Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Aug 29;12(2):100–112. doi: 10.1111/j.1527-3458.2006.00100.x

A‐85380: A Pharmacological Probe for the Preclinical and Clinical Investigation of the α4β2 Neuronal Nicotinic Acetylcholine Receptor

Lynne E Rueter 1,, Diana L Donnelly‐Roberts 1, Peter Curzon 1, Clark A Briggs 1, David J Anderson 1, Robert S Bitner 1
PMCID: PMC6494138  PMID: 16958984

ABSTRACT

A‐85380 [3‐(2(s)‐azetidinylmethoxy) pyridine] is a neuronal nicotinic acetylcholine receptor (nAChR) agonist that has been a useful tool in the investigation of the function of nAChRs in both preclinical and clinical studies. Amongst nAChR subtypes, A‐85380 shows selectivity for the α4β2 vs. the α7 or α1β1δγ nAChRs. In functional in vitro cation flux assays, A‐85380 is a potent and full agonist. A‐85380 has a broad‐spectrum analgesic profile with efficacy in acute, persistent, and neuropathic pain models. As demonstrated using selective nAChR antagonists or α4 antisense, the α4β2 nAChR mediates the analgesic effects of A‐85380. Interestingly, the site of action depends upon the type of pain as antinociception is mediated by descending inhibition into the spinal cord whereas anti‐allodynia in neuropathic pain is mediated at both central and peripheral sites. Radiolabelled forms of A‐85380 have been developed and shown to be safe for use in vivo in humans. In clinical studies using positron and photon emission tomography, marked decreases in α4β2 nAChRs have been seen in patients with Parkinson's and Alzheimer's disease. Although not developed as a therapeutic agent, A‐85380 has proven to be an important component in the development of novel nAChR ligands for the treatment of pain and other disorders.

Keywords: A‐85380, Alzheimer's disease, Neuronal nicotinic acetylcholine receptor, Neuropathic pain, Parkinson's disease, Radioligands, Smoking

Full Text

The Full Text of this article is available as a PDF (125.6 KB).

REFERENCES

  • 1. Abreo MA, Lin NH, Garvey DS, et al. Novel 2‐pyridyl ethers with subnanomolar affinity for central nicotinic acetylcholine receptors. J Med Chem 39;39: 817–825. [DOI] [PubMed] [Google Scholar]
  • 2. Anderson DJ, Campbell JE, Raszkiewicz, A , et al. B inding properties of [3H]A‐85380, a high‐affinity neuronal nicotinic acetylcholine receptor radioligand. Soc Neurosci Abstr 1995;21: 606. [Google Scholar]
  • 3. Bitner RS, Nikkel AL, Curzon P, Arneric SP, Bannon AW, Decker MW. Role of the nucleus raphe magnus in antinociception produced by ABT‐594: Immediate early gene responses possibly linked to neuronal nicotinic acetylcholine receptors on serotonergic neurons. JNeurosci 1998;18: 5426–32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Bitner RS, Nikkel AL, Curzon P, et al. R educed nicotinic receptor‐mediated antinociception following in vivo antisense knock‐down in rat. Brain Res 2000;871: 66–74. [DOI] [PubMed] [Google Scholar]
  • 5. Buckley MJ, Surowy C, Meyer M, Curzon P. Mechanism of action of A‐85380 in a animal model of depression. Prog Neuro-Psychopharmacol Biol Psychiatr 2004;28: 723–730. [DOI] [PubMed] [Google Scholar]
  • 6. Bunnelle WH, Decker MW. Neuronal nicotinic acetylcholine receptor ligands as potential analgesics. Expert Opin Ther Patents 2003; 13: 1003–1021. [Google Scholar]
  • 7. Chavez‐Noriega LE, Crona JH, Washburn MS, Urrutia A, Elliott KJ, Johnson EC. P harmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors hα2β2, hα2β4, hα3β2, hα3β4, hα4β2, hα4β4 and hα7 expressed in Xenopus oocytes. J Pharmacol Exp Ther 1997;280: 346–56. [PubMed] [Google Scholar]
  • 8. Chefer SI, Horti AG, Koren AO, et al. 2‐[18F]F‐A‐85380: A PET radioligand for α4β2 nicotinic acetylcholine receptors. Neuro Report 1999;10: 2715–2721. [DOI] [PubMed] [Google Scholar]
  • 9. Chefer SI, London ED, Koren AO, et al. Graphical analysis of 2‐[18F]FA binding to nicotinic acetylcholine receptors in rhesus monkey brain. Synapse 2003;48: 25–34. [DOI] [PubMed] [Google Scholar]
  • 10. Chefer SI, Mukhin AG, Koren AO, et al. B inding of 2‐(18F)Fluoro‐A‐85380 to á4â2 nicotinic acetylcholine receptors (nAChRs) in hemiparkinsonian monkeys 10–12 years after MPTP treatment. Soc Neurosci Abstr 2001;27: 1993. [Google Scholar]
  • 11. Clarke PBS, Chaudieu I, El‐Bixri H, Boksa P, Quik M, Esplin, BA , Egraveapek, R. The pharmacology of the nicotinic antagonist, chlorisondamine, investigated in rat brain and autonomic ganglion. Br J Pharmacol 1994; 111: 397–405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Curzon P, Nikkel AL, Bannon AW, Arneric SP, Decker MW. Differences between the antinociceptive effects of the cholinergic channel activators A‐85380 and (+/‐)‐epibatidine in rats. J Pharmacol Exp Ther 1998; 287: 847–853. [PubMed] [Google Scholar]
  • 13. Damaj MI, Fei‐Yin M, Dukat M, Glassco W, Glennon RA, Martin BR. A. Pharmacol Exp Ther 1998;284: 1058–1065. [PubMed] [Google Scholar]
  • 14. Davis L, Pollock LJ, Stone, T. Visceral pain. Surg Gynecol Obstet 1932;55: 418–426. [Google Scholar]
  • 15. Decker MW, Rueter LE, Bitner RS. Nicotinic acetylcholine receptor agonists: A potential new class of analgesics. Curr Top Med Chem 2004;4: 369–384. [DOI] [PubMed] [Google Scholar]
  • 16. Deuther‐Conrad W, Wevers A, Becker G, et al. A in vitro. Synapse 2006;59: 201–210. [DOI] [PubMed] [Google Scholar]
  • 17. Ding Y‐S, Fowler JS, Logan J, et al. 6‐[18F]fluoro‐A‐85380, a new PET tracer for the nicotinic acetylcholine receptor: Studies in the human brain and in vivo demonstration of specific binding in white matter. Synapse 2004;53: 184–189. [DOI] [PubMed] [Google Scholar]
  • 18. Dollé F, Dolci L, Valette H, et al. S ynthesis and nicotinic acetylcholine receptor in vivo binding properties of 2‐fluoro‐3‐[2(S)‐2‐azetidinylmethoxy]pyridine: A new position emission tomography ligand for nicotinic receptors. J Med Chem 1999;42: 2251–2259. [DOI] [PubMed] [Google Scholar]
  • 19. Fujita M, Al‐Tikriti MS, Tamagnan G, et al. I nfluence of acetylcholine levels on the binding of a SPECT nicotinic acetylcholine receptor ligand [123I]5‐I‐A‐85380. Synapse 2003;48: 116–122. [DOI] [PubMed] [Google Scholar]
  • 20. Fujita M, Ichise M, Van Dyck CH, et al. Q uantification of nicotinic acetylcholine receptors in human brain using [123I]5‐I‐A‐85380. Eur J Nucl Med Mol Imaging 2003;30: 1620–1629. [DOI] [PubMed] [Google Scholar]
  • 21. Fujita M, Ichise M, Zoghbi SS, et al. Widespread decrease of nicotinic aceylcholine receptors in Parkinson's disease. Ann Neurol 2006;59: 174–177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Fujita M, Tamagnan G, Zoghbi SS, et al. M easurement of α4β2 nicotinic acetylcholine receptors with [123I]5‐I‐A‐85380 SPECT. J Nucl Med 2000;41: 1552–1560. [PubMed] [Google Scholar]
  • 23. Gündisch D, Koren AO, Horti AG, et al. In vitro characterization of 6‐[18F]fluoro‐A‐85380, a high‐affinity ligand for α4β2 nicotinic acetylcholine receptors. Synapse 2005;55: 89–97. [DOI] [PubMed] [Google Scholar]
  • 24. Holladay MW, Wasicak JT, Lin NH, et al. Identification and initial structure‐activity relationship of (R)‐5‐(2‐azetidinylmethoxy)‐2‐chloropyridine (A BT‐594), a potent, orally active, non‐opiate analgesic agent acting via neuronal nicotinic acetylcholine receptors. J Med Chem 1998;41: 407–412. [DOI] [PubMed] [Google Scholar]
  • 25. Horti AG, Chefer SI, Mukhin AG, et al. 6‐[18F]fluoro‐A‐85380, a novel radioligand for in vivo imaging of central nicotinic acetylcholine receptors. Life Sci 2000;67: 463–369. [DOI] [PubMed] [Google Scholar]
  • 26. Karlin A, Akabas MH. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 1995;15: 1231–1244. [DOI] [PubMed] [Google Scholar]
  • 27. Kassiou M, Eberl S, Meikle SR, et al. In vivo imaging of nicotinic receptor upregulation following chronic (‐)‐nicotine treatment in baboon using SPECT. Nucl Med Biol 2001;28: 165–175. [DOI] [PubMed] [Google Scholar]
  • 28. Kimes AS, Chefer SI, Matochik JA, et al. Q uantitation of human cerebral nicotinic acetylcholine receptors with 2‐(18F)fluoro‐ A‐85380 and PET. Soc Neurosci Abstr 2003;2329. [Google Scholar]
  • 29. Koren AO, Horti AG, Mukhin AG, Gündisch D, Dannals RF, London ED. S ynthesis and initial in vitro characterization of 6‐fluoro‐3‐[2(S)‐2‐azetidinylmethoxy]pyridine, a high‐affinity radioligand for central nicotinic acetylcholine receptors. J Labelled Compd Radiopharm 2000;43: 413–423. [Google Scholar]
  • 30. Kulak JM, Musachio JL, McIntosh JM, Quik M. D eclines in different β2 nicotinic receptor populations in monkey striatum after nigrostriatal damage. J Pharmacol Exp Ther 2002;303: 633–639. [DOI] [PubMed] [Google Scholar]
  • 31. Kulak JM, Sum J, Musachio JL, McIntosh JM, Quik M. [123I]5‐iodo‐A‐85380 binds to α‐conotoxin MII‐sensitive nicotinic acetylcholine receptors (nAChRs) as well as α4β2 subtypes. J Neurochem 2002;81: 403–406. [DOI] [PubMed] [Google Scholar]
  • 32. Levin ED. Nicotinic receptor subtypes and cognitive function. J Neurobiol 2002;53: 633–640. [DOI] [PubMed] [Google Scholar]
  • 33. Lukas RJ. Expression of ganglia‐type nicotinic acetylcholine receptors and nicotinic ligand binding sites by cells of the IMR‐32 human neuroblastoma clonal line. J Pharmacol Exp Ther 1993;265: 294–302. [PubMed] [Google Scholar]
  • 34. Marubio LM, Del Mar Arroyo‐Jimenez, M , Cordero‐Erausquin M, et al. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 1999;398: 805–10. [DOI] [PubMed] [Google Scholar]
  • 35. Mukhin AG, Gündisch D, Horti AG, et al. 5‐Iodo‐A‐85380, an α4β2 subtype‐selective ligand for nicotinic acetylcholine receptors. Mol Pharmacol 2000;57: 642–649. [DOI] [PubMed] [Google Scholar]
  • 36. Nikkel AL, Bitner RS, Zhu D, Curzon P, Decker MW. The locus coeruleus is a potential site of action for antinociception produced by the nicotinic agonist A‐85380: C‐Fos induction and DSP‐4 lesion studies in the rat. Soc Neurosci Abstr 1998;24: 335. [Google Scholar]
  • 37. Obrzut SL, Koren AO, Mandelkern MA, Brody AL, Hoh CK, London ED. Whole‐body radiation dosimetry of 2‐(18F)Fluoro‐A‐85380 in human PET imaging studies. Nucl Med Biol 2005;32: 869–874. [DOI] [PubMed] [Google Scholar]
  • 38. Owens J, Pimlott S, Colloby S, et al. N icotinic acetylcholine receptor distribution in vitro and in vivo in normal and disease state human brain using 5‐[125I or 123I]A‐85380. J Label Compd Radipharm 2003;46: S379. [Google Scholar]
  • 39. Pauly JR, Anderson DJ, Sullivan JP. A utoradiographic comparison of [3H]A‐85380, [3H]epibatidine and [3H]cytisine binding in rat and mouse brain. Soc Neurosci Abstr 1996;22: 1264. [Google Scholar]
  • 40. Perry DC, Xiao Y, Nguyen HN, Musachio JL, Davila‐Garcia MI, Kellar KJ. M easuring nicotinic receptors with characteristics of α4β2, α3β2 and α3β4 subtypes in rats tissues with autoradiography. J Neurochem 2002;82: 468–481. [DOI] [PubMed] [Google Scholar]
  • 41. Pimlott SL, Piggott M, Ballard C, et al. Thalamic nicotonic receptors implicated in disturbed consciousness in dementia with Lewy bodies. Neurobiol Dis 2006;21: 50–56. [DOI] [PubMed] [Google Scholar]
  • 42. Pimlott SL, Piggott M, Owens J, et al. N icotinic acetylcholine receptor distribution in Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease, and vascular dementia: In vitro binding study using 5‐[125I]A‐85380. Neuro psychopharmacology 2004;29: 108–116. [DOI] [PubMed] [Google Scholar]
  • 43. Quik M, Bordia T, Forno L, McIntosh JM. Loss of α‐conotoxinMII‐ and A85380‐sensitive nicotinic receptors in Parkinson's disease striatum. J Neurochem 2004;88: 668–679. [DOI] [PubMed] [Google Scholar]
  • 44. Radek RJ, Kohlhaas KL, Rueter LE, Decker MW. The nicotinic agonists A‐85380 does not lower hyperactivity of olfactory bulbectomized rats. Soc Neurosci Abstr 2002;2002: 307.7. [Google Scholar]
  • 45. Rueter, LE Kohlhaas, KL , Curzon P, Surowy CS, Meyer MD. Peripheral and central sites of action for A‐85380 in the spinal nerve ligation model of neuropathic pain. Pain 2003;103: 269–276. [DOI] [PubMed] [Google Scholar]
  • 46. Rueter LE, Meyer MD, Decker MW. Spinal mechanisms underlying A‐85380‐induced effects on acute thermal pain. Brain Res 2000;872: 93–101. [DOI] [PubMed] [Google Scholar]
  • 47. Salminen O, Whiteaker P, Grady SR, Collins AC, McIntosh JM, Marks MJ. The subunit composition and pharmacology of alpha‐conotoxin MII‐binding nicotinic acetylcholine receptors studies by a novel membrane‐binding assay. Neuropharmacology 2005;48: 696–705. [DOI] [PubMed] [Google Scholar]
  • 48. Schreiber R, Dalmus M, De Vry J. E ffects of α4β2‐ and α7‐nicotine acetylcholine receptor agonists on pre‐pulse inhibition of the acoustic startle response in rats and mice. Psychopharmacology 2002;159: 248–257. [DOI] [PubMed] [Google Scholar]
  • 49. Skok VI. Nicotinic acetylcholine receptors in autonomic ganglia. Auton Neurosci 2002; 18: 1–11. [DOI] [PubMed] [Google Scholar]
  • 50. Smeyne RJ, Jackson‐Lewis V. T. Brain Res 2005; 134: 57–66. [DOI] [PubMed] [Google Scholar]
  • 51. Sullivan JP, Decker MW, Brioni JD, et al. (±)‐Epibatidine elicits a diversity of in vitro and in vivo effects mediated by nicotinic acetylcholine receptors. J Pharmacol Exp Ther 1994;271: 624–631. [PubMed] [Google Scholar]
  • 52. Sullivan JP, Donnelly‐Roberts D, Briggs CA, et al. A ‐85380 [3‐(2(s)‐azetidinylmethoxy) pyridine]: In vitro pharmacological properties of a novel, high affinity α4β2 nicotinic acetylcholine receptor ligand. Neuropharmacology 1996;35: 725–734. [DOI] [PubMed] [Google Scholar]
  • 53. Valette H, Bottlaender M, Dollé F, Coulon C, Ottaviani M, Syrota A. A cute effects of physostigmine and galantamine on the binding of [18F]fluoro‐A‐85380: A PET study in monkeys. Synapse 2005;56: 217–221. [DOI] [PubMed] [Google Scholar]
  • 54. Valette H, Bottlaender M, Dollé F, Coulon C, Ottaviani M, Syrota A. Long‐lasting occupancy of central nicotinic acetylcholine receptors after smoking: A PET study in monkeys. J Neurochem 2003;84: 105–111. [DOI] [PubMed] [Google Scholar]
  • 55. Valette H, Dollé F, Bottlaender M, Hinnen F, Marzin D. F luoro‐A‐85380 demonstrated no mutagenic properties in in vivo rat micronucleus and Ames tests. Nucl Med Biol 2002;29: 849–853. [DOI] [PubMed] [Google Scholar]
  • 56. Vaupel DB, Tell SA, Huso DL, et al. P harmacology, toxicology, and radiation dosimetry evaluation of [123I]5‐I‐A‐85380, a radioligand for in vivo imaging of cerebral neuronal nicotinic acetylcholine receptors in humans. Drug Dev Res 2003;58: 149–168. [Google Scholar]
  • 57. Vaupel DB, Tella SR, Huso DL, et al. Pharmacological and toxicological evaluation of 2‐fluoro‐3‐[2(S)‐2‐azetidinylmethoxy]pyridine (2‐F‐A‐85380), a ligand for imaging cerebral nicotinic acetylcholine receptors with positron emission tomography. J Pharmacol Exp Ther 2005;312: 355–365. [DOI] [PubMed] [Google Scholar]
  • 58. Vazquez‐Palacios G, Bonilla‐Jaime H, Velazquez‐Moctezuma J. Antidepressant‐like effects of the acute and chronic administration of nicotine in the rat forced swimming test and its interaction with fluoxetine. Pharmacol Biochem Behav 2004;78: 165–9. [DOI] [PubMed] [Google Scholar]
  • 59. Whiteaker P, Jimenez M, McIntosh JM, Collins AC, Marks MJ. I dentification of a novel binding site in mouse brain using [125I]epibatidine. Br J Pharmacol 2000;131: 729–739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Whiteaker P, Peterson CG, Xu W, et al. Involvement of the alpha3 subunit in central nicotinic binding populations. J Neurosci 2002;22: 2522–2529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Xiao Y, Baydyuk M, Wang HP, Davis HE, Kellar KJ. Pharmacology of the agonist binding sites of rat neuronal nicotinic receptor subtypes express in HEK 293 cells. Bioorg Med Chem Lett 2004; 14: 1845–1848. [DOI] [PubMed] [Google Scholar]
  • 62. Yan Z, Feng J. Alzheimer's disease: Interactions between cholinergic functions and beta‐amyloid. Curr Alzheimer Res 2004;1: 241–248. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES