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. J Comp Neurol 433:526‐549. [DOI] [PubMed] [Google Scholar]
  127. Sena LM, Bueno C, Pobbe RL, Andrade TG, Zangrossi H, Jr , Viana MB (2003) The dorsal raphe nucleus exerts opposed control on generalized anxiety and panic‐related defensive responses in rats. Behav Brain Res 142:125‐133. [DOI] [PubMed] [Google Scholar]
  128. Shansky RM, Glavis‐Bloom C, Lerman D, McRae P, Benson C, Miller K, Cosand L, Horvath TL, Arnsten AF (2004) Estrogen mediates sex differences in stress‐induced prefrontal cortex dysfunction. Mol Psychiatry 9:531‐538. [DOI] [PubMed] [Google Scholar]
  129. Short KR, Maier SF (1993) Stressor controllability, social interaction, and benzodiazepine systems. Pharmacol Biochem Behav 45:827‐835. [DOI] [PubMed] [Google Scholar]
  130. Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABAA receptor subtypes. Curr Top Med Chem 2:795‐816. [DOI] [PubMed] [Google Scholar]
  131. Singewald N, Salchner P, Sharp T (2003) Induction of C‐Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. Biol Psychiatry 53:275‐283. [DOI] [PubMed] [Google Scholar]
  132. Singewald N, Sharp T (2000) Neuroanatomical targets of anxiogenic drugs in the hindbrain as revealed by fos immunocytochemistry. Neuroscience 98:759‐770. [DOI] [PubMed] [Google Scholar]
  133. Skolnick P, Crawley JN, Glowa JR, Paul SM (1984) Beta‐carboline‐induced anxiety states. Psychopathology 17 Suppl 3:52‐60. [DOI] [PubMed] [Google Scholar]
  134. Smith AJ, Alder L, Silk J, Adkins C, Fletcher AE, Scales T, Kerby J, Marshall G, Wafford KA, McKernan RM, et al. (2001) Effect of alpha subunit on allosteric modulation of ion channel function in stably expressed human recombinant gamma‐aminobutyric acid(A) receptors determined using (36)Cl ion flux. Mol Pharmacol 59:1108‐1118. [DOI] [PubMed] [Google Scholar]
  135. Stanford SC, Little HJ, Nutt DJ, Taylor SC (1986) Effects of chronic treatment with benzodiazepine receptor ligands on cortical adrenoceptors. Eur J Pharmacol 129:181‐184. [DOI] [PubMed] [Google Scholar]
  136. Stanford SC, Little HJ, Nutt DJ, Taylor SC (1987) A single dose of FG‐7142 causes long‐term increases in mouse cortical beta‐adrenoceptors. Eur J Pharmacol 134:313‐319. [DOI] [PubMed] [Google Scholar]
  137. Staub DR, Evans AK, Lowry CA (2006) Evidence supporting a role for corticotropin‐releasing factor type 2 (CRF(2)) receptors in the regulation of subpopulations of serotonergic neurons. Brain Res 1070(1): 77‐89. [DOI] [PubMed] [Google Scholar]
  138. Stephens DN, Kehr W (1985) Beta‐carbolines can enhance or antagonize the effects of punishment in mice. Psychopharmacology (Berl) 85:143‐147. [DOI] [PubMed] [Google Scholar]
  139. Stephens DN, Kehr W, Schneider HH, Schmiechen R (1984a) Beta‐carbolines with agonistic and inverse agonistic properties at benzodiazepine receptors of the rat. Neurosci Lett 47:333‐338. [DOI] [PubMed] [Google Scholar]
  140. Stephens DN, Schneider HH, Kehr W, Jensen LH, Petersen E, Honore T (1987) Modulation of anxiety by beta‐carbolines and other benzodiazepine receptor ligands: Relationship of pharmacological to biochemical measures of efficacy. Brain Res Bull 19:309‐318. [DOI] [PubMed] [Google Scholar]
  141. Stephens DN, Shearman GT, Kehr W (1984b) Discriminative stimulus properties of beta‐carbolines characterized as agonists and inverse agonists at central benzodiazepine receptors. Psychopharmacology (Berl) 83:233‐239. [DOI] [PubMed] [Google Scholar]
  142. Sternfeld F, Carling RW, Jelley RA, Ladduwahetty T, Merchant KJ, Moore KW, Reeve AJ, Street LJ, O'Connor D, Sohal B, et al. (2004) Selective, orally active gamma‐aminobutyric acidA alpha 5 receptor inverse agonists as cognition enhancers. J Med Chem 47:2176‐2179. [DOI] [PubMed] [Google Scholar]
  143. Stevenson CW, Halliday DM, Marsden CA, Mason R (2007) Systemic administration of the benzodiazepine receptor partial inverse agonist FG‐7142 disrupts corticolimbic network interactions. Synapse 61:646‐663. [DOI] [PubMed] [Google Scholar]
  144. Street LJ, Sternfeld F, Jelley RA, Reeve AJ, Carling RW, Moore KW, McKernan RM, Sohal B, Cook S, Pike A, et al. (2004) Synthesis and biological evaluation of 3‐heterocyclyl‐7,8,9,10‐tetrahydro‐(7,10‐ethano)‐1,2,4‐triazolo[3,4‐a]phth alazines and analogues as subtype‐selective inverse agonists for the GABAAalpha5 benzodiazepine binding site. J Med Chem 47:3642‐3657. [DOI] [PubMed] [Google Scholar]
  145. Sur C, Fresu L, Howell O, McKernan RM, Atack JR (1999) Autoradiographic localization of alpha5 subunit‐containing GABAA receptors in rat brain. Brain Res 822:265‐270. [DOI] [PubMed] [Google Scholar]
  146. Takamatsu H, Noda A, Kurumaji A, Murakami Y, Tatsumi M, Ichise R, Nishimura S (2003) A PET study following treatment with a pharmacological stressor, FG7142, in conscious rhesus monkeys. Brain Res 980:275‐280. [DOI] [PubMed] [Google Scholar]
  147. Tanaka M, Yoshida M, Emoto H, Ishii H (2000) Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: Basic studies. Eur J Pharmacol 405:397‐406. [DOI] [PubMed] [Google Scholar]
  148. Thiebot MH, Dangoumau L, Richard G, Puech AJ (1991) Safety signal withdrawal: A behavioural paradigm sensitive to both “anxiolytic” and “anxiogenic” drugs under identical experimental conditions. Psychopharmacology (Berl) 103:415‐424. [DOI] [PubMed] [Google Scholar]
  149. Thiebot MH, Soubrie P, Sanger D (1988) Anxiogenic properties of beta‐CCE and FG 7142: A review of promises and pitfalls. Psychopharmacology (Berl) 94:452‐463. [DOI] [PubMed] [Google Scholar]
  150. Uehara T, Sumiyoshi T, Matsuoka T, Itoh H, Kurachi M (2006) Role of 5‐HT1A receptors in the modulation of stress‐induced lactate metabolism in the medial prefrontal cortex and basolateral amygdala. Psychopharmacology 186:218‐225. [DOI] [PubMed] [Google Scholar]
  151. Uehara T, Sumiyoshi T, Matsuoka T, Tanaka K, Tsunoda M, Itoh H, Kurachi M (2005) Enhancement of lactate metabolism in the basolateral amygdala by physical and psychological stress: Role of benzodiazepine receptors. Brain Res 1065:86‐91. [DOI] [PubMed] [Google Scholar]
  152. Vertes RP, Kocsis B (1997) Brainstem‐diencephalo‐septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81:893‐926. [DOI] [PubMed] [Google Scholar]
  153. Viana MB, Graeff FG, Loschmann PA (1997) Kainate microinjection into the dorsal raphe nucleus induces 5‐HT release in the amygdala and periaqueductal gray. Pharmacol Biochem Behav 58:167‐172. [DOI] [PubMed] [Google Scholar]
  154. Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463:199‐216. [DOI] [PubMed] [Google Scholar]
  155. Weiss JM, Goodman PA, Losito BG, Corrigan S, Charry JM, Bailey WH (1981) Behavioral depression produced by an uncontrollable stressor: Relationship to norepinephrine, dopamine, and serotonin levels in various regions of rat brain. Brain Res Rev 3:167‐205. [Google Scholar]
  156. Yuan J, Manabe S (1995) N‐Methyl‐beta‐carboline‐3‐carboxamide (FG 7142), an anxiogenic agent in airborne particles and cigarette smoke‐polluted indoor air. Environ Pollut 90:349‐355. [DOI] [PubMed] [Google Scholar]
  157. Yuan J, Manabe S (1996) Evaluation of exposure level of N‐methyl‐beta‐carboline‐3‐carboxamide (FG 7142), an anxiogenic agent in humans. Environ Pollut 94:267‐271. [DOI] [PubMed] [Google Scholar]
  158. Zavala F (1997) Benzodiazepines, anxiety and immunity. Pharmacol Ther 75:199‐216. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES