Skip to main content
Nanoscale Research Letters logoLink to Nanoscale Research Letters
. 2019 May 2;14:150. doi: 10.1186/s11671-019-2939-5

Magic Mathematical Relationships for Nanoclusters

Forrest H Kaatz 1,, Adhemar Bultheel 2
PMCID: PMC6497697  PMID: 31049722

Abstract

Size and surface properties such as catalysis, optical quantum dot photoluminescense, and surface plasmon resonances depend on the coordination and chemistry of metal and semiconducting nanoclusters. Such coordination-dependent properties are quantified herein via “magic formulas” for the number of shells, n, in the cluster. We investigate face-centered cubic, body-centered cubic, simple cubic clusters, hexagonal close-packed clusters, and the diamond cubic structure as a function of the number of cluster shells, n. In addition, we examine the Platonic solids in the form of multi-shell clusters, for a total of 19 cluster types. The number of bonds and atoms and coordination numbers exhibit magic number characteristics versus n, as the size of the clusters increases. Starting with only the spatial coordinates, we create an adjacency and distance matrix that facilitates the calculation of topological indices, including the Wiener, hyper-Wiener, reverse Wiener, and Szeged indices. Some known topological formulas for some Platonic solids when n=1 are computationally verified. These indices have magic formulas for many of the clusters. The simple cubic structure is the least complex of our clusters as measured by the topological complexity derived from the information content of the vertex-degree distribution. The dispersion, or relative percentage of surface atoms, is measured quantitatively with respect to size and shape dependence for some types of clusters with catalytic applications.

Keywords: Nanoclusters, Topological indices, Coordination, Magic numbers, Dispersion

Introduction

Magic numbers and formulas for nanoclusters have a long history dating to the prescient publication by van Hardeveld and Hartog in 1969 [1]. Their insights predated the nanoscience era. Since then, we have seen magic numbers appear in 2D polygons and 3D polyhedra [2], carbon fullerenes [3], and in a limited scope again in clusters [4]. Such diverse materials such as silicon [5], boron [6], and in fact over 1000 publications from the indexing service “Web of Science” refer to magic numbers in clusters. The study of the size and shape of nanoclusters is important to today’s society, since this determines not only the intrinsic physical and chemical properties, but also the relevance for optical, catalytic, electronic, and magnetic applications [7]. Our aim is to update the database of this knowledge with current relationships and data, now that we have entered the nano realm.

The occurrence of magic numbers in nanoclusters has to do primarily with the formation of shells of atoms upon a fundamental cell. When the number of atoms completes a full shell, we find a unique set of numbers, termed “magic,” that defines the shells of atoms. A cluster is represented by a graph with the atoms as vertices and the bonds as edges. It consists of nested shells like layers of an onion. We define the numbers of layers as n and discover the mathematical relationships of nearest neighbor coordination numbers, bonds, the total number of atoms, and some topological indices as a function of n. The original paper by van Hardeveld and Hartog [1] considered fcc, bcc, and hcp clusters. The reference by Teo and Sloane [2] considers polyhedra and Platonic solids but neglects the relationship of nearest neighbor coordination numbers. We add to this database by looking at simple cubic, diamond cubic, and the Platonic solids, in addition to the topological properties and dispersion of the clusters.

The transition in size from bulk to clusters of a few atoms is really about the relationship of the surface atoms as compared to bulk atoms. Properties such as catalytic chemistry, surface plasmon resonance, and optical quantum dot photoluminescence [8] are affected by the coordination and number of surface atoms. The dispersion or relative percentage of surface atoms is determined by the ratio of surface atoms to the total number of atoms, as has been considered previously [9]. Our analysis will determine the relative ranking of the dispersion in terms of cluster geometry.

Topological indices started with Wiener’s original paper regarding his index and the boiling points of paraffin [10]. It was not until some time later that Hosoya introduced a mathematical formalism to analyze topological indices [11]. We have previously introduced topological indices and nanoclusters [12]. At this writing, there exist many indices, some of which depend on the adjacency or distance matrix. We show here that in many of the cluster shapes, magic mathematical relationships exist for the four indices as a function of n and the number of shells.

Methods

For each of the types of clusters we study, we create a computational algorithm which determines the atomic coordinates of the clusters. We then proceed to create an adjacency matrix and a distance matrix defined as follows. An adjacency matrix A is created where we define i and j as nearest neighbors and separate them from the rest by requiring that rij<rc, where rc is a threshold value, slightly above the nearest neighbor distance, but less than the second neighbor distance. Thus,

A(i,j)=1ifrij<rcandij0otherwise 1

where rij is the Euclidean distance between atom i and atom j. An appropriate value for rc is 1.32·rmin, where rmin is the smallest bond length. This applies to the dodecahedral structure, as well as the others we study. The coordination numbers of the cluster are simply the number of non-zero elements in a column of the adjacency matrix. The distance matrix is defined as

D(i,j)=0i=jdijij 2

where dij is the length of the shortest path in the graph from i to j. An efficient algorithm for the calculation of the distance matrix from the adjacency matrix exists [13]. Using these definitions, we can calculate the Wiener index, W(G), the hyper-Wiener index, WW(G), the reverse Wiener index rW(G), and the Szeged index, Sz(G), as previously detailed [14]. These calculations use the the same algorithm that we have previously used for topological indices and nanoclusters [12].

Previous authors have offered proofs of magic relationships, which we condense in our notation, relevant for the work presented here [1, 2]. Since we create nearest neighbor adjacency matrices, we know the coordination number cni of vertex i by summing the elements of A(i,:). Our structure consists of n+1 shells numbered 0,1,…,n. Let Ncni(n) be the number of atoms with coordination cni where 1≤cnicnM with cnM the maximal coordination in the cluster. Then the total number of atoms in the cluster is given by

NT(n)=cni=1cnMNcni(n). 3

The surface atoms in the outer shell n have a set of bondings less than the bulk coordination. Thus the maximal coordination for surface atoms is cns<cnM, and the number of surface atoms is

NS(n)=cni=1cnsNcni(n). 4

This holds if all the non-surface vertices have coordination larger than cns, which is true for all clusters, but note the discrepancy for the dodecahedra below. We determine the Ncni(n) by counting the columns of the adjacency matrix whose sum is cni. Note that our cluster coordinate algorithm is built by shells, so that each subsequent shell contains all the previous lower values of n. In Fig. 1, we illustrate the shells of the clusters for an fcc cube and a dodecahedron. In addition, the number of bonds in the cluster is

NB(n)=12cni=1cnMcni·Ncni(n), 5

Fig. 1.

Fig. 1

Shells of atoms for n=3 for A. fcc cube and n=2 B. dodecahedron. In B, the green atoms (12) refer to cn=5 within the shell

where NB(n) is the number of bonds and cnM is the maximum coordination. The factor of 1/2 comes about because of the pairwise nearest neighbor bonding. This magic relationship appears not to have been considered in previous publications, with the exception of a few clusters examined in [4]. We also comment that Teo and Sloane have derived the total number of atoms, surface atoms, and interior atoms for clusters as follows [2]:

NT(n)=αn3+12βn2+γn+1n0 6

where NT(n) is the total number of atoms, and

α=C/6 7

where C is the number of tetrahedral cells into which the polyhedron is divided, and

β=1/2Fs 8

where Fs is the number of triangular faces on the surface, and

γ=Fs/4+Vi+1C/6 9

where Vi is the number of vertices in the interior. They also show that

NS(n)=βn2+2n1;NS(0)=1 10

and

NI(n)=NT(n)NS(n), 11

where NI(n) is the number of interior atoms. This information (Eq. (11)) is contained in the adjacency matrix, as well as Eqs. (3, 4, 5). These equations are a check of the results from the adjacency matrix data. For centered polyhedra, we also have

NI(n)=NT(n1), 12

and from Eq. (11), we have

NT(n)=NS(n)+NS(n1)+...+NS(1)+NS(0). 13

From these equations, we can derive the magic formulas for each of the clusters as follows. After computing the topological (0,1)-adjacency matrix A for a cluster with n shells as described, we know that its size N=NT(n) indicates the total number of atoms. The sum of the entries in column i gives the number of bonds cni(n) for atom i and counting the the number of column sums equal to cni(n) gives obviously Ncni(n). Since we know that these depend on n as a polynomial of degree at most 3, we can compute NT(n) and cni(n) for 4 consecutive values of n, say n=n0+j, j=0,1,2,3. A simple interpolating polynomial will then give the polynomial coefficients. It has to be verified that by increasing n0, which is usually equal to 1, the formulas do not change. If the formulas become stable from n0 on, then they hold for all nn0. In some cases, the polynomial relation only holds for the even n values or the odd ones. For example, for the fcc rhombic dodecahedron (Table 1), the successive shells have eight atoms with coordination 3 when n≥2 is even, and none if n is odd. In such cases different polynomial relations will hold for n even and n odd, but the data are used for n=n0+j, j=0,2,4,6 with n0 odd (e.g., n0=1) or n0 even (n0=2). To get the exact rational coefficients, one needs to solve the Vandermonde system for the coefficients in exact arithmetic using MATLAB’s symbolic toolbox. This is how the Tables 2, 3, 4, 5, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 are computed. In the next section, we determine magic formulas for NT(n), NB(n), and for Ncni(n) according to the proscribed recipe.

Table 1.

Magic formulas for the rhombic dodecahedron

fcc rhombic dodecahedron n=4
graphic file with name 11671_2019_2939_Figa_HTML.gif Atoms 8n3+6n2+2n+3, n≥1 odd
8n3+6n2+2n+1, n≥2 even
Bonds 48n3+12, n≥1 odd;
48n3,n≥2 even
cn=3 8, n ≥2 even
cn=4 6, n ≥1
cn=5 12n−12, n ≥1 odd
12n−24, n ≥2 even
cn=7 12n2−12n+12, n ≥1
cn=10 12n−12, n ≥1 odd
12n, n ≥2 even
cn=11 12n2−24n+12, n ≥1 odd
12n2−24n, n ≥2, even
cn=12 8n3−18n2+14n−3, n ≥1 odd
8n3−18n2+14n−1,n≥2 even

Table 2.

Magic formulas for the fcc cube

fcc cube n=2
graphic file with name 11671_2019_2939_Figb_HTML.gif Atoms 4n3+6n2+3n+1, n≥1
Bonds 24n3+12n2, n≥1
cn=3 8, n≥1
cn=5 12n−12, n≥1
cn=8 12n2−12n+6, n≥1
cn=12 4n3−6n2+3n−1, n≥1

Table 3.

Magic formulas for the octahedron

fcc octahedron n=6
graphic file with name 11671_2019_2939_Figc_HTML.gif Atoms 23n3+2n2+73n+1,n1
Bonds 4n3+6n2+2n, n≥0
cn=4 6, n≥1
cn=7 12n−12, n≥1
cn=9 4n2−12n+8, n≥1
cn=12 23n32n2+73n1,n1

Table 4.

Magic formulas for the cuboctahedron

fcc cuboctahedron n=4
graphic file with name 11671_2019_2939_Figd_HTML.gif Atoms 103n3+5n2+113n+1,n1
Bonds 20n3+12n2+4n, n≥0
cn=5 12, n≥1
cn=7 24n−24, n≥1
cn=8 6n2−12n+6, n≥1
cn=9 4n2−12n+8, n≥1
cn=12 103n35n2+113n1,n1

Table 5.

Magic formulas for the truncated octahedron

fcc truncated octahedron n=2
graphic file with name 11671_2019_2939_Fige_HTML.gif Atoms 16n3+15n2+6n+1, n≥1
Bonds 96n3+42n2+6n, n≥0
cn=6 24, n≥1
cn=7 36n−36, n≥1
cn=8 6n2−12n+6, n≥1
cn=9 24n2−24n+8, n≥1
cn=12 16n3−15n2+6n−1, n≥1

Table 6.

Magic formulas for the bcc cube

bcc cube
graphic file with name 11671_2019_2939_Figf_HTML.gif Atoms 2n3+3n2+3n+1, n≥1
Bonds 14n3+3n2+3n, n≥1
cn=4 8, n≥1
cn=6 12n−12, n≥1
cn=8 1, n=1; 0, n≠1
cn=9 6n2−12n+6, n≥1
cn=11 8, n≥2
cn=12 12n−24, n≥2
cn=13 6n2−24n+24, n≥2
cn=14 2n3−9n2+15n−9, n≥2

Table 7.

Magic formulas for the bcc octahedron

bcc octahedron n=4
graphic file with name 11671_2019_2939_Figg_HTML.gif Atoms 83n3+6n2+163n+1,n1
Bonds 563n3+18n2+403n,n0
cn=5 6, n≥1
cn=7 4n2+4n, n≥0
cn=8 12n−12, n≥1
cn=10 4n2−12n+8, n≥1
cn=13 4n2−4n, n≥1
cn=14 83n36n2+163n1,n1

Table 8.

Magic formulas for the bcc truncated octahedron

bcc truncated octahedron n=4
graphic file with name 11671_2019_2939_Figh_HTML.gif Atoms 8n3+92n2+52,n1 odd
8n3+92n2+3n+1,n2 even
Bonds 56n3272n26n+272,n1 odd
56n3+272n2+3n,n2 even
cn=4 0, n≥1 odd
6n+12, n≥2 even
cn=6 24, n≥3 odd
12n−24, n≥2 even
cn=7 6n2+12n−34,n≥3 odd
6n2−12n+8,n≥2 even
cn=8 6n−6, n≥1 odd; 0, n even
cn=9 3n2−12n+15, n≥3 odd
3n2−6n+6, n≥2 even
cn=10 6n2−12n+6, n≥1 odd
6n2, n≥2 even
cn=12 12n−12, n≥1 odd
6n, n≥2 even
cn=13 9n2−24n+15, n≥1 odd
9n2−18n, n≥2 even
cn=14 8n3392n2+18n112,n1 odd
8n3392n2+15n1,n2 even

Table 9.

Magic formulas for the bcc cuboctahedron

bcc cuboctahedron n=3
graphic file with name 11671_2019_2939_Figi_HTML.gif Atoms 53n3+7n2+343n+7,n1 odd
53n3+7n2+253n+1,n2 even
Bonds 353n3+34n2+1123n+15,n1 odd
353n3+34n2+673n,n2 even
cn=4 12, n≥1 odd; 0, n even
cn=6 12n−12, n≥1 odd; 0, n even
cn=7 n2−4n+3, n≥1 odd
n2+14n, n≥2 even
cn=9 3n2+3, n≥1 odd
3n2−6n, n≥2 even
cn=10 n2+4n+3, n≥1, odd
n2−2n+12, n≥2, even
cn=12 12n−24, n≥2 even; 0, n odd
cn=13 4n2−4, n≥3 odd
4n2−12n+14, n≥2 even
cn=14 53n32n223n+2,n1 odd
53n32n2+73n1,n2 even

Table 10.

Magic formulas for the bcc rhombic dodecahedron

bcc rhombic dodecahedron n=3
graphic file with name 11671_2019_2939_Figj_HTML.gif Atoms 4n3+6n2+4n+1, n≥1
Bonds 28n3+18n2+4n, n≥0
cn=5 6, n ≥1
cn=7 8, n ≥1
cn=8 24n−24, n ≥1
cn=10 12n2−24n+12, n ≥2
cn=14 4n3−6n2+4n−1, n ≥1

Table 11.

Magic formulas for the hexagonal bipyramid

Hexagonal bipyramid n=4
graphic file with name 11671_2019_2939_Figk_HTML.gif Atoms 4n3+6n2+4n+1, n≥1
Bonds 24n3+15n2+3n, n≥0
cn=3 2, n≥1
cn=5 6, n≥1
cn=6 3n+3, n≥1
cn=7 24n−24, n≥1
cn=8 6n2−15n+9, n≥1
cn=9 6n2−12n+6, n≥1
cn=12 4n3−6n2+4n−1, n≥1

Table 12.

Magic formulas for the truncated hexagonal bipyramid

Truncated hexagonal bipyramid n=4
graphic file with name 11671_2019_2939_Figl_HTML.gif Atoms 72n3+214n2+72n+34,n3 odd
72n3+214n2+72n+1,n2 even
Bonds 21n3+272n2+3n32,n3 odd
21n3+272n2+3n,n2 even
cn=5 6, n≥2
cn=6 3n+9, n≥1
cn=7 18n−24, n≥1
cn=8 92n29n+92,n3, odd
92n29n+3,n2, even
cn=9 6n2−12n+6, n≥3, odd
6n2−12n+8, n≥2, even
cn=12 72n3214n2+72n34,n3 odd
72n3214n2+72n1,n2 even

Table 13.

Magic formulas for the icosahedron

Icosahedron n=4
graphic file with name 11671_2019_2939_Figm_HTML.gif Atoms 103n3+5n2+113n+1,n1
Bonds 20n3+15n2+7n, n≥1
cn=6 12, n≥1
cn=8 30n−30, n≥1
cn=9 10n2−30n+20, n≥1
cn=12 103n35n2+113n1,n1

Table 14.

Magic formulas for the dodecahedron

Dodecahedron n=3
graphic file with name 11671_2019_2939_Fign_HTML.gif Atoms 10n3+15n2+7n+1, n≥1
Bonds 40n3+45n2+17n, n≥0
Surface atoms 30n2+2, n≥1
cn=6 30n+2, n≥1
cn=7 Bulk 12n−12, n≥2
cn=7 Surface 30n2−30n, n≥2
cn=8 10n3−15n2−25n+30, n≥1
cn=9 20n−20, n≥1
cn=12 1, n≥1

Table 15.

Magic formulas for the fcc tetrahedron

fcc tetrahedron n=6
graphic file with name 11671_2019_2939_Figo_HTML.gif Atoms 16n3+n2+116n+1,n1
Bonds n3+3n2+2n, n≥1
cn=3 4, n≥1
cn=6 6n−6, n≥1
cn=9 2n2−6n+4, n≥1
cn=12 16n3n2+116n1,n1

Table 16.

Magic formulas for the bcc tetrahedron

bcc tetrahedron n=4
graphic file with name 11671_2019_2939_Figp_HTML.gif Atoms 13n3+32n2+136n+1,n1
Bonds 23n3+2n2+43n,n1
cn=1 4, n≥1
cn=2 6n−6, n≥1
cn=3 2n2−6n+4, n≥1
cn=4 13n312n2+136n1,n1

Table 17.

Magic formulas for the diamond cubic

Diamond cubic n=3
graphic file with name 11671_2019_2939_Figq_HTML.gif Atoms 8n3+6n2+3n−3,n≥1
Bonds 16n3
cn=1 12n−8,n≥1
cn=2 12n2−12n+6,n≥1
cn=4 8n3−6n2+3n−1,n≥1

Table 18.

Magic formulas for the simple cubic

Simple cube n=2
graphic file with name 11671_2019_2939_Figr_HTML.gif Atoms 8n3
Bonds 24n3−12n2
cn=3 8
cn=4 24n−24, n≥2
cn=5 24n2−48n+24, n≥2
cn=6 8n3−24n2+24n−8, n≥2

Table 19.

Magic formulas for the decahedron

Decahedron n=4
graphic file with name 11671_2019_2939_Figs_HTML.gif Atoms 56n3+52n2+83n+1
Bonds 5n3+152n2+72n
cn=4 5, n≥1
cn=6 5n−3, n≥1
cn=8 10n−10, n≥1
cn=9 5n2−15n+10, n≥1
cn=12 56n352n2+83n1,n1

The dispersion (fraction exposed, FE) of the surface atoms is defined as:

FE=NSNT·100% 14

where NS is the number of surface atoms, and NT is the total number of atoms [9]. We can compare dissimilar clusters by defining the relative cluster size as:

drel=b(NT)1/3;b=dat1·6Vuπnu1/3 15

where dat is the covalent atomic diameter, Vu is the volume of the unit cell, and nu is the number of atoms in the unit cell. The crystal structure constant b equals 1.105 for fcc and hcp clusters, 1.137 for bcc clusters [1], 1.488 for simple cubic clusters, and 1.517 for diamond cubic clusters. As is shown above, the formula for FE is a ratio of a quadratic to a cubic for the clusters and can be modeled by a power law curve fit versus drel. The variable drel allows us to compare different clusters to one another without regard to the crystal structure. For some of the Platonic clusters, where there is no crystal unit cell, we use NT1/3 as the variable.

Results and Discussion

The study of the size and shape of metal nanoclusters has evolved since its infancy two decades ago. Table 20 shows some relevant progress as of 2018.

Table 20.

Shape-dependent synthesis for nanoclusters circa 2018

graphic file with name 11671_2019_2939_Figt_HTML.gif

In the Table, we list primarily transition metals, not alloys or compounds, with the exception of the truncated hexagonal bipyramid, where only Fe2O3 was found. There has been more synthesis of gold clusters than any other element, due to its properties and stability. In the subsections which follow, we limit our discussion to specific topics related to magic formulas and types of clusters.

FCC Clusters

Eight of the transition metals crystallize in the fcc structure, see Table 21 below, including the plasmonic noble metals and important catalytically active elements. The vast majority of nanocluster synthesis has been with these elements. References of the synthesis of the fcc elements with various shapes and sizes is given in Table 21.

Table 21.

Structure of the transition metals [15]

Sc Ti V Cr Mn Fe Co Ni Cu Zn
hcp hcp bcc bcc cubic bcc hcp fcc [16] fcc [17] hcp
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
hcp hcp bcc bcc hcp hcp fcc [18] fcc [19] fcc [20] hcp
La Hf Ta W Re Os Ir Pt Au Hg
hex hcp bcc bcc hcp hcp fcc [21] fcc [22] fcc [23] rhomb

Alloys of these elements are also of interest, but references of these are too numerous to be cited here. Frequently, the common shapes synthesized are cubes, octahedra, cuboctahedra, and icosahedra. Typically, clusters with (111) facets are easier to synthesize, since the (111) surface usually has a lower energy than the (100) surface [7]. We find for the fcc rhombic dodecahedron that there exist even and odd formulas. These agree with those in [1], if one replaces the “n” in our even formulas by 2(m−1). The formulas for fcc cuboctahedra listed in [24] produce the same magic numbers as ours but are shifted by 1 since they number shells as n=1,2,… and we use the numbering n=0,1,…. Our magic formulas agree with those in [2, 4], and in deference to the earlier published work, and in maintaining continuity of the mathematics, we use the [2, 4] notation. The 5 fcc cluster shapes and their associated magic formulas appear below.

BCC Clusters

Seven of the transition metals in the periodic table have the bcc structure, see Table 21. Of the magnetic elements Fe, Co, and Ni, only iron is bcc. Nanocubes of iron appear to be the only bcc cluster shape synthesized so far [25]. Although the bulk structure of iron is bcc, fcc nanoclusters have been synthesized [26]. This reference also analyzes the thermodynamic stability of the clusters. Here we present 5 bcc cluster shapes and their associated magic formulas.

HCP Clusters

Twelve transition metals have the hcp structure, see Table 21. However, many of these oxidize, or lack compelling scientific interest to be synthesized. With regard to the hexagonal bipyramidal cluster shape in Table 11, gold clusters have been synthesized [27]. The related truncated hexagonal bipyramid seems only to have been formed by α−Fe2O3 [28].

Platonic Clusters

The Platonic solids have been known since the ancient Greeks. They include the cube, tetrahedron, octahedron, icosahedron, and dodecahedron. In previous tables, we have listed magic formulas for fcc and bcc cubes and octahedra. Here we list the formulas for the icosahedron, dodecahedron, tetrahedron, and body-centered tetrahedron. As previously mentioned in the “Methods” section, the dodecahedron is unique for the clusters analyzed here, in that cns=7 refers to both surface and bulk atoms. We showed in Fig. 1b that the outer shell contains both fivefold and sixfold coordinated atoms. When a shell becomes internal, those five- and sixfold coordinated atoms become seven- and eightfold coordinated with bonds to a shell on either side. Also, the sixfold coordinated outside shell atoms are sevenfold coordinated by bonding to the shell inside. Thus there are sevenfold surface and bulk coordinated atoms for the dodecahedron. Each shell in the structure has 12 fivefold shell atoms, which produce 12n−12 bulk sevenfold coordinated atoms. The rest of the sevenfold coordination are surface atoms.

Gold nanoclusters have been shown to take the Platonic shapes [29]. This reference includes the cube, tetrahedron, octahedron, and icosahedron. Later, the golden dodecahedron nanocluster was also synthesized [30]. Here, we show both the regular tetrahedron, which is “fcc-like” in that cM=12 as in fcc structures, and the body-centered tetrahedron in Table 16, where the green atoms have single bonds. The Platonic magic formulas are presented below.

Diamond Cubic, Simple Cubic, and Decahedron Clusters

The elements silicon and germanium have the diamond cubic lattice, as well as the diamond allotrope of carbon. In particular, hydrogen-terminated silicon has received recent interest. The (100) hydrogen-terminated surface, leading to cubic shapes in clusters, has been determined to have the lowest energy [31]. The synthesis of Si-H nanocubes of 8−15 nm in size has been achieved [32]. Table 17 shows a diagram of the hydrogen-terminated Si-H clusters, with single-bonded hydrogen atoms in green. If a nanocluster takes the diamond cubic shape, there will be single dangling bonds, which need to be passivated to help maintain the structure. Looking at the magic formulas, we suggest the composition of such Si-H clusters is Si8n3+6n29n+5H12n8, where n is the number of shells in the cluster. Such semiconductor quantum dots may be of interest for optical properties, and the variation in band-gap with the size of hydrogen-terminated clusters has been determined to be inversely proportional to the cluster size [33].

The simple cubic lattice structure has previously been analyzed by others [4], although without the detail we provide. We have previously studied the d-dimensional hypercube forms [14]. Polonium is the only element which takes the simple cubic structure. It is radioactive, which may lead to specialized applications. Here we present the diamond cubic, simple cubic, and decahedral cluster magic formulas.

Magic Topological Formulas

Measured structural complexity in crystals can give us an idea of the simplicity or complexity of the structure and the proper use can rank relevant structures. For such rankings, it is helpful to consider the graphical description of the crystal lattice, as mentioned in the “Methods” section. The topological complexity for crystal structures is measured by the vertex-degree distribution of the graph, Ivd [34], using the software ToposPro, version 5.3.2.2 [35]:

Ivd=i=1vai·log2ai 16

where ai is the degree (coordination) of the ith vertex and summation proceeds along all v vertices, of the quotient graph. This parameter uses an infinite crystal as opposed to the clusters we have been considering, but is useful to measure the relative complexity of different crystal structures. Thus, the higher the number, or the more information content in the graph, the more complex it is. In Table 22, we show values of Ivd obtained from ToposPro derived from cif files for crystal structures in the Crystallographic Open Database. Polonium is the only element that crystallizes in the simple cubic structure and the value is zero, i.e., the quotient graph has one vertex and zero edges, in agreement with what we expect, that the simple cubic structure is indeed the least complex structure. The salt, NaCl, is also shown, with two elements in the simple cubic structure, along with silicon in the diamond cubic, gold in fcc, iron in bcc, and cobalt in hcp structures. We mention that another complexity measure related to the Shannon entropy [34] is not useful because this measure for all the elements is identically zero.

Table 22.

Topological complexity

Structure I vd
Po simple cubic 0.000
Si diamond cubic 16.000
NaCl 31.020
Au fcc 43.020
Fe bcc 53.303
Co hcp 86.039

A similar method as described in the “Methods” section to determine magic formulas can be applied for the magic formulas describing the topological indices. Only here, the degrees of the polynomials are 7, 8, or 9, so their values for at least 10 consecutive n-values need to be computed. Then an interpolation problem of a higher degree gives the result. Since solving a linear system of size 10×10 with the symbolic toolbox requires some time, all the coefficients for the topological indices can be computed simultaneously using multiple right-hand sides to get the coefficients of all the polynomials.

Magic formulas for the topological indices are detailed in Tables 23, 24, and 25. The four indices we analyze depend only on n, the number of shells in the cluster. Looking at the results, the simple cubic lattice as the least complex structure, also has the “simplest” formulas. In spite of our efforts, we are unable to solve for the Szeged index of bcc cubes. No stable solution was found. In general, fcc structures are easier to solve for topological formulas. We were not able to solve any hcp structures and only a few bcc structures. This may be related to the topological complexity as the fcc lattice is simpler than the bcc or hcp, see Table 22. Within the tables, we provide formulas for the cuboctahedron, icosahedron, and decahedron. We previously [12] provided tables of numeric data for these indices, with the caveat that the cuboctahedron in [12] had different magic numbers. Here we see that the tabulated data may be succinctly summarized as magic formulas. Also the degree of the polynomial of the index follows the rules from 3D space [14]. Some topological indices for the Platonic solids have previously been published [36]. From this reference, we verify the Wiener index for all five solids for n=1. The Wiener index for rows of unit cells of the fcc lattice has been studied [37], but our results cannot be compared since we study clusters.

Table 23.

Magic topological formulas for clusters

Simple cubic
 Wiener 64n7−16n5
 Reverse Wiener 128n7−96n6+16n5−24n4+12n3
 HyperWiener 2243n8+32n7883n68n5+83n4
 Szeged 256n9−64n7
fcc cube
 Wiener 956105n7+47815n6+135730n5+1103n4+58930n3+9715n2+3635n
 Reverse Wiener 1564105n7+60215n6+134330n5+703n4+4315n35930n23635n
 HyperWiener 5910n8+2956105n7+108920n6+70112n5+81720n4+115360n3+5310n2+57n
 Szeged 14822945n9+209935n8+30781315n7+94110n6+107318n5+25110n4+126291890n3+2935n2+32105n
bcc cube
 Wiener 127n7+6n6+595n5+292n4+343n3+112n2+121105n
 Reverse Wiener 167n7+6n6+465n5+112n4+23n352n2121105n
 HyperWiener 7184n8+8921n7+535n6+25315n5+42124n4+14312n3+4211840n2+137140n
 Szeged NA
fcc octahedron
 Wiener 59420n7+5960n6+17960n5+6112n4+7715n3+4415n2+2635n
 Reverse Wiener 3831260n7+10160n6+743180n5+5912n4+10445n335n22635n
 HyperWiener 1733360n8+2756n7+463240n6+8720n5+2891480n4+418n3+699280n2+1935n
 Szeged 3975040n9+397560n8+347120n7+841120n6+89180n5+2897240n4+2801315n3+1769420n2+1n
fcc cuboctahedron
 Wiener 20435n7+1025n6+1685n5+33n4+985n3+335n2+3435n
 Reverse Wiener 1664315n7+19415n6+71345n5+7n45245n34415n23435n
 HyperWiener 487140n8+58935n7+43312n6+1834n5+54815n4+35720n3+10321n2+47n
 Szeged 688677560n9+12589336n8+326945n7+10403120n6+23759360n5+147548n4+309293780n3+467420n2+115n

Table 24.

Magic topological formulas for clusters, continued

fcc truncated octahedron
 Wiener 31813140n7+2974160n6+19254n5+325912n4+4695n3+28115n2+127n
 Reverse Wiener 39867140n7+2785960n6+14114n5+144512n4+415n310115n2127n
 HyperWiener 2589271120n8+115583168n7+211547240n6+1945330n5+144307480n4+209924n3+12373840n2+3935n
 Szeged 11205591080n9+598387210n8+640481180n7+8002330n6+478073360n5+667715n4+13388135n3+48935n2+1615n
bcc rhombic dodecahedron
 Wiener 29335n7+29310n6+932n5+43n4+72130n3+7710n2+2321n
 Reverse Wiener 26735n7+18710n6+432n5+9n46130n33710n22321n
 HyperWiener 4187840n8+2533105n7+101120n6+3676n5+5549120n4+64730n3+601105n2+914n
 Szeged 294471890n9+1109931680n8+1581411260n7+16897120n6+18109180n5+10931240n4+232211890n3+221140n2+2105n
Icosahedron
 Wiener 11821n7+593n6+973n5+953n4+553n3+173n2+57n
 Reverse Wiener 34663n7+413n6+1549n5+253n4+19n32n257n
 HyperWiener 31196n8+88356n7+162748n6+43n5+326396n4+1278n3+318n2+514n
 Szeged 460496048n9+460491344n8+552172n7+1041596n6+26417288n5+7303192n4+57353024n31273336n21112n
Dodecahedron
 Wiener 6017n7+6012n6+416n5+11554n4+6256n3+714n2+4142n
 Reverse Wiener 7997n7+5992n6+314n5+6054n4+1436n3154n24142n
 HyperWiener 234928n8+7572n7+820312n6+12672n5+321n4+2633n3+24221n2+13n
 Szeged 16236116048n9+16236111344n8+1231255504n7+9321132n6+630167288n5+6443964n4+8065073024n3+14869336n2+48784n
Decahedron
 Wiener 121504n7+12172n6+35572n5+56572n4+25736n3+12536n2+2942n
 Reverse Wiener 229504n7+17972n6+41572n5+45572n4+8936n32936n22942n
 HyperWiener 772n8+9051008n7+499144n6+1055144n5+1327144n4+49372n3+4918n2+37n
 Szeged 911572576n9+91158064n8+5445112096n7+1999192n6+517513456n5+4975384n4+268554536n3+20212016n211504n

Table 25.

Magic topological formulas for clusters, continued

fcc tetrahedron
 Wiener 1168n7+112n6+715n5+43n4+4924n3+1912n2+1735n
 Reverse Wiener 1126n7+112n6+61180n5+712n4+536n323n21735n
 HyperWiener 1672n8+3112n7+47240n6+34n5+15596n4+3116n3+499420n2+27n
 Szeged 7160480n9+713360n8+2271440n7+151240n6+41632880n5+917480n4+2059915120n3+123280n2+130n
bcc tetrahedron
 Wiener 121n7+12n6+2110n5+92n4+316n3+3n2+2435n
 Reverse Wiener 463n7+12n6+287180n5+73n4+3736n356n22435n
 HyperWiener 142n8+1342n7+587360n6+17940n5+49372n4+13924n3+787315n2+89210n
 Szeged 181n9+16n8+176189n7+259n6+641135n5+8318n4+18881n3+49n24315n
Diamond cubic
 Wiener 7648105n7+191215n6+179215n5403n437415n390215n24835n+12
 Reverse Wiener 12512105n7+144815n6+54815n53923n481115n3+45215n2+204335n24
 HyperWiener 4725n8+23648105n7+397615n6+84215n592615n4121915n397115n2+31235n+18
 Szeged 5123n9+589621n8+208n715045n6+5035n51n4+193n34721105n257415n+24

Dispersion

The percentage of surface atoms (dispersion, FE) of the various clusters is presented in Fig. 2. Platinum nanoclusters are known to have catalytic activity with respect to the oxygen reduction reaction (ORR) which is size and shape dependent [38]. This reference determined that platinum cuboctahedral clusters of 2.2 nm in size had maximal ORR activity. It is also known that for PtNi alloys the (111) surface is preferred for the ORR [39]. We compare the icosahedral, octahedral, decahedral, and cuboctahedral clusters for FE at a drel=7.5 for platinum at 2.2 nm. The icosahedral, octahedral, and decahedral clusters have surfaces with (111) faces. Using the power laws in Fig. 2, we find for the given drel that the FE for icosahedral clusters is 47.9%, for cuboctahedral 52.8%, and for decahedral 57.5% and that octahedral clusters have FE=58.9%. Thus, based on shape, the octahedral clusters have both the (111) surface and the highest value of FE for a similar size. Both the power law coefficient and exponent are relevant for the determination of FE for small drel. The mathematical interpretation of the power law exponent gives the physical significance as the relationship of the ordinate, FE, to the abscissae, drel, or the relative percent change of FE to the relative percent change of drel. The power law coefficient is simply the value of FE when drel=1.

Fig. 2.

Fig. 2

Dispersion FE for the nanoclusters

Another research group has synthesized platinum alloy icosahedral clusters and compared the activity with octahedral ones [40]. These nanoclusters were about 13 nm in size or N=20,000 for octahedral clusters and N=15,000 for icosahedral clusters. This produces a drel=30 for the octahedral clusters and 25 for the icosahedral ones. Using the relevant power laws, this gives FE=18.0% for the octahedral and 19.8% for the icosahedral clusters. There is very little difference in FE for this size of the cluster, but the icosahedral cluster has a significant amount of strain due to twinning, which may shift the d-band center, thus affecting the ORR results [40]. However, given the size-dependent data of [38], it may be suggested that smaller clusters would produce still higher ORR data. Indeed, 4 nm Pt3Ni octahedra, when doped with Mo, have produced record-high ORR results [41].

Conclusions

We have studied 19 types of nanoclusters and some relevant magic formulas for the number of atoms, bonds, coordination numbers, and topological indices. These include the fcc, bcc, hcp, the Platonic solids, diamond cubic, simple cubic, and decahedral clusters. The majority of these results are more detailed than previously determined, and a large number are enumerated for the first time. A grand goal of materials-related research is the correlation of structure with properties. This detailed study of the magical relationships for nanoclusters is a step in that direction. An example is the discussion of the dispersion of surface atoms and its relationship to catalytic activity. It is our intention that these results will aid scientists in their studies of nanocluster structure and the associated properties.

Acknowledgements

We made use of the MATLAB file, Cluster Generator, which can be found in Mathworks File Exchange Central.

Funding

The authors did not receive external funding for this work.

Availability of Data and Materials

The dataset(s) supporting the conclusions of this article may be obtained from the corresponding author.

Competing Interests

The authors declare that they have no competing interests.

Abbreviations

bcc

body-centered cubic

cif

crystallographic information file

fcc

face-centered cubic

FE

Fraction Exposed, dispersion

hcp

hexagonal close packed

ORR

Oxidation reduction reaction

rW(G)

Reverse Wiener Index

Sz(G)

Szeged Index

W(G)

Wiener Index

WW(G)

Hyper-Wiener Index

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Footnotes

Authors’ Contributions

FHK conceived of the project and analysis. AB wrote the code in MATLAB. Both authors contributed to writing the paper and approved the final version of the manuscript.

Contributor Information

Forrest H. Kaatz, Email: fhkaatz@gmail.com

Adhemar Bultheel, Email: adhemar.bultheel@cs.kuleuven.be.

References

  • 1.van Hardeveld R, Hartog F. The statistics of surface atoms and surface sites on metal clusters. Surf Sci. 1969;15:189–230. doi: 10.1016/0039-6028(69)90148-4. [DOI] [Google Scholar]
  • 2.Teo BK, Sloane NJA. Magic numbers in polygonal and polyhedral clusters. Inorg Chem. 1985;24:4545–4558. doi: 10.1021/ic00220a025. [DOI] [Google Scholar]
  • 3.Fowler PW. How unusual is C60?Magic numbers for carbon clusters. Chem Phys Lett. 1986;131(6):444–450. doi: 10.1016/0009-2614(86)80563-2. [DOI] [Google Scholar]
  • 4.Montejano-Carrizales JM, Aguilera-Granja F, Moran-Lopez JL. Direct enumeration of the geometrical characteristics of clusters. NanoStruct Mater. 1997;8(3):269–287. doi: 10.1016/S0965-9773(97)00168-2. [DOI] [Google Scholar]
  • 5.Tomanek D, Schluter MA. Calculation of magic numbers and the stability of small Si clusters. Phys Rev Lett. 1986;56(10):1055–1058. doi: 10.1103/PhysRevLett.56.1055. [DOI] [PubMed] [Google Scholar]
  • 6.Yan QB, Sheng XL, Zheng QR, Zhang LZ, Su G. Family of boron fullerenes: General constructing schemes, electron counting rule, and ab initio calculations. Phys Rev B. 2008;78:201401. doi: 10.1103/PhysRevB.78.201401. [DOI] [Google Scholar]
  • 7.Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew Chem Int Ed. 2009;48:60–103. doi: 10.1002/anie.200802248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Liu P, Qin R, Fu G, Zheng N. Surface coordination chemistry of metal nanomaterials. J Am Chem Soc. 2017;139:2122–2131. doi: 10.1021/jacs.6b10978. [DOI] [PubMed] [Google Scholar]
  • 9.Borodzinski A, Bonarowska M. Relation between crystallite size and dispersion on supported metal catalysts. Languir. 1997;13:5613–5620. doi: 10.1021/la962103u. [DOI] [Google Scholar]
  • 10.Wiener H. Structural determination of paraffin boiling points. J Am Chem Soc. 1947;69:7–20. doi: 10.1021/ja01193a005. [DOI] [PubMed] [Google Scholar]
  • 11.Hosoya H. Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull Chem Soc Japan. 1971;44:2332–2339. doi: 10.1246/bcsj.44.2332. [DOI] [Google Scholar]
  • 12.Kaatz FH, Bultheel A. Topological indices for nanoclusters. Comput Mater Sci. 2015;99:73–80. doi: 10.1016/j.commatsci.2014.11.043. [DOI] [Google Scholar]
  • 13.Muller WR, Szymanski K, Knop JV, Trinajstic N. An algorithm for construction of the molecular distance matrix. J Comput Chem. 1987;8(2):170–173. doi: 10.1002/jcc.540080209. [DOI] [Google Scholar]
  • 14.Kaatz FH, Bultheel A. Dimensionality of hypercube clusters. J Math Chem. 2016;54(1):33–43. doi: 10.1007/s10910-015-0546-y. [DOI] [Google Scholar]
  • 15.Kittel C. Introduction to Solid State Physics. Hoboken: John Wiley & Sons, Inc.; 2005. [Google Scholar]
  • 16.LaGrow AP, Ingeham B, Cheong S, et al. Synthesis, alignment, and magnetic properties of monodisperse nickel nanocubes. J Am Chem Soc. 2012;134:855–858. doi: 10.1021/ja210209r. [DOI] [PubMed] [Google Scholar]
  • 17.Mott D, Galkowski J, Wang L, Luo J, Zhong CJ. Synthesis of size-controlled and shaped copper nanoparticles. Langmuir. 2007;23:5740–5745. doi: 10.1021/la0635092. [DOI] [PubMed] [Google Scholar]
  • 18.Biacchi AJ, Schaak RE. The solvent matters: Kinetic versus thermodynamic shape control in the polyol synthesis of rhodium nanoparticles. ACS Nano. 2011;5(10):8089–8099. doi: 10.1021/nn2026758. [DOI] [PubMed] [Google Scholar]
  • 19.Niu W, Zhang L, Xu G. Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano. 2010;4(4):1987–1996. doi: 10.1021/nn100093y. [DOI] [PubMed] [Google Scholar]
  • 20.Wiley B, Sun Y, Mayers B, Xia Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem Eur J. 2005;11:454–463. doi: 10.1002/chem.200400927. [DOI] [PubMed] [Google Scholar]
  • 21.Xia XH, Figueroa-Cosme L, Tao J, et al. Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth. J Am Chem Soc. 2014;136(31):10878–10881. doi: 10.1021/ja505716v. [DOI] [PubMed] [Google Scholar]
  • 22.Kang Y, Pyo JB, Ye X, Diaz RE, Gordon TR, Stach EA, Murray CB. Shape-controlled synthesis of Pt nanocrystals: The role of metal carbonyls. ACS Nano. 2013;7(1):645–653. doi: 10.1021/nn3048439. [DOI] [PubMed] [Google Scholar]
  • 23.Zhang J, Xi C, Feng C, Xia H, Wang D, Tao X. High yield seedless synthesis of high-quality gold nanocrystals with various shapes. Languir. 2014;30(9):2480–2489. doi: 10.1021/la404602h. [DOI] [PubMed] [Google Scholar]
  • 24.Poole CP, Owens FJ. Introduction to Nanotechnology. Hoboken: John Wiley & Sons, Inc.; 2003. [Google Scholar]
  • 25.Fan X, Guan J, Li Z, Mou F, Tong G, Wang W. One-pot low temperature solution synthesis, magnetic and microwave electromagnetic properties of single-crystal iron submicron cubes. J Mater Chem. 2010;20(9):1676–1682. doi: 10.1039/b918001j. [DOI] [Google Scholar]
  • 26.Ling T, Zhu J, Yu H, Xie L. Size effect on crystal morphology of faceted face-centered cubic Fe nanoparticles. J Phys Chem C Lett. 2009;113:9450–9453. doi: 10.1021/jp903496c. [DOI] [Google Scholar]
  • 27.Personick M, Langille MR, Wu J, Mirkin CA. Synthesis of gold hexagonal bipyramids directed by planar-twinned silver triangular nanoprisms. J Am Chem Soc. 2013;135:3800–3803. doi: 10.1021/ja400794q. [DOI] [PubMed] [Google Scholar]
  • 28.Van TK, Cha HG, Nguyen CK, Kim SW, Jung MH, Kang YS. Nanocystals of hematite with unconventional shape-truncated hexagonal bipyramid and its optical and magnetic properties. Cryst Growth Des. 2012;12:862–868. doi: 10.1021/cg201252v. [DOI] [Google Scholar]
  • 29.Kim F, Conner S, Song H, Kuykendall T, Yang P. Platonic gold nanocrystals. Angew Chem Int Ed. 2004;43:3673–3677. doi: 10.1002/anie.200454216. [DOI] [PubMed] [Google Scholar]
  • 30.Niu W, Zhang W, Firdoz S, Lu X. Dodecahedral gold nanocrystals: The missing Platonic shape. J Am Chem Soc. 2014;136(8):3010–3012. doi: 10.1021/ja500045s. [DOI] [PubMed] [Google Scholar]
  • 31.Wilson HF, Barnard AS. Predictive morphology control of hydrogen-terminated silicon nanoparticles. J Phys Chem C. 2014;118:2580–2586. doi: 10.1021/jp410652s. [DOI] [Google Scholar]
  • 32.Yang Z, Dobbie AR, Cui K, Veinot JGC. A convenient method for preparing alkyl-functionalized silicon nanocubes. J Am Chem Soc. 2012;134:13598–13961. doi: 10.1021/ja3061497. [DOI] [PubMed] [Google Scholar]
  • 33.Niaz S, Zdetsis AD. Comprehensive ab initio study of electronic, optical, and cohesive properties of silicon quantum dots of various morphologies and sizes up to infinity. J Phys Chem C. 2016;120:11288–11298. doi: 10.1021/acs.jpcc.6b02955. [DOI] [Google Scholar]
  • 34.Krivovichev S. Topological complexity of crystal structures: quantitative approach. Acta Cryst. 2012;A68:393–398. doi: 10.1107/S0108767312012044. [DOI] [PubMed] [Google Scholar]
  • 35.Blatov VA, Shevchenko AP, Proserpio DM. Applied topological analysis of crystal structures with the program package ToposPro. Cryst Growth Des. 2014;14:3576–3586. doi: 10.1021/cg500498k. [DOI] [Google Scholar]
  • 36.Babic D, Klein DJ, Lukovits I, Nicolic S, Trinajstic N. Resistance-distance matrix: A computational algorithm and its application. Int J Quantum Chem. 2002;90:166–176. doi: 10.1002/qua.10057. [DOI] [Google Scholar]
  • 37.Mujahed H, Nagy B. Wiener index on rows of unit cells of the face-centered cubic lattice. Acta Cryst. 2016;A72:243–249. doi: 10.1107/S2053273315022743. [DOI] [PubMed] [Google Scholar]
  • 38.Shao M, Peles A, Shoemaker K. Electrocatalysis on platinum nanoparticles: Particle size effect on oxygen reduction reaction activity. Nano Lett. 2011;11:3714–3719. doi: 10.1021/nl2017459. [DOI] [PubMed] [Google Scholar]
  • 39.Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM. Improved oxygen reduction activity on Pt 3Ni(111) via increased surface site availability. Science. 2007;315(5811):493–497. doi: 10.1126/science.1135941. [DOI] [PubMed] [Google Scholar]
  • 40.Wu J, Qi L, You H, Gross A, Li J, Yang H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J Am Chem Soc. 2012;134:11880–11883. doi: 10.1021/ja303950v. [DOI] [PubMed] [Google Scholar]
  • 41.Huang X, Zhao Z, Cao L, et al. High-performance transition-metal doped Pt3Ni octahedra for oxygen reduction reaction. Science. 2015;348(6240):1230–1234. doi: 10.1126/science.aaa8765. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The dataset(s) supporting the conclusions of this article may be obtained from the corresponding author.


Articles from Nanoscale Research Letters are provided here courtesy of Springer

RESOURCES