Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2007 Apr 24;13(1):43–56. doi: 10.1111/j.1527-3458.2007.00004.x

Levetiracetam: The Profile of a Novel Anticonvulsant Drug—Part I: Preclinical Data

Tim De Smedt 1, Robrecht Raedt 1, Kristl Vonck 1, Paul Boon 1
PMCID: PMC6494143  PMID: 17461889

ABSTRACT

The objective of this article was to review and summarize the available reports on the preclinical profile of the novel anticonvulsant drug levetiracetam (LEV). Therefore, a careful search was conducted in the MEDLINE database and combined with guidelines from regulatory agencies, proceedings of professional scientific meetings, and information provided by the manufacturers. This article provides detailed information on the anticonvulsant effects of LEV in various animal models of epilepsy and on its pharmacology in laboratory animals. The mechanism of action of LEV is reviewed, with special regard to its recently discovered binding site, the synaptic vesicle protein 2A. In general, LEV is shown to be a safe, broad‐spectrum anticonvulsant drug with highly beneficial pharmacokinetic properties and a distinct mechanism of action. The clinical studies with LEV will be discussed in the second part of this review article to be published subsequently.

Keywords: Anticonvulsants, Epilepsy, Levetiracetam, SV2A

Full Text

The Full Text of this article is available as a PDF (95.3 KB).

Acknowledgments

Acknowledgments We would like to thank Liesbeth Waterschoot, Annelies Van Dycke, and Tine Wyckhuys for reviewing the manuscript and providing corrections where needed.

Tim De Smedt is supported by a grant from the Ghent University Research Fund (B.O.F.). Robrecht Raedt is supported by a grant from the Institute for the Promotion of Innovation by Science and Technology in Flanders. Kristl Vonck is supported by a junior researcher (“Aspirant”) grant from the Fund for Scientific Research‐Flanders.

Paul Boon is a Senior Clinical Investigator of the Fund for Scientific Research‐Flanders (F.W.O.‐Vlaanderen) and he is supported by grants from the Fund for Scientific Research‐Flanders (F.W.O.‐Vlaanderen); by grants from Ghent University Research Fund (B.O.F.) and by the Clinical Epilepsy Grant Ghent University Hospital.

REFERENCES

  1. Angehagen M, Margineanu DG, Ben‐Menachem E, Ronnback L, Hansson E, Klitgaard H (2003) Levetiracetam reduces caffeine‐induced Ca2+ transients and epileptiform potentials in hippocampal neurons. Neuroreport 14:471‐475. [DOI] [PubMed] [Google Scholar]
  2. Benedetti MS, Coupez R, Whomsley R, Nicolas JM, Collart P, Baltes E (2004) Comparative pharmacokinetics and metabolism of levetiracetam, a new antiepileptic agent, in mouse, rat, rabbit, and dog. Xenobiotica 34:281‐300. [DOI] [PubMed] [Google Scholar]
  3. Birnstiel S, Wulfert E, Beck SG (1997) Levetiracetam (ucb L059) affects in vitro models of epilepsy in CA3 pyramidal neurons without altering normal synaptic transmission. N S Arch Pharmacol 356:611‐618. [DOI] [PubMed] [Google Scholar]
  4. Bittigau P, Sifringer M, Genz K, Reith E, Pospischil D, Govindarajalu S, Dzietko M, Pesditschek S, Mai I, Dikranian K, et al (2002) Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. PNAS 99:15089‐15094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bouwman BM, Van Rijn CM (2004) Effects of levetiracetam on spike and wave discharges in WAG/Rij rats. Seizure 13:591‐594. [DOI] [PubMed] [Google Scholar]
  6. Cataldi M, Lariccia V, Secondo A, Di Renzo G, Annunziato L (2005) The antiepileptic drug levetiracetam decreases the inositol 1,4,5‐trisphosphate‐dependent [Ca2+]I increase induced by ATP and bradykinin in PC12 cells. J Pharmacol Exp Ther 313:720‐730. [DOI] [PubMed] [Google Scholar]
  7. Costa C, Martella G, Picconi B, Prosperetti C, Pisani A, Di Filippo M, Pisani F, Bernardi G, Calabresi P (2006) Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia. Stroke 37:1319‐1326. [DOI] [PubMed] [Google Scholar]
  8. Crowder KM, Gunther JM, Jones TA, Hale BD, Zhang HZ, Peterson MR, Scheller RH, Chavkin C, Bajjalieh SM (1999) Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc Natl Acad Sci USA 96:15268‐15273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Custer KL, Austin NS, Sullivan JM, Bajjalieh SM (2006) Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci 26:1303‐1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Deyn PP, Kabatu H, D’Hooge R, Mori A (1992) Protective effect of ucb L059 against postural stimulation‐induced seizures in EL Mice. Neuroscience 18:187‐192. [Google Scholar]
  11. De Smedt T, Vonck K, Raedt R, Dedeurwaerdere S, Claeys P, Legros B, Wyckhuys T, Wadman W, Boon P (2005) Rapid kindling in preclinical antiepileptic drug development: The effect of levetiracetam. Epilepsy Res 67:109‐116. [DOI] [PubMed] [Google Scholar]
  12. Dedeurwaerdere S, Boon P, De Smedt T, Claeys P, Raedt R, Bosman T, Van Hese P, Van Maele G, Vonck K (2005) Chronic levetiracetam treatment early in life decreases epileptiform events in young GAERS, but does not prevent the expression of spike and wave discharges during adulthood. Seizure 14:403‐411. [DOI] [PubMed] [Google Scholar]
  13. Doheny HC, Whittington MA, Jefferys JGR, Patsalos PN (1997) Levetiracetam in a chronic model of epilepsy. Epilepsia 38:30. [Google Scholar]
  14. Doheny HC, Whittington MA, Jefferys JGR, Patsalos PN (2002) A comparison of the efficacy of carbamazepine and the novel antiepileptic drug levetiracetam in the tetanus toxin model of focal complex partial epilepsy. Br J Pharmacol 135:1425‐34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ebert U, Reissmuller E, Löscher W (2000) The new antiepileptic drugs lamotrigine and felbamate are effective in phenytoin‐resistant kindled rats. Neuropharmacology 39:1893‐1903. [DOI] [PubMed] [Google Scholar]
  16. El Idrissi A, Messing J, Scalia J, Trenkner E (2003) Prevention of epileptic seizures by taurine. Adv Exp Med Biol 526:515‐525. [DOI] [PubMed] [Google Scholar]
  17. Elmer E, Kokaia Z, Kokaia M, Carnahan J, Nawa H, Lindvall O (1998) Dynamic changes of brain‐derived neurotrophic factor protein levels in the rat forebrain after single and recurring kindling‐induced seizures. Neuroscience 83:351‐362. [DOI] [PubMed] [Google Scholar]
  18. Ernfors P, Bengzon J, Kokaia Z, Persson H, Lindvall O (1991) Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis. Neuron 7:165‐176. [DOI] [PubMed] [Google Scholar]
  19. Feany MB, Lee S, Edwards SH, Buckley KM (1992) The synaptic vesicle protein SV2 is a novel type of transmembrane transporter. Cell 70:861‐867. [DOI] [PubMed] [Google Scholar]
  20. Fuks B, Gillard M, Michel P, Lynch B, Vertongen P, Leprince P, Klitgaard H, Chatelain P (2003) Localization and photoaffinity labeling of the levetiracetam binding site in rat brain and certain cell lines. Eur J Pharmacol 478:11‐19. [DOI] [PubMed] [Google Scholar]
  21. Genton P, Van Vleymen B (2000) Piracetam and levetiracetam: Close structural similarities but different pharmacological and clinical profiles. Epileptic Disord 2:99‐105. [PubMed] [Google Scholar]
  22. Gibbs JE, Cock HR (2006) Administration of levetiracetam after prolonged status epilepticus does not protect from mitochondrial dysfunction in a rodent model. Epilepsy Res Nov 3 [E‐pub ahead of print]. [DOI] [PubMed] [Google Scholar]
  23. Gibbs JE, Walker MC, Cock HR (2006) Levetiracetam: Antiepileptic properties and protective effects on mitochondrial dysfunction in experimental status epilepticus. Epilepsia 47:469‐478. [DOI] [PubMed] [Google Scholar]
  24. Gillard M, Chatelain P, Fuks B (2006) Binding characteristics of levetiracetam to synaptic vesicle protein 2A (SV2A) in human brain and in CHO cells expressing the human recombinant protein. Eur J Pharmacol 536:102‐108. [DOI] [PubMed] [Google Scholar]
  25. Glien M, Brandt C, Potschka H, Löscher W (2002) Effects of the novel antiepileptic drug levetiracetam on spontaneous recurrent seizures in the rat pilocarpine model of temporal lobe epilepsy. Epilepsia 43:350‐357. [DOI] [PubMed] [Google Scholar]
  26. Gorji A, Hohling JM, Madeja M, Straub H, Kohling R, Tuxhorn I, Ebner A, Wolf P, Panneck HW, Behne F, et al (2002) Effect of levetiracetam on epileptiform discharges in human neocortical slices. Epilepsia 43:1480‐1487. [DOI] [PubMed] [Google Scholar]
  27. Gower AJ, Hirsch E, Boehrer A, Noyer M, Marescaux C (1995) Effects of levetiracetam, a novel antiepileptic drug, on convulsant activity in two genetic rat models of epilepsy. Epilepsy Res 22:207‐213. [DOI] [PubMed] [Google Scholar]
  28. Gower AJ, Noyer M, Verloes R, Gobert J, Wülfert E (1992) UCB L059, a novel anticonvulsant drug: Pharmacological profile in animals. Eur J Pharmacol 222:193‐203. [DOI] [PubMed] [Google Scholar]
  29. Gu J, Lynch BA, Anderson D, Klitgaard H, Lu S, Elashoff M, Ebert U, Potschka H, Löscher W (2004) The antiepileptic drug levetiracetam selectively modifies kindling‐induced alterations in gene expression in the temporal lobe of rats. Eur J Neurosci 19:334‐345. [DOI] [PubMed] [Google Scholar]
  30. Hanon E, Klitgaard H (2001) Neuroprotective properties of the novel antiepileptic drug levetiracetam in the rat middle cerebral artery occlusion model of focal cerebral ischemia. Seizure 10:287‐293. [DOI] [PubMed] [Google Scholar]
  31. Husum H, Bolwig TG, Sanchez C, Mathe AA, Hansen SL (2004) Levetiracetam prevents changes in levels of brain‐derived neurotrophic factor and neuropeptide Y mRNA and of Y1‐ and Y5‐like receptors in the hippocampus of rats undergoing amygdala kindling: Implications for antiepileptogenic and mood‐stabilizing properties. Epilepsy Behav 5:204‐215. [DOI] [PubMed] [Google Scholar]
  32. Isoherranen N, Spiegelstein O, Bialer M, Zhang J, Merriweather M, Yagen B, Roeder M, Triplett AA, Schurig V, Finnell RH (2003) Developmental outcome of levetiracetam, its major metabolite in humans, 2‐pyrrolidinone n‐butyric acid, and its enantiomer (r)‐α‐ethyl‐oxo‐pyrrolidine acetamide in a mouse model of teratogenicity. Epilepsia 44:1280‐1288. [DOI] [PubMed] [Google Scholar]
  33. Janz R, Goda Y, Geppert M, Missler M, Sudhof TC (1999) SV2A and SV2B function as redundant Ca2+‐regulators in neurotransmitter release. Neuron 24:1003‐1016. [DOI] [PubMed] [Google Scholar]
  34. Ji‐qun C, Ishihara K, Nagayama T, Serikawa T, Sasa M (2005) Long‐lasting antiepileptic effects of levetiracetam against epileptic seizures in the spontaneously epileptic rat (SER): Differentiation of levetiracetam from conventional antiepileptic drugs. Epilepsia 46:1362‐1370. [DOI] [PubMed] [Google Scholar]
  35. Klitgaard H (2001) Levetiracetam: The preclinical profile of a new class of antiepileptic drugs? Epilepsia 42:13‐15. [PubMed] [Google Scholar]
  36. Klitgaard H, Matagne A (2002) Levetiracetam enhances markedly the seizure suppression of other antiepileptic drugs in amygdala‐kindled rats. Epilepsia 43:219 [abstract. 11906505 [Google Scholar]
  37. Klitgaard H, Matagne A, Gobert J, Wülfert E (1998) Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur J Pharmacol 353:191‐206. [DOI] [PubMed] [Google Scholar]
  38. Klitgaard H, Matagne A, Grimee R, Vanneste‐Goemaere J, Margineanu DG (2003) Electrophysiological, neurochemical, and regional effects of levetiracetam in the rat pilocarpine model of temporal lobe epilepsy. Seizure 12:92‐100. [DOI] [PubMed] [Google Scholar]
  39. Lamberty Y, Margineanu DG, Klitgaard H (2000) Absence of negative impact of levetiracetam on cognitive function and memory in normal and amygdala‐kindled rats. Epilepsy Behav 1:333‐342. [DOI] [PubMed] [Google Scholar]
  40. Leniger T, Thone J, Bonnet U, Hufnagel A, Bingmann D, Wiemann M (2004) Levetiracetam inhibits Na+‐dependent Cl/HCO3 exchange of adult hippocampal CA3 neurons from guinea‐pigs. Br J Pharmacol 142:1073‐1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Lezzi M, Theander S, Janz R, Loze C, Wollheim CB (2005) SV2A and SV2C are not vesicular Ca2+ transporters but control glucose‐evoked granule recruitment. J Cell Sci 118:5647‐5660. [DOI] [PubMed] [Google Scholar]
  42. Löscher W, Honack D (1993) Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur J Pharmacol 232:147‐158. [DOI] [PubMed] [Google Scholar]
  43. Löscher W, Honack D (2000) Development of tolerance during chronic treatment of kindled rats with the novel antiepileptic drug levetiracetam. Epilepsia 41:1499‐1506. [DOI] [PubMed] [Google Scholar]
  44. Löscher W, Potschka H (2002) Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther 301:7‐14. [DOI] [PubMed] [Google Scholar]
  45. Löscher W, Honack D, Bloms‐Funke P (1996) The novel antiepileptic drug levetiracetam (Ucb L059) induces alterations in GABA metabolism and turnover in discrete areas of rat brain and reduces neuronal activity in substantia nigra pars reticulata. Brain Res 735:208‐216. [DOI] [PubMed] [Google Scholar]
  46. Löscher W, Honack D, Rundfeldtz C (1998) Anti‐epileptogenic effects of the novel anticonvulsant levetiracetam (Ucb L059) in the kindling model of temporal lobe epilepsy. J Pharmacol Exp Ther 284:474‐479. [PubMed] [Google Scholar]
  47. Löscher W, Reissmuller E, Ebert U (2000) Anticonvulsant efficacy of gabapentin and levetiracetam in phenytoin‐resistant kindled rats. Epilepsy Res 40:63‐77. [DOI] [PubMed] [Google Scholar]
  48. Löscher W, Rundfeldt C, Honack D (1993) Pharmacological characterization of phenytoin‐resistant amygdala‐kindled rats, a new model of drug‐resistant partial epilepsy. Epilepsy Res 15:207‐219. [DOI] [PubMed] [Google Scholar]
  49. Lukyanetz EA, Shkryl VM, Kostyuk PG (2002) Selective blockade of N‐type calcium channels by levetiracetam. Epilepsia 43:9‐18. [DOI] [PubMed] [Google Scholar]
  50. Luszczki JJ, Andres MM, Czuczwar P, Cioczek‐Czuczwar A, Ratnaraj A, Patsalos PN, Czuczwar SJ (2006) Pharmacodynamic and pharmacokinetic characterization of interactions between levetiracetam and numerous antiepileptic drugs in the mouse maximal electroshock seizure model: an isobolographic analysis. Epilepsia 47:10‐16. [DOI] [PubMed] [Google Scholar]
  51. Luszczki JJ, Andres MM, Czuczwar P, Cioczek‐Czuczwar A, Wojcik‐Cwikla J, Ratnaraj N, Patsalos PN, Czuczwar SJ (2005) Levetiracetam selectively potentiates the acute neurotoxic effects of topiramate and carbamazepine in the rotarod test in mice. Eur Neuropsychopharmacol 5:609‐616. [DOI] [PubMed] [Google Scholar]
  52. Lynch BA, Lambeng N, Nocka K, Kensel‐Hammes P, Bajjalieh SM, Matagne A, Fuks B (2004) The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci USA 101:9861‐9866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Madeja M, Margineanu DG, Gorji A, Siep E, Boerrigter P, Klitgaard H, Speckmann EJ (2003) Reduction of voltage‐operated potassium currents by levetiracetam: A novel antiepileptic mechanism of action? Neuropharmacology 45:661‐671. [DOI] [PubMed] [Google Scholar]
  54. Manthey D, Asimiadou S, Stefovska V, Kaindl AM, Fassbender J, Ikonomidou C (2005) Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain. Exp Neurol 193:497‐503. [DOI] [PubMed] [Google Scholar]
  55. Margineanu DG, Klitgaard H (2000) Inhibition of neuronal hypersynchrony in vitro differentiates levetiracetam from classical antiepileptic drugs. Pharmacol Res 42:281‐285. [DOI] [PubMed] [Google Scholar]
  56. Margineanu DG, Klitgaard H (2003) Levetiracetam has no significant gamma‐aminobutyric acid‐related effect on paired‐pulse interaction in the dentate gyrus of rats. Eur J Pharmacol 466:255‐261. [DOI] [PubMed] [Google Scholar]
  57. Margineanu DG, Wülfert E (1995) Ucb L059, a novel anticonvulsant, reduces bicuculline‐induced hyperexcitability in rat hippocampal CA3 in vivo. Eur J Pharmacol 286:321‐325. [DOI] [PubMed] [Google Scholar]
  58. Margineanu DG, Wülfert E (1997) Inhibition by levetiracetam of a non‐GABAA receptor‐associated epileptiform effect of bicuculline in rat hippocampus. Br J Pharmacol 122:1146‐1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Marini H, Costa C, Passaniti M, Esposito M, Campo GM, Ientile R, Adamo EB, Marini R, Calabresi P, Altavilla D, et al (2004) Levetiracetam protects against kainic acid‐induced toxicity. Life Sci 74:1253‐1264. [DOI] [PubMed] [Google Scholar]
  60. Matagne A (2001) Levetiracetam enhances markedly the seizure suppression of other antiepileptic drugs in audiogenic susceptible mice. Epilepsia 42:82 [abstract. [Google Scholar]
  61. Matagne A, Klitgaard H (1998) Validation of corneally kindled mice: A sensitive screening model for partial epilepsy in man. Epilepsy Res 31:59‐71. [DOI] [PubMed] [Google Scholar]
  62. Mazarati AM, Baldwin R, Klitgaard H, Matagne A, Wasterlain CG (2004) Anticonvulsant effects of levetiracetam and levetiracetam‐diazepam combinations in experimental status epilepticus. Epilepsy Res 58:167‐174. [DOI] [PubMed] [Google Scholar]
  63. Niespodziany I, Klitgaard H, Margineanu DG (2001) Levetiracetam inhibits the high‐voltage‐activated Ca2+ current in pyramidal neurones of rat hippocampal slices. Neurosci Lett 306:5‐8. [DOI] [PubMed] [Google Scholar]
  64. Niespodziany I, Klitgaard H, Margineanu DG (2003) Desynchronizing effect of levetiracetam on epileptiform responses in rat hippocampal slices. Neuroreport 14:1273‐1276. [DOI] [PubMed] [Google Scholar]
  65. Noyer M, Gillard M, Matagne A, Henichart JP, Wülfert E (1995) The novel antiepileptic drug levetiracetam (ucb L059) appears to act via a specific binding site in CNS membranes. Eur J Pharmacol 286:137‐146. [DOI] [PubMed] [Google Scholar]
  66. Oliveira AA, Nogueira CR, Nascimento VS, Aguiar LM, Freitas RM, Sousa FC, Viana GS, Fonteles MM (2005) Evaluation of levetiracetam effects on pilocarpine‐induced seizures: Cholinergic muscarinic system involvement. Neurosci Lett 385:184‐188. [DOI] [PubMed] [Google Scholar]
  67. Pal S, Sun D, Limbrick D, Rafiq A, DeLorenzo RJ (2001) Epileptogenesis induces long‐term alterations in intracellular calcium release and sequestration mechanisms in the hippocampal neuronal culture model of epilepsy. Cell Calcium 30:285‐296. [DOI] [PubMed] [Google Scholar]
  68. Patsalos PN, Perucca E (2003) Clinically important drug interactions in epilepsy: General features and interactions between antiepileptic drugs. Lancet Neurol 2:347‐356. [DOI] [PubMed] [Google Scholar]
  69. Pisani A, Bonsi P, Martella G, De Persis C, Costa C, Pisani F, Bernardi G, Calabresi P (2004) Intracellular calcium increase in epileptiform activity: Modulation by levetiracetam and lamotrigine. Epilepsia 45:719‐728. [DOI] [PubMed] [Google Scholar]
  70. Potschka H, Baltes S, Löscher W (2004a) Inhibition of multidrug transporters by verapamil or probenecid does not alter blood‐brain barrier penetration of levetiracetam in rats. Epilepsy Res 58:85‐91. [DOI] [PubMed] [Google Scholar]
  71. Potschka H, Volk HA, Löscher W (2004b) Pharmacoresistance and expression of multidrug transporter P‐glycoprotein in kindled rats. Neuroreport 15:1657‐1661. [DOI] [PubMed] [Google Scholar]
  72. Poulain P, Margineanu DG (2002) Levetiracetam opposes the action of GABAA antagonists in hypothalamic neurons. Neuropharmacology 42:346‐352. [DOI] [PubMed] [Google Scholar]
  73. Reissmuller E, Ebert U, Löscher W (2000) Anticonvulsant efficacy of topiramate in phenytoin‐resistant kindled rats. Epilepsia 41:372‐379. [DOI] [PubMed] [Google Scholar]
  74. Rigo JM, Hans G, Nguyen L, Rocher V, Belachew S, Malgrange B, Leprince P, Moonen G, Selak I, Matagne A, et al. (2002) The anti‐epileptic drug levetiracetam reverses the inhibition by negative allosteric modulators of neuronal GABA‐ and glycine‐gated currents. Br J Pharmacol 136:659‐672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Schwartzkroin PA, Prince DA (1978) Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res 147:117‐130. [DOI] [PubMed] [Google Scholar]
  76. Serikawa T, Yamada J, Ujihara H, Ohno Y, Sasa M, Takaori S (1991) Ontogeny of absence‐like and tonic seizures in the spontaneously epileptic rat. Lab Anim 25:216‐221. [DOI] [PubMed] [Google Scholar]
  77. Sills GJ, Butler E, Thompson GG, Brodie MJ (2004) Pharmacodynamic interaction studies with topiramate in the pentylenetetrazole and maximal electroshock seizure models. Seizure 13:287‐295. [DOI] [PubMed] [Google Scholar]
  78. Silver JM, Shin C, McNamara JO (1991) Antiepileptogenic effects of conventional anticonvulsants in the kindling model of epilespy. Ann Neurol 29:356‐363. [DOI] [PubMed] [Google Scholar]
  79. Sisodiya SM (2003) Mechanisms of antiepileptic drug resistance. Curr Opin Neurol 16:197‐201. [DOI] [PubMed] [Google Scholar]
  80. Stratton SC, Large CH, Cox B, Davies G, Hagan RM (2003) Effects of lamotrigine and levetiracetam on seizure development in a rat amygdala kindling model. Epilepsy Res 53:95‐106. [DOI] [PubMed] [Google Scholar]
  81. Tong X, Patsalos PN (2001) A microdialysis study of the novel antiepileptic drug levetiracetam: Extracellular pharmacokinetics and effect on taurine in rat brain. Br J Pharmacol 133:867‐874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Wada JA (1974) Pharmacological prophylaxis in the kindling model of epilepsy. Arch Neurol 34:389‐395. [DOI] [PubMed] [Google Scholar]
  83. Wang H, Gao J, Lassiter TF, McDonagh DL, Sheng H, Warner DS, Lynch JR, Laskowitz DT (2006) Levetiracetam is neuroprotective in murine models of closed head injury and subarachnoid hemorrhage. Neurocrit Care 5:71‐8. [DOI] [PubMed] [Google Scholar]
  84. Xu T, Bajjalieh SM (2001) SV2 modulates the size of the readily releasable pool of secretory vesicles. Nat Cell Biol 3:691‐698. [DOI] [PubMed] [Google Scholar]
  85. Yan HD, Ji‐qun C, Ishihara K, Nagayama T, Serikawa T, Sasa M (2005) Separation of antiepileptogenic and antiseizure effects of levetiracetam in the spontaneously epileptic rat (SER). Epilepsia 46:1170‐1177. [DOI] [PubMed] [Google Scholar]
  86. Zhang ZJ, Xing GQ, Russell S, Obeng K, Post RM (2003) Unidirectional cross‐tolerance from levetiracetam to carbamazepine in amygdala‐kindled seizures. Epilepsia 44:1487‐1493. [DOI] [PubMed] [Google Scholar]
  87. Zona C, Niespodziany I, Marchetti C, Klitgaard H, Bernardi G, Margineanu DG (2001) Levetiracetam does not modulate neuronal voltage‐gated Na+ and T‐type Ca2+ currents. Seizure 10:279‐286. [DOI] [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES