ABSTRACT
The last two decades have shown a marked expansion in the number of publications regarding the effects of Panax ginseng. Ginsenosides, which are unique saponins isolated from Panax ginseng, are the pharmacologically active ingredients in ginseng, responsible for its effects on the central nervous system (CNS) and the peripheral nervous system. Recent studies have shown that ginsenosides regulate various types of ion channels, such as voltage‐dependent and ligand‐gated ion channels, in neuronal and heterologously expressed cells. Ginsenosides inhibit voltage‐dependent Ca2+, K+, and Na+ channel activities in a stereospecific manner. Ginsenosides also inhibit ligand‐gated ion channels such as N‐methyl‐d‐aspartate, some subtypes of nicotinic acetylcholine, and 5‐hydroxytryptamine type 3 receptors. Competition and site‐directed mutagenesis experiments revealed that ginsenosides interact with ligand‐binding sites or channel pore sites and inhibit open states of ion channels. This review will introduce recent findings and advances on ginsenoside‐induced regulation of ion channel activities in the CNS, and will further expand the possibilities that ginsenosides may be useful and potentially therapeutic choices in the treatment of neurodegenerative disorders.
Keywords: CNS drugs, Ginsenosides, Ligand‐gated ion channels, Panax ginseng, Voltage‐dependent ion channels
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Acknowledgments
Acknowledgments The work done in the author's laboratory was supported by grants from KIST Core‐Competence Program and Brain Research Center of the 21st Century Frontier Research Program (M103KV010007‐07K2201‐00710 to H.R.), the Republic of Korea.
Conflict of interest: The authors have no conflict of interest.
REFERENCES
- Abe K, Cho SI, Kitagawa I, Nishiyama N, Saito H (1994) Differential effects of ginsenoside Rb1 and malonylginsenoside Rb1 on long‐term potentiation in the dentate gyrus of rats. Brain Res 649:7‐11. [DOI] [PubMed] [Google Scholar]
- Abebe W (2002) Herbal medication: Potential for adverse interactions with analgesic drugs. J Clin Pharmacol Therap 27:391‐401. [DOI] [PubMed] [Google Scholar]
- Akao T, Kanaoka M, Kobashi K (1998a) Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration‐measurement of compound K by enzyme immunoassay. Biol Pharm Bull 21:245‐249. [DOI] [PubMed] [Google Scholar]
- Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K (1998b) Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol 50:1155‐1160. [DOI] [PubMed] [Google Scholar]
- Alston TA, Mela L, Bright HJ (1977) 3‐Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci USA 74:3767‐3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Attele AS, Wu JA, Yuan CS (1999) Ginseng pharmacology: Multiple constituents and multiple actions. Biochem Pharmacol 58:1685‐1693. [DOI] [PubMed] [Google Scholar]
- Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH (2002a) Metabolism of ginsenoside Rc by human intestinal bacteria and its related antiallergic activity. Biol Pharm Bull 25:743‐747. [DOI] [PubMed] [Google Scholar]
- Bae EA, Han MJ, Choo MK, Park SY, Kim DH (2002b) Metabolism of 20(S)‐ and 20(R)‐ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol Pharml Bull 25:58‐63. [DOI] [PubMed] [Google Scholar]
- Bae EA, Han MJ, Kim EJ, Kim DH (2004a) Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch Pharm Res 27:61‐67. [DOI] [PubMed] [Google Scholar]
- Bae EA, Hyun YJ, Choo MK, Oh JK, Ryu JH, Kim DH (2004b) Protective effect of fermented red ginseng on a transient focal ischemic rats. Arch Pharm Res 27:1136‐1140. [DOI] [PubMed] [Google Scholar]
- Bae EA, Kim EJ, Park JS, Kim HS, Ryu JH, Kim DH (2006) Ginsenosides Rg3 and Rh2 inhibit the activation of AP‐1 and protein kinase A pathway in lipopolysaccharide/interferon‐gamma‐stimulated BV‐2 microglial cells. Planta Med 72:627‐633. [DOI] [PubMed] [Google Scholar]
- Bae EA, Park SY, Kim DH (2000) Constitutive beta‐glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol Pharm Bull 23:1481‐1485. [DOI] [PubMed] [Google Scholar]
- Bae EA, Shin JE, Kim DH (2005) Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biol Pharm Bull 28:1903‐1908. [DOI] [PubMed] [Google Scholar]
- Baek NI, Kim DS, Lee YH, Park JD, Lee CB, Kim SI (1996) Ginsenoside Rh4, a genuine dammarane glycoside from Korean red ginseng. Planta Med 62:86‐87. [DOI] [PubMed] [Google Scholar]
- Berridge MJ (1998a) Neuronal calcium signaling. Neuron 21:13‐26. [DOI] [PubMed] [Google Scholar]
- Berridge MJ, Bootman, MD , Lipp, P (1998b) Calcium—a life and death signal. Nature 395:645‐648. [DOI] [PubMed] [Google Scholar]
- Bizat N, Hermel JM, Boyer F, Jacquard C, Creminon C, Ouary S, Escartin C, Hantraye P, Kajewski S, Brouillet E (2003a) Calpain is a major cell death effector in selective striatal degeneration induced in vivo by 3‐nitropropionate: Implications for Huntington's disease. J Neurosci 23:5020‐5030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bizat N, Hermel JM, Humbert S, Jacquard C, Creminon C, Escartin C, Saudou F, Krajewski S, Hantraye P, Brouillet E (2003b) In vivo calpain/caspase cross‐talk during 3‐nitropropionic acid‐induced striatal degeneration: Implication of a calpain‐mediated cleavage of active caspase‐3. J Biol Chem 278:43245‐43253. [DOI] [PubMed] [Google Scholar]
- Brouillet E, Conde F, Beal MF, Hantraye P (1999) Replicating Huntington's disease phenotype in experimental animals. Prog Neurobiol 59:427‐468. [DOI] [PubMed] [Google Scholar]
- Buettner C, Yeh GY, Phillips RS, Mittleman MA, Kaptchuk TJ (2006) Systematic review of the effects of ginseng on cardiovascular risk factors. Ann Pharmacother 40:83‐95. [DOI] [PubMed] [Google Scholar]
- Calabresi P, Gubellini P, Picconi B, Centonze D, Pisani A, Bonsi P, Greengard P, Hipskind RA, Borrelli E, Bernardi G (2001) Inhibition of mitochondrial complex II induces a long‐term potentiation of NMDA‐mediated synaptic excitation in the striatum requiring endogenous dopamine. J Neurosci 21:5110‐5120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campos‐Caro A, Smillie FI, Dominguez del Toro E, Rovira JC, Vicente‐Agullo F, Chapuli J, Juiz JM, Sala S, Sala F, Ballesta JJ, et al (1997) Neuronal nicotinic acetylcholine receptors on bovine chromaffin cells: Cloning, expression, and genomic organization of receptor subunits. J Neurochem 68:488‐497. [DOI] [PubMed] [Google Scholar]
- Catterall W (2000) Structure and regulation of voltage‐gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521‐555. [DOI] [PubMed] [Google Scholar]
- Chapman AG (2000) Glutamate and epilepsy. J Nutr 130:1043S‐1045S. [DOI] [PubMed] [Google Scholar]
- Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic‐ischemic neuronal death. Annu Rev Neurosci 13:171‐182. [DOI] [PubMed] [Google Scholar]
- Choi S, Jung S, Kim C, Kim H, Rhim H, Kim S, Nah S (2001a) Effect of ginsenosides on voltage‐dependent Ca2+ channel subtypes in bovine chromaffin cells. J Ethnopharmacol 74:75‐81. [DOI] [PubMed] [Google Scholar]
- Choi S, Jung SY, Ko YS, Koh SR, Rhim H, Nah SY (2002a) Functional expression of a novel ginsenoside Rf binding protein from rat brain mRNA in Xenopus laevis oocytes. Mol Pharmacol 61:928‐935. [DOI] [PubMed] [Google Scholar]
- Choi S, Jung SY, Lee JH, Sala F, Criado M, Mulet J, Valor LM, Sala S, Engel AG, Nah SY (2002b) Effects of ginsenosides, active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes. Eur J Pharmacol 442:37‐45. [DOI] [PubMed] [Google Scholar]
- Choi S, Kim HJ, Ko YS, Jeong SW, Kim YI, Simonds WF, Oh JW, Nah SY (2001b) G alpha(q/11) coupled to mammalian phospholipase C beta 3‐like enzyme mediates the ginsenoside effect on Ca2+‐activated Cl− current in the Xenopus oocyte. J Biol Chem 276:48797‐48802. [DOI] [PubMed] [Google Scholar]
- Choi S, Lee JH, Oh S, Rhim H, Lee SM, Nah SY (2003) Effects of ginsenoside Rg2 on the 5‐HT3A receptor‐mediated ion current in Xenopus oocytes. Mol Cells 15:108‐113. [PubMed] [Google Scholar]
- Chung I, Kim ND (1999a) Ginseng saponins enhance maxi Ca2+‐activated K+ currents of the rabbit coronary artery smooth muscle cells. J Ginseng Res 23:230‐234. [Google Scholar]
- Chung I, Lee JS (1999b) Ginsenoside Rg3 increases the ATP‐sensitive K+ channel activity in the smooth muscle of the rabbit coronary artery. J Ginseng Res 23:235‐238. [Google Scholar]
- Coles CJ, Edmondson DE, Singer TP (1979) Inactivation of succinate dehydrogenase by 3‐nitropropionate. J Biol Chem 254:5161‐5167. [PubMed] [Google Scholar]
- Coon JT, Ernst E (2002) Panax ginseng: A systematic review of adverse effects and drug interactions. Drug Saf 25:323‐344. [DOI] [PubMed] [Google Scholar]
- Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689‐695. [DOI] [PubMed] [Google Scholar]
- Cuzzolin L, Zaffani S, Benoni G (2006) Safety implications regarding use of phytomedicines. Eur J Clin Pharmacol 62:37‐42. [DOI] [PubMed] [Google Scholar]
- Dascal N (1997) Signalling via the G protein‐activated K+ channels. Cell Signal 9:551‐573. [DOI] [PubMed] [Google Scholar]
- Deshpande SB, Fukuda A, Nishino H (1997) 3‐Nitropropionic acid increases the intracellular Ca2+ in cultured astrocytes by reverse operation of the Na+‐Ca2+ exchanger. Exp Neurol 145:38‐45. [DOI] [PubMed] [Google Scholar]
- Dierkes J, Westphal S (2005) Effect of drugs on homocysteine concentrations. Semin Vasc Med 5:124‐139. [DOI] [PubMed] [Google Scholar]
- Dikmen M, Ozbabalik D, Gunes HV, Degirmenci I, Bal C, Ozdemir G, Basaran A (2006) Acute stroke in relation to homocysteine and methylenetetrahydrofolate reductase gene polymorphisms. Acta Neurol Scand 113:307‐314. [DOI] [PubMed] [Google Scholar]
- Finkelstein JD (1974) Methionine metabolism in mammals: The biochemical basis for homocystinuria. Metabolism 23:387‐398. [DOI] [PubMed] [Google Scholar]
- Folbergrova J, Druga R, Otahal J, Haugvicova R, Mares P, Kubova H (2005) Seizures induced in immature rats by homocystenic acid and the associated brain damage are prevented by group II metabotropic glutamate receptor agonist (2R,4R)‐4‐aminopyrrolidine‐2,4‐dicarboxylate. Exp Neurol 192:420‐436. [DOI] [PubMed] [Google Scholar]
- Fu Y, He F, Zhang S, Huang J, Zhang J, Jiao X (1995) 3‐Nitropropionic acid produces indirect excitotoxic damage to rat striatum. Neurotoxicol Teratol 17:333‐339. [DOI] [PubMed] [Google Scholar]
- Fukuda A, Deshpande SB, Shimano Y, Nishino H (1998) Astrocytes are more vulnerable than neurons to cellular Ca2+ overload induced by a mitochondrial toxin, 3‐nitropropionic acid. Neuroscience 87:497‐507. [DOI] [PubMed] [Google Scholar]
- Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: Molecular mechanisms and cellular consequences. Science 268:239‐247. [DOI] [PubMed] [Google Scholar]
- Graeff FG, Guimaraes FS, De Andrade TG, Deakin JF (1996) Role of 5‐HT in stress, anxiety, and depression. Pharmacol Biochem Behav 54:129‐141. [DOI] [PubMed] [Google Scholar]
- Gunthorpe MJ, Lummis SC (1999) Diltiazem causes open channel block of recombinant 5‐HT3 receptors. J Physiol 519(Pt 3):713‐722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasegawa H, Sung JH, Benno Y (1997) Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med 63:436‐440. [DOI] [PubMed] [Google Scholar]
- Hasegawa H, Sung JH, Matsumiya S, Uchiyama M (1996) Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med 62:453‐457. [DOI] [PubMed] [Google Scholar]
- Heikkila RE, Nicklas WJ, Vyas I, Duvoisin RC (1985) Dopaminergic toxicity of rotenone and the 1‐methyl‐4‐phenylpyridinium ion after their stereotaxic administration to rats: Implication for the mechanism of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine toxicity. Neurosci Lett 62:389‐394. [DOI] [PubMed] [Google Scholar]
- Hirai H, Kirsch J, Laube B, Betz H, Kuhse J (1996) The glycine binding site of the N‐methyl‐D‐aspartate receptor subunit NR1: Identification of novel determinants of co‐agonist potentiation in the extracellular M3‐M4 loop region. Proc Natl Acad Sci USA 93:6031‐6036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ho PI, Ortiz D, Rogers E, Shea TB (2002) Multiple aspects of homocysteine neurotoxicity: Glutamate excitotoxicity, kinase hyperactivation and DNA damage. J Neurosci Res 70:694‐702. [DOI] [PubMed] [Google Scholar]
- Hu Z, Yang X, Ho PC, Chan SY, Heng PW, Chan E, Duan W, Koh HL, Zhou S (2005) Herb‐drug interactions: A literature review. Drugs 65:1239‐1282. [DOI] [PubMed] [Google Scholar]
- Ikonomidou C, Turski L (1996) Neurodegenerative disorders: Clues from glutamate and energy metabolism. Crit Rev Neurobiol 10:239‐263. [DOI] [PubMed] [Google Scholar]
- Izzo AA, Di Carlo G, Borrelli F, Ernst E (2005) Cardiovascular pharmacotherapy and herbal medicines: The risk of drug interaction. Int J Cardiol 98:1‐14. [DOI] [PubMed] [Google Scholar]
- James LF, Hartley WJ, Williams MC, Van Kampen KR (1980) Field and experimental studies in cattle and sheep poisoned by nitro‐bearing Astragalus or their toxins. Am J Vet Res 41:377‐382. [PubMed] [Google Scholar]
- Jeong SM, Lee JH, Kim JH, Lee BH, Yoon IS, Lee JH, Kim DH, Rhim H, Kim Y, Nah SY (2004) Stereospecificity of ginsenoside Rg3 action on ion channels. Mol Cells 18:383‐389. [PubMed] [Google Scholar]
- Kang DI, Lee JY, Yang JY, Jeong SM, Lee JH, Nah SY, Kim Y (2005) Evidence that the tertiary structure of 20(S)‐ginsenoside Rg3 with tight hydrophobic packing near the chiral center is important for Na(+) channel regulation. Biochem Biophys Res Commun 333:1194‐1201. [DOI] [PubMed] [Google Scholar]
- Kemp JA, Leeson PD (1993) The glycine site of the NMDA receptor‐five years on. Trends Pharmacol Sci 14:20‐25. [DOI] [PubMed] [Google Scholar]
- Kim HS, Lee JH, Goo YS, Nah SY (1998a) Effects of ginsenosides on Ca2+ channels and membrane capacitance in rat adrenal chromaffin cells. Brain Res Bull 46:245‐251. [DOI] [PubMed] [Google Scholar]
- Kim JH, Cho SY, Lee JH, Jeong SM, Yoon IS, Lee BH, Lee JH, Pyo MK, Lee SM, Chung JM, et al (2007) Neuroprotective effects of ginsenoside Rg3 against homocysteine‐induced excitotoxicity in rat hippocampus. Brain Res 1136:190‐199. [DOI] [PubMed] [Google Scholar]
- Kim JH, Kim S, Yoon IS, Lee JH, Jang BJ, Jeong SM, Lee JH, Lee BH, Han JS, Oh S, et al (2005) Protective effects of ginseng saponins on 3‐nitropropionic acid‐induced striatal degeneration in rats. Neuropharmacology 48:743‐756. [DOI] [PubMed] [Google Scholar]
- Kim JH, Lee JH, Jeong SM, Lee BH, Yoon IS, Lee JH, Choi SH, Kim DH, Park TK, Kim BK, et al (2006) Stereospecific effects of ginsenoside Rg3 epimers on swine coronary artery contractions. Biol Pharm Bull 29:365‐370. [DOI] [PubMed] [Google Scholar]
- Kim JP, Koh JY, Choi DW (1987) L‐Homocysteate is a potent neurotoxin on cultured cortical neurons. Brain Res 437:103‐110. [DOI] [PubMed] [Google Scholar]
- Kim ND, Kang SY, Park JH, Schini‐Kerth VB (1999) Ginsenoside Rg3 mediates endothelium‐dependent relaxation in response to ginsenosides in rat aorta: Role of K+ channels. Eur J Pharmacol 367:41‐49. [DOI] [PubMed] [Google Scholar]
- Kim S, Ahn K, Oh TH, Nah SY, Rhim H (2002) Inhibitory effect of ginsenosides on NMDA receptor‐mediated signals in rat hippocampal neurons. Biochem Biophys Res Commun 296:247‐254. [DOI] [PubMed] [Google Scholar]
- Kim S, Kim T, Ahn K, Park WK, Nah SY, Rhim H (2004) Ginsenoside Rg3 antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Biochem Biophys Res Commun 323:416‐424. [DOI] [PubMed] [Google Scholar]
- Kim S, Rhim H (2004) Ginsenosides inhibit NMDA receptor‐mediated epileptic discharges in cultured hippocampal neurons. Arch Pharm Res 27:524‐530. [DOI] [PubMed] [Google Scholar]
- Kim YC, Kim SR, Markelonis GJ, Oh TH (1998b) Ginsenosides Rb1 and Rg3 protect cultured rat cortical cells from glutamate‐induced neurodegeneration. J Neurosci Res 53:426‐432. [DOI] [PubMed] [Google Scholar]
- Kitagawa I, Yoshikawa M, Yoshihara M, Hayashi T, Taniyama T (1983) Chemical studies of crude drugs (1). Constituents of Ginseng radix rubra. Yakugaku Zasshi 103:612‐622. [PubMed] [Google Scholar]
- Kitts D, Hu C (2000) Efficacy and safety of ginseng. Public Health Nutrition 3:473‐485. [DOI] [PubMed] [Google Scholar]
- Kruman I, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920‐6926. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuryatov A, Laube B, Betz H, Kuhse J (1994) Mutational analysis of the glycine‐binding site of the NMDA receptor: Structural similarity with bacterial amino acid‐binding proteins. Neuron 12:1291‐1300. [DOI] [PubMed] [Google Scholar]
- Lee BH, Jeong SM, Lee JH, Kim DH, Kim JH, Kim JI, Shin HC, Lee SM, Nah SY (2004a) Differential effect of ginsenoside metabolites on the 5‐HT3A receptor‐mediated ion current in Xenopus oocytes. Mol Cells 17:51‐56. [PubMed] [Google Scholar]
- Lee BH, Lee JH, Lee SM, Jeong SM, Yoon IS, Lee JH, Choi SH, Pyo MK, Rhim H, Kim HC, et al (2007a) Identification of ginsenoside interaction sites in 5‐HT(3A) receptors. Neuropharmacology 52:1139‐1150. [DOI] [PubMed] [Google Scholar]
- Lee BH, Lee JH, Yoon IS, Lee JH, Choi SH, Shin TJ, Pyo MK, Choi WS, Lee SM, Rhim H, et al (2007b) Mutations of arginine 222 in pre‐transmembrane domain I of mouse 5‐HT3A receptor abolish 20(R)‐ but not 20(S)‐ginsenoside Rg3 Inhibition of 5‐HT‐mediated ion currents. Biol Pharm Bull In Press. [DOI] [PubMed] [Google Scholar]
- Lee E, Kim S, Chung KC, Choo MK, Kim DH, Nam G, Rhim H (2006a) 20(S)‐ginsenoside Rh2, a newly identified active ingredient of ginseng, inhibits NMDA receptors in cultured rat hippocampal neurons. Eur J Pharmacol 536:69‐77. [DOI] [PubMed] [Google Scholar]
- Lee HG, Zhu X, Ghanbari HA, Ogawa O, Raina AK, O'Neill MJ, Perry G, Smith MA (2002a) Differential regulation of glutamate receptors in Alzheimer's disease. Neurosignals 11:282‐292. [DOI] [PubMed] [Google Scholar]
- Lee HU, Bae EA, Han MJ, Kim DH (2005a) Hepatoprotective effect of 20(S)‐ginsenosides Rg3 and its metabolite 20(S)‐ginsenoside Rh2 on tert‐butyl hydroperoxide‐induced liver injury. Biol Pharm Bull 28:1992‐1994. [DOI] [PubMed] [Google Scholar]
- Lee JH, Jeong SM, Kim JH, Lee BH, Yoon IS, Lee JH, Choi SH, Kim DH, Rhim H, Kim SS, et al (2005b) Characteristics of ginsenoside Rg3‐mediated brain Na+ current inhibition. Mol Pharmacol 68:1114‐1126. [DOI] [PubMed] [Google Scholar]
- Lee JH, Jeong SM, Kim JH, Lee BH, Yoon IS, Lee JH, Choi SH, Lee SM, Park YS, Lee JH, et al (2006b) Effects of ginsenosides and their metabolites on voltage‐dependent Ca2+ channel subtypes. Mol Cells 21:52‐62. [PubMed] [Google Scholar]
- Lee JH, Jeong SM, Lee BH, Noh HS, Kim BK, Kim JI, Rhim H, Kim HC, Kim KM, Nah SY (2004b) Prevention of ginsenoside‐induced desensitization of Ca2+‐activated Cl−current by microinjection of inositol hexakisphosphate in Xenopus laevis oocytes: Involvement of GRK2 and beta‐arrestin I. J Biol Chem 279:9912‐9921. [DOI] [PubMed] [Google Scholar]
- Lee JH, Kim SR, Bae CS, Kim D, Hong H, Nah S (2002b) Protective effect of ginsenosides, active ingredients of Panax ginseng, on kainic acid‐induced neurotoxicity in rat hippocampus. Neurosci Lett 325:129‐133. [DOI] [PubMed] [Google Scholar]
- Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399:A7‐14. [DOI] [PubMed] [Google Scholar]
- Lerma J, Paternain AV, Salvador N, Somohano F, Morales M, Casado M (1998) Excitatory amino acid‐activated channels. Oxford : Oxford University Press. [Google Scholar]
- Leung KW, Yung KK, Mak NK, Chan YS, Fan TP, Wong RN (2007) Neuroprotective effects of ginsenoside‐Rg1 in primary nigral neurons against rotenone toxicity. Neuropharmacology 52:827‐835. [DOI] [PubMed] [Google Scholar]
- Li Z, Chen X, Niwa Y, Sakamoto S, Nakaya Y (2001) Involvement of Ca2+ ‐activated K+ channels in ginsenoside‐induced aortic relaxation in rats. J Cardiovasc Pharmacol 37:41‐47. [DOI] [PubMed] [Google Scholar]
- Liao B, Newmark H, Zhou R (2002) Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons in vitro. Exp Neurol 173:224‐234. [DOI] [PubMed] [Google Scholar]
- Lim JH, Wen TC, Matsuda S, Tanaka J, Maeda N, Peng H, Aburaya J, Ishihara K, Sakanaka M (1997) Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neurosci Res 28:191‐200. [DOI] [PubMed] [Google Scholar]
- Lindstrom J (1995) Nicotinic acetylcholine receptors In: North A. (editor), CRC Handbook of Receptors. Florida : CRC Press, 153‐175. [Google Scholar]
- Lipton SA, Kim WK, Choi YB, Kumar S, D'Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N‐methyl‐D‐aspartate receptor. Proc Natl Acad Sci USA 94:5923‐5928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu CX, Xiao PG (1992) Recent advances on ginseng research in China. J Ethnopharmacol 36:27‐38. [DOI] [PubMed] [Google Scholar]
- Liu D, Li B, Liu Y, Attele AS, Kyle JW, Yuan CS (2001) Voltage‐dependent inhibition of brain Na(+) channels by American ginseng. Eur J Pharmacol 413:47‐54. [DOI] [PubMed] [Google Scholar]
- Lockhart B, Jones C, Cuisinier C, Villain N, Peyroulan D, Lestage P (2000) Inhibition of L‐homocysteic acid and buthionine sulphoximine‐mediated neurotoxicity in rat embryonic neuronal cultures with alpha‐lipoic acid enantiomers. Brain Res 855:292‐297. [DOI] [PubMed] [Google Scholar]
- Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M (1991) 3‐Nitropropionic acid‐exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18:492‐498. [DOI] [PubMed] [Google Scholar]
- Maffei Facino R, Carini M, Aldini G, Berti F, Rossoni G (1999) Panax ginseng administration in the rat prevents myocardial ischemia‐reperfusion damage induced by hyperbaric oxygen: Evidence for an antioxidant intervention. Planta Med 65:614‐619. [DOI] [PubMed] [Google Scholar]
- Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin‐gated ion channel. Science 254:432‐437. [DOI] [PubMed] [Google Scholar]
- Martin GR (1994) Vascular receptors for 5‐hydroxytryptamine: Distribution, function and classification. Pharmacol Ther 62:283‐324. [DOI] [PubMed] [Google Scholar]
- Meldrum B, Garthwaite J (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 11:379‐387. [DOI] [PubMed] [Google Scholar]
- Menne J, Park JK, Agrawal R, Lindschau C, Kielstein JT, Kirsch T, Marx A, Muller D, Bahlmann FH, Meier M, et al (2006) Cellular and molecular mechanisms of tissue protection by lipophilic calcium channel blockers. FASEB J 20:994‐996. [DOI] [PubMed] [Google Scholar]
- Meweitt K, Oakes DJ, Olvermann HJ, Smith D, Watkins JC (1983) Pharmacology of the excitatory actions of sulphonic and sulphinic amino acids In: Mandel P, DeFeudis FV. (editors), CNS Receptors—From Molecular Pharmacology to Behavior. New York : Raven Press, 163‐174. [PubMed] [Google Scholar]
- Miller RJ (2001) Rocking and rolling with Ca2+ channels. Trends Neurosci 24:445‐449. [DOI] [PubMed] [Google Scholar]
- Ming L (1995) Moldy sugarcane poisoning‐a case report with a brief review. J Toxicol Clin Toxicol 33:363‐367. [DOI] [PubMed] [Google Scholar]
- Nah JJ, Choi S, Kim YH, Kim SC, Nam KY, Kim JK, Nah SY (1999) Effect of spinally administered ginseng total saponin on capsaicin‐induced pain and excitatory amino acid‐induced nociceptive responses. J Ginseng Res 23:38‐43. [Google Scholar]
- Nah SY (1997) Ginseng: Recent advances and Trends. J Ginseng Res 21:1‐12. [Google Scholar]
- Nah SY, McCleskey EW (1994) Ginseng root extract inhibits calcium channels in rat sensory neurons through a similar path, but different receptor, as mu‐type opioids. J Ethnopharmacol 42:45‐51. [DOI] [PubMed] [Google Scholar]
- Nah SY, Park HJ, McCleskey EW (1995) A trace component of ginseng that inhibit Ca2+ channels through a pertussis toxin‐sensitive G protein. Proc Natl Acad Sci USA 92:8739‐8743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nasr P, Gursahani HI, Pang Z, Bondada V, Lee J, Hadley RW, Geddes JW (2003) Influence of cytosolic and mitochondrial Ca2+, ATP, mitochondrial membrane potential, and calpain activity on the mechanism of neuron death induced by 3‐nitropropionic acid. Neurochem Int 43:89‐99. [DOI] [PubMed] [Google Scholar]
- Nikonenko I, Bancila M, Bloc A, Muller D, Bijlenga P (2005) Inhibition of T‐type calcium channels protects neurons from delayed ischemia‐induced damage. Mol Pharmacol 68:84‐89. [DOI] [PubMed] [Google Scholar]
- Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N‐methyl‐D‐aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205‐212. [DOI] [PubMed] [Google Scholar]
- Olney JW, Price MT, Salles KS, Labruyere J, Ryerson R, Mahan K, Frierdich G, Samson L (1987) L‐Homocysteic acid: An endogenous excitotoxic ligand of the NMDA receptor. Brain Res Bull 19:597‐602. [DOI] [PubMed] [Google Scholar]
- Pang Z, Geddes JW (1997) Mechanisms of cell death induced by the mitochondrial toxin 3‐nitropropionic acid: Acute excitotoxic necrosis and delayed apoptosis. J Neurosci 17:3064‐3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park EK, Choo MK, Oh JK, Ryu JH, Kim DH (2004) Ginsenoside Rh2 reduces ischemic brain injury in rats. Biol Pharml Bull 27:433‐436. [DOI] [PubMed] [Google Scholar]
- Pullan LM, Olney JW, Price MT, Compton RP, Hood WF, Michel J, Monahan JB (1987) Excitatory amino acid receptor potency and subclass specificity of sulfur‐containing amino acids. J Neurochem 49:1301‐1307. [DOI] [PubMed] [Google Scholar]
- Rhim H (2003) The effects of ginsenoside Rg3 as a potent inhibitor of Ca2+ channels and NMDA‐gated channels in the peripheral and central nervous systems. J Ginseng Res 27:120‐128. [Google Scholar]
- Rhim H, Kim H, Lee DY, Oh TH, Nah SY (2002) Ginseng and ginsenoside Rg3, a newly identified active ingredient of ginseng, modulate Ca2+ channel currents in rat sensory neurons. Eur J Pharmacol 436:151‐158. [DOI] [PubMed] [Google Scholar]
- Rothman SM, Olney JW (1995) Excitotoxicity and the NMDA receptor‐still lethal after eight years. Trends Neurosci 18:57‐58. [DOI] [PubMed] [Google Scholar]
- Sala F, Mulet J, Choi S, Jung SY, Nah SY, Rhim H, Valor LM, Criado M, Sala S (2002) Effects of ginsenoside Rg2 on human neuronal nicotinic acetylcholine receptors. J Pharmacol Exp Ther 301:1052‐1059. [DOI] [PubMed] [Google Scholar]
- Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403‐443. [DOI] [PubMed] [Google Scholar]
- Sattler R, Tymianski M (2000) Molecular mechanisms of calcium‐dependent excitotoxicity. J Mol Med 78:3‐13. [DOI] [PubMed] [Google Scholar]
- Seong YH, Shin CS, Kim HS, Baba A (1995) Inhibitory effect of ginseng total saponins on glutamate‐induced swelling of cultured astrocytes. Biol Pharm Bull 18:1776‐1778. [DOI] [PubMed] [Google Scholar]
- Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno‐Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci 23:10756‐10764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tachikawa E, Kudo K, Kashimoto T, Takahashi E (1995) Ginseng saponins reduce acetylcholine‐evoked Na+ influx and catecholamine secretion in bovine adrenal chromaffin cells. J Pharmacol Exp Ther 273:629‐636. [PubMed] [Google Scholar]
- Tanaka N, Tanaka, O , Shibata, S (1972) Chemical studies on the oriental plant drugs. XXVIII. Saponins and sapogenins of ginseng; stereochemistry of sapogenin of ginsenoside Rb1, Rb2 and Rc. Chem Pharm Bull 20(3):1212‐1216. [Google Scholar]
- Tawab MA, Bahr U, Karas M, Wurglics M, Schubert‐Zsilavecz M (2003) Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 31:1065‐1071. [DOI] [PubMed] [Google Scholar]
- Tay SY, Ampil ER, Chen CP, Auchus AP (2006) The relationship between homocysteine, cognition and stroke subtypes in acute stroke. J Neurol Sci 250:58‐61. [DOI] [PubMed] [Google Scholar]
- Tian J, Fu F, Geng M, Jiang Y, Yang J, Jiang W, Wang C, Liu K (2005) Neuroprotective effect of 20(S)‐ginsenoside Rg3 on cerebral ischemia in rats. Neurosci Lett 374:92‐97. [DOI] [PubMed] [Google Scholar]
- Tyler VE (1995) Herbal remedies. J Pharm Technol 11:214‐220. [Google Scholar]
- Wang Y, Wang BX, Liu TH, Minami M, Nagata T, Ikejima T (2000) Metabolism of ginsenoside Rg1 by intestinal bacteria. II. Immunological activity of ginsenoside Rg1 and Rh1 . Acta Pharmacol Sin 21:792‐796. [PubMed] [Google Scholar]
- Watkins D, Rosenblatt DS. (1989) Functional methionine synthase deficiency (cblE and cblG): Clinical and biochemical heterogeneity. Am J Med Genet 34:427‐434. [DOI] [PubMed] [Google Scholar]
- Weiss N, Ide N, Abahji T, Nill L, Keller C, Hoffmann U (2006) Aged garlic extract improves homocysteine‐induced endothelial dysfunction in macro‐ and microcirculation. J Nutr 136:750S‐754S. [DOI] [PubMed] [Google Scholar]
- Wen TC, Yoshimura H, Matsuda S, Lim JH, Sakanaka M (1996) Ginseng root prevents learning disability and neuronal loss in gerbils with 5‐minute forebrain ischemia. Acta Neuropathol 91:15‐22. [DOI] [PubMed] [Google Scholar]
- Wickman KD, Clapham DE. (1995) G‐protein regulation of ion channels. Curr Opin Neurobiol 5:278‐285. [DOI] [PubMed] [Google Scholar]
- Wieloch T (1985) Hypoglycemia‐induced neuronal damage prevented by an N‐methyl‐D‐aspartate antagonist. Science 230:681‐683. [DOI] [PubMed] [Google Scholar]
- Williams K, Kashiwagi K, Fukuchi J, Igarashi K (1995) An acidic amino acid in the N‐methyl‐D‐aspartate receptor that is important for spermine stimulation. Mol Pharmacol 48:1087‐1098. [PubMed] [Google Scholar]
- Yoon SR, Nah JJ, Shin YH, Kim SK, Nam KY, Choi HS, Nah SY (1998) Ginsenosides induce differential antinociception and inhibit substance P induced‐nociceptive response in mice. Life Sci 62:PL319‐325. [DOI] [PubMed] [Google Scholar]
- Zeevalk GD, Nicklas WJ (1991) Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition. J Pharmacol Exp Ther 257:870‐878. [PubMed] [Google Scholar]