Skip to main content
Evidence-based Complementary and Alternative Medicine : eCAM logoLink to Evidence-based Complementary and Alternative Medicine : eCAM
. 2019 Apr 16;2019:3051472. doi: 10.1155/2019/3051472

MicroRNA in Acupuncture Studies: Does Small RNA Shed Light on the Biological Mechanism of Acupuncture?

Jade Heejae Ko 1,2, Seung-Nam Kim 1,2,
PMCID: PMC6500616  PMID: 31118954

Abstract

MicroRNAs (miRNAs) are the main regulators of diverse physiological processes. Recently, miRNAs have emerged as significant players related to the effect of acupuncture although the biological mechanisms connecting the function of these miRNAs with the effect of acupuncture are not well understood. In animal models of various diseases, such as neurological disease, cardiovascular disease, myopathy, and pain, a number of miRNAs were altered after administration of electroacupuncture or manual acupuncture. Nonetheless, there are a limited number of studies published so far. This paper reviewed and discussed whether miRNAs could elucidate potential biological mechanism of acupuncture in the future studies.

1. Introduction

MicroRNA (miRNA) is a small molecule containing about 23 noncoding nucleotides. miRNA was first discovered in Caenorhabditis elegans and it was known by its function of repressing lin-14 expression [1], and additional roles of miRNAs were found in many physiological processes, such as development [24], cell death process [5], and cell signaling [6]. Besides, emerging studies have shown that miRNAs contribute to the pathogenesis of neurological disease [79], cardiovascular disease [10, 11], metabolic syndrome [1214], and cancer [1517]. Acupuncture treatment, a frequently used therapeutic method in East-Asian medicine, is performed by penetrating specific point on skin, as known as acupuncture point (acupoint), with a filamentous needle. Two types of acupuncture treatment, manual acupuncture (MA), and electroacupuncture (EA) are distinguished by its treatment method. MA is performed with needle manipulation by adjusting insertion depth, rotation, and insertion duration, whereas EA involves running electric current through needles. There are a number of acupuncture studies showing its clinical effects on neuromuscular system [1820], opioid system [2124], immune regulation [25, 26], hormone regulation [27, 28], and so on. Interestingly, growing evidences in animal studies have shown that miRNAs may be a possible mean to explain underlying effect of acupuncture although a possible mechanism connecting the function of these miRNAs with the effect of acupuncture has not been studied enough. Here, we reviewed recent publications related to the acupuncture and its biological mechanism via miRNA expression.

2. Main Text

2.1. Stroke and Cardiovascular Disorder

The efficacy of electroacupuncture (EA) was demonstrated by enhancing blood flow and protecting nerve injury as summarized in Table 1. Deng et al. made an inquiry about how EA could possibly enhance rehabilitation after ischemic stroke and miR-181b was specifically studied as a mediator in the rehabilitation process. EA was administered on the acupoint GV20 of focal cerebral ischemic rat model and miR-181b expression was remarkably downregulated in the penumbra [29]. Chen et al. also showed that acupuncture at acupoints ST36 and GV20 potentially alter serum expression level of miR-124 in rats with cerebral ischemia-reperfusion injury. It was shown that the lesion was relieved by acupuncture at the two acupoints, and miR-124 expression was increased within the acupuncture group compared with model group [30]. Zheng et al. evaluated how EA ameliorates cerebral blood flow and neurological deficit after stroke. The middle cerebral artery occlusion (MCAO) rat model was used and EA was administered on acupoints GV26 and PC6. After administration of EA, cerebral blood flow was increased, and neurological function was improved as well. In this study, miR-494 was downregulated and miR-206 was upregulated in the penumbra [31]. Zhou et al. published a study in which a bioinformatic analysis of 20 miRNAs was used to test underlying neuroprotective mechanism of EA for ischemic injury. MCAO-induced focal cerebral ischemia rat models were used and rats received EA treatment daily on the acupoint GV20. Zhou et al. reported that downregulation of miR-191a and upregulation of neuronal calcium sensor 1 may result in an alleviation of neuron injury and consequently neuroprotection effect [32]. Liu et al. also investigated neuroprotective mechanism of nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway by EA on acupoints LI11 and ST36, and miR-9 may be involved in the process of protection. According to their result, expression level of miR-9 was significantly increased in the penumbra after EA treatment [33]. Zheng et al. studied efficacy of EA on learning and memory deficit, yet 2-vessel occlusion rat model was used for the study. EA was done on the acupoints GV14 and GV20. Compared with pre-EA treatment condition, reduction of miR-132 was deferred after EA treatment [34].

Table 1.

Changes of microRNAs by acupuncture treatment in the stroke and cardiovascular disorder animal model.

Disease model Author Year Species EA/MA Acupoint Acupuncture parameters Tissue Result
Stroke Deng et al. 2016 Rat EA GV20 2 Hz/10 Hz, 1 mA, 30 min Brain ↑ miR-181b
Zheng et al. 2016 Rat EA GV20, GV14 20 Hz, 20 min Brain (cortex) ↑ miR-132
Zheng et al. 2016 Rat EA GV26, PC6 2 Hz, 0.3 mA, 1 min Brain ↑ miR-206, ↓ miR-494
Liu et al. 2016 Rat EA LI11, ST36 1 Hz/20 Hz, 30 min Brain ↑ miR-9
Zhou et al. 2017 Rat EA GV20 1 mA Brain ↓ miR-191a
Chen et al. 2016 Rat EA GV20, left ST36 2 Hz, 1 mA, 20 min Heart, blood ↑ miR-124

Cardiovascular disorder Wang et al. 2014 Rat MA LR3 3 mm depth, 5 min Brain (medulla) ↑ miR-339, miR-145, miR-451
Liu et al. 2014 Rat EA PC6 4 Hz/20 Hz, 0.5 ms, 1 mA, 30 min Heart ↑ miR-214
Wang et al. 2015 Rat MA LR3 N/A Brain (medulla) ↑ miR-339, miR-223, miR-145

EA; electroacupuncture, MA; manual acupuncture.

The changes of miRNA by acupuncture in the cardiovascular-related diseases are summarized in Table 1. Wang et al. tested whether adenosine could mimic the effects of acupuncture via screening miRNAs. Spontaneously hypertensive rats were used and acupuncture at acupoint LR3 was given to each rat. The result confirmed that adenosine stimulation mimicked the effects of acupuncture and miR-339, miR-223, miR-145 expressions were upregulated in the brain [35]. Acupuncture treatment at nonacupoint was also performed within the same group, and the result showed that increased expression of the miRNAs by acupuncture at acupoint LR3 had not occurred at nonacupoint [36]. Another protective role of miRNA is addressed and studied in myocardial ischemia/reperfusion model. Liu et al. explored a possible cardioprotective mechanism of EA via screening miR-214. The EA was done on acupoint PC6. It was revealed that the expression of miR-214 was upregulated in the region of myocardial infarction. The study suggested that miR-214 contributes to protective mechanism of EA [37].

2.2. Neurological Disorder

Table 2 shows the effect of acupuncture on changes of miRNA in neurological disorder animal model. Zhu et al. studied potential mechanism of EA on spinal cord injury (SCI) via miR-449a. They performed EA on acupoints GV6 and GV9 of SCI rat model and found that the expression of miRNA-449a was downregulated in the spinal cord by EA [38]. Liu et al. also studied responsiveness of EA on SCI rat model. Acupoints GV6 and GV9 were used for the EA and the result showed that EA improved functional recovery as miR-214 hindered neuronal apoptosis [39]. Su et al. examined how low frequency electrical stimulation (LFES) could improve muscle wasting which is caused by diabetes. Diabetes model was used and LFES was administered on two acupoints: GB34 and ST36. The result indicated that miR-133a is significantly increased in the skeletal muscle of diabetic mice group and muscle weight was higher in diabetic mice which LFES was given to [40].

Table 2.

Changes of microRNAs by acupuncture treatment in the neurological disorder animal model.

Disease model Author Year Species EA/MA Acupoint Acupuncture Parameters Tissue Result
Nerve injury Zhu et al. 2017 Rat EA GV6, GV9 1 mA Spinal cord ↓ miR-449a
Su et al. 2016 Mouse EA GB34, ST36 20 Hz, 1 mA, 15 min Muscle ↑ miR-1, miR-206
Liu et al. 2017 Rat EA GV6, GV9 60 Hz, ≤ 1 mA, 20 min Brain (hippocampus) ↑ miR-214

Cognitive and Mood disorder Liu et al. 2017 Rat EA GV20, GV24 1 Hz/20 Hz, 0.2 mA, 30 min Brain ↓ miR-134
Duan et al. 2016 Rat EA EX-HN3, GV20 2 Hz, 1 mA, 20 min Blood serum ↑ miR-1, ↓ miR-383, miR-764

Denervation-induced muscle atrophy Su et al. 2015 Mouse EA GB34, ST36 20 Hz, 1 mA, 15 min Muscle ↑ miR-1, miR-206, miR-133a, miR-133b

Insomnia Bo et al. 2017 Rat MA EX-HN3, GV9, GV14 15 min Brain (prefrontal cortex, hypothalamus, and hippocampus) ↑ miR-101a

EA; electroacupuncture, MA; manual acupuncture.

Moreover, there are studies reporting how EA could enhance cognitive and mood disorder as shown in Table 2. First, Liu et al. studied miR-134 in the rat hippocampus with middle cerebral artery occlusion induced cognitive deficit (MICD). The EA treatment was done on acupoints GV20 and GV24. The expression of miR-134 was increased in MICD group compared with normal group, whereas expression of miR-134 was decreased after repeated administration of EA [41]. EA responsiveness on depression was studied by Duan et al. EA was administered on acupoints GV20 and EX-HN3 of depressive rat model. After the EA, miR-383 and miR-764 were decreased and miR-1 was increased in the cerebral cortex compared with model group [42].

Su et al. published another study that evaluated whether acupuncture with LFES would improve denervation-induced muscle atrophy (Table 2). The LFES treatment was done on acupoint GB34 and ST36 of denervation-induced mice model. The results demonstrated that LFES stimulated expression of miR-1 and miR-206 as its expression was increased in the skeletal muscle [43].

Effect of acupuncture treatment on insomnia was studied by Bo et al. (Table 2). They used parachlorophenylalanine-induced insomnia rat models and performed Mongolian medial warm acupuncture treatment. After the treatment, they detected upregulation of miR-101a in the brain and suggested that the upregulation of miR-101a is probably related to paired box gene 8 regulation [44].

2.3. Other Disease Animal Models

Unlike previous studies which are using disease model, Cui et al. studied EA tolerance in rat (Table 3). Given that EA tolerance may affect responsiveness of EA as it is continued for a long period of time, Cui et al. screened miRNAs in order to test whether the expression levels are altered. After the EA administration on acupoints ST36 and SP6 for 8 consecutive days, expression levels of miRNA-124 and miRNA-107 were increased, whereas expression levels of miR-148 and miR-370 were decreased in the hypothalamus compared with initial level [45].

Table 3.

Changes of microRNAs by acupuncture treatment in the other disease animal models.

Disease model Author Year Species EA/MA Acupoint Acupuncture parameters Tissue Result
EA tolerance Cui et al. 2017 Rat EA ST36, SP6 2 Hz/15 Hz, Brain (hypothalamus) ↑ miR-124, miR-107,
3mA, 30 min ↓ miR-148a, miR-370
Postoperative ileus Deng et al. 2017 Rat MA ST36, SP6, 2-3 mm depth, Colon ↓ miR-19a
LR3 15 min
Chronic atrophic gastritis Zhang et al. 2016 Rat MA ST36, CV20, 3 mm depth, Gastric tissue ↑ miR-339,
BL20 15 min ↓ miR-155, miR-21
Chronic kidney disease Hu et al. 2015 Mouse EA GB34, ST36 20 Hz, 1 mA, Muscle ↓ miR-1
15 min
Hyperactivity of HPA axis Zhu et al. 2017 Rat EA ST36, SP6 2 Hz/15 Hz, Brain (hypothalamus) ↑ miR-142, miR-376c
2mA, 30 min
Allergic contact dermatitis Wang et al. 2018 Rat EA ST36 2 Hz, 1 mA, Ear ↓ miR-155
5 min, 20 min

EA; electroacupuncture, MA; manual acupuncture, HPA; hypothalamic-pituitary-adrenal.

Effect of MA in inflammatory diseases was also studied. Zhang et al. evaluated potential therapeutic mechanism of acupuncture in treatment of chronic atrophic gastritis via screening miRNAs (Table 3). A group of chronic atrophic gastritis rat models received acupuncture treatment on acupoints ST36, CV12, and BL20. As a result of the acupuncture treatment, the expression levels of miR-155 and miR-21 were downregulated, whereas the expression of miR-339 was upregulated in the gastric tissue after the MA treatment [46].

A study of Deng et al. highlighted a possible involvement of miRNA in treatment of postoperative ileus by acupuncture. Postoperative ileus mouse model was used and acupuncture was administered on acupoints ST36, SP6, and LR3. Serum miR-19a level was noticeably increased after inducing postoperative ileus. Acupuncture treatment downregulated the increase and probably protected interstitial cells as deferring expression of miR-19a [47].

Hu et al. studied how LFES affects insulin-like growth factor 1 signaling pathway and how LFES alters miRNA expression which would potentially improve muscle protein synthesis, while impeding protein degradation (Table 3). For the study, chronic kidney disease-induced muscle atrophy mice model was used. Using qPCR assays, they detected a significant decrease of miR-1 level in the skeletal muscle although its level gradually returned to the initial level [48].

Impact of EA on the regulation of hypothalamic hormone was studied by Zhu et al. (Table 3). Hyperactivity of the hypothalamus pituitary adrenal axis was induced via hepatectomy in rat model. EA treatment was performed on acupoints ST36 and SP6. They showed that expression levels of miR-142 and miR-376c were both decreased in the hypothalamus after EA treatment [49].

Wang et al. investigated the effect of EA administration using allergic contact dermatitis rat model (Table 3). EA was administered on acupoint ST36 on rat and rat peritoneal mast cells were obtained for miRNA screening. It was found that miR-155 level was downregulated by EA treatment in rat peritoneal mast cells.

3. Discussion

In this study, we reviewed various studies which have shown the effect of MA and EA in different disease models via miRNA profiling. Based on the results of above-mentioned studies, it was shown that expression levels of various miRNAs, which were thought to play significant roles in various diseases, have been changed by acupuncture treatment.

With regard to stroke and its link with miRNA, expression levels of miR-124 and miR-9 were increased by acupuncture treatment in ischemic rat models [30]. miR-124 has been studied on its inhibitory role in neural apoptosis occurred by ischemic stroke [50]. Mediating role of miR-9 was suggested as expression level of miR-9 was decreased in middle cerebral artery occlusion rat model; yet, neurological functions and behavioral abnormalities were restored with miR-9 level restoration [51]. Also, increased level of miR-132 influenced on adjusting angiogenesis by suppressing NF-κB and vascular endothelial growth factor in patients with ischemic cerebrovascular disease [52]. These changes and distinct roles of each miRNAs may possibly provide an intriguing connection between the effect of acupuncture on stroke and these miRNAs.

There are other miRNAs potentially associated with cardiovascular disorders. By analyzing literatures, it was suggested that miR-145, which was increased by acupuncture in hypertension rat model [36], plays a significant role in different cardiovascular diseases [53]. Also, low blood pressure was evident in miR-145 knockdown mice and the change of blood pressure was considered to be a result of reduced vascular tone which would possibly be controlled by miR-145 [54, 55]. miR-214 was increased by acupuncture treatment in myocardial ischemia-reperfusion rat model [39], and local upregulation of miR-214 in heart alleviated cardiac dysfunctions in dilated cardiomyopathy patients [56]. Moreover, in a diabetic cardiac dysfunction study, miR-1 level was restored by N-acetylcysteine treatment in diabetic rat model [57].

Nerve injury studies also identified candidate miRNAs associated with acupuncture treatment. miR-449, which was changed by acupuncture in nerve injury model [38], was downregulated as oligodendrocyte precursor cell was transplanted to spinal cord injury rat model. Moreover, miR-206 promoted regeneration of neuromuscular synapses in ALS model [58] and brain-derived neurotrophic factor-related signaling pathway in nerve injured neuropathic pain model [59]. Therefore, it was suggested that miR-206 and miR-449a might be associated with potential treatment method of nerve injury.

It was suggested that dysregulation of miRNAs is possibly associated with physical dysfunctions and abnormalities. Here, based on analysis of the published literatures, we summarized that acupuncture treatment seemingly restores levels of diverse miRNAs, which were thought to play significant roles in various diseases, to the normal states, suggesting that these miRNAs potentially have influential roles in the effect of acupuncture on these diseases. Although it should be critically considered that there are methodological and hypothetical differences between the studies, the associations are intriguing and worthy to be analyzed and studied further.

There are still relatively limited number of studies about acupuncture and miRNAs. Nevertheless, this manuscript highlighted the effect of EA and MA and in what way miRNAs have taken part in elucidating mechanism of acupuncture. New findings could conceivably lead to discovering biological mechanism of acupuncture via miRNA and it would shed light on identification of underlying mechanism of acupuncture in the near future.

Acknowledgments

This work was supported by National Research Foundation of Korea funded by the Korean government (MSIT) (NRF-2017R1C1B5018061).

Conflicts of Interest

There are no conflicts of interest among all authors.

Authors' Contributions

Jade Heejae Ko and Seung-Nam Kim designed the study, extracted the data, analyzed the data, and wrote the paper.

References

  • 1.Lee R. C., Feinbaum R. L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. doi: 10.1016/0092-8674(93)90529-Y. [DOI] [PubMed] [Google Scholar]
  • 2.Kloosterman W. P., Lagendijk A. K., Ketting R. F., Moulton J. D., Plasterk R. H. A. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biology. 2007;5(8, article no. e203):1738–1749. doi: 10.1371/journal.pbio.0050203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Lelandais-Brière C., Sorin C., Declerck M., Benslimane A., Crespi M., Hartmann C. Small RNA diversity in plants and its impact in development. Current Genomics. 2010;11(1):14–23. doi: 10.2174/138920210790217918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Wienholds E., Kloosterman W. P., Miska E., et al. MicroRNA expression in zebrafish embryonic development. Science. 2005;309(5732):310–311. doi: 10.1126/science.1114519. [DOI] [PubMed] [Google Scholar]
  • 5.Brennecke J., Hipfner D. R., Stark A., Russell R. B., Cohen S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113(1):25–36. doi: 10.1016/s0092-8674(03)00231-9. [DOI] [PubMed] [Google Scholar]
  • 6.Gregory P. A., Bert A. G., Paterson E. L., et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology. 2008;10(5):593–601. doi: 10.1038/ncb1722. [DOI] [PubMed] [Google Scholar]
  • 7.Mencía A., Modamio-Høybjør S., Redshaw N., et al. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nature Genetics. 2009;41(5):609–613. doi: 10.1038/ng.355. [DOI] [PubMed] [Google Scholar]
  • 8.Tapocik J. D., Barbier E., Flanigan M., et al. MicroRNA-206 in rat medial prefrontal cortex regulates BDNF expression and alcohol drinking. The Journal of Neuroscience. 2014;34(13):4581–4588. doi: 10.1523/JNEUROSCI.0445-14.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Amin N. D., Bai G., Klug J. R., et al. Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure. Science. 2015;350(6267):1525–1529. doi: 10.1126/science.aad2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Insull W., Jr. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. American Journal of Medicine. 2009;122(1, supplement):S3–S14. doi: 10.1016/j.amjmed.2008.10.013. [DOI] [PubMed] [Google Scholar]
  • 11.Phua Y. L., Chu J. Y. S., Marrone A. K., Bodnar A. J., Sims-Lucas S., Ho J. Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival. Physiological Reports. 2015;3(10) doi: 10.14814/phy2.12537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Zhu H., Ng S.-C., Segr A. V., et al. The Lin28/let-7 axis regulates glucose metabolism. Cell. 2011;147(1):81–94. doi: 10.1016/j.cell.2011.08.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Jun-Hao E. T., Gupta R. R., Shyh-Chang N. Lin28 and let-7 in the metabolic physiology of aging. Trends in Endocrinology & Metabolism. 2016;27(3):132–141. doi: 10.1016/j.tem.2015.12.006. [DOI] [PubMed] [Google Scholar]
  • 14.Wilfred B. R., Wang W.-X., Nelson P. T. Energizing miRNA research: A review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Molecular Genetics and Metabolism. 2007;91(3):209–217. doi: 10.1016/j.ymgme.2007.03.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Nielsen B. S., Jørgensen S., Fog J. U., et al. High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clinical & Experimental Metastasis. 2011;28(1):27–38. doi: 10.1007/s10585-010-9355-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Jones K., Nourse J. P., Keane C., Bhatnagar A., Gandhi M. K. Plasma microRNA are disease response biomarkers in classical hodgkin lymphoma. Clinical Cancer Research. 2014;20(1):253–264. doi: 10.1158/1078-0432.CCR-13-1024. [DOI] [PubMed] [Google Scholar]
  • 17.Palmieri D., D'Angelo D., Valentino T., et al. Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene. 2012;31(34):3857–3865. doi: 10.1038/onc.2011.557. [DOI] [PubMed] [Google Scholar]
  • 18.Yu J., Wang M., Liu J., Zhang X., Yang S. Effect of electroacupuncture on the expression of agrin and acetylcholine receptor subtypes in rats with tibialis anterior muscular atrophy induced by sciatic nerve injection injury. Acupuncture in Medicine. 2017;35(4):268–275. doi: 10.1136/acupmed-2015-011005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Wang M., Zhang X. M., Yang S. B. Effect of electroacupuncture on the expression of glycyl-trna synthetase and ultrastructure changes in atrophied rat peroneus longus muscle induced by sciatic nerve injection injury. Evidence-Based Complementary and Alternative Medicine. 2016;2016:10. doi: 10.1155/2016/7536234.7536234 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Takaoka Y., Ohta M., Ito A., et al. Electroacupuncture suppresses myostatin gene expression: Cell proliferative reaction in mouse skeletal muscle. Physiological Genomics. 2007;30(2):102–110. doi: 10.1152/physiolgenomics.00057.2006. [DOI] [PubMed] [Google Scholar]
  • 21.Liao H.-Y., Hsieh C.-L., Huang C.-P., Lin Y.-W. Electroacupuncture Attenuates CFA-induced inflammatory pain by suppressing Nav1.8 through S100B, TRPV1, opioid, and adenosine pathways in mice. Scientific Reports. 2017;7 doi: 10.1038/srep42531.42531 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Li J., Fu C., Liu H., et al. Electroacupuncture attenuates hyperalgesia in rats withdrawn from chronic alcohol drinking via habenular mu opioid receptors. Alcoholism: Clinical and Experimental Research. 2017;41(3):637–643. doi: 10.1111/acer.13332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Wang Y., Hackel D., Peng F., Rittner H. L. Long-term antinociception by electroacupuncture is mediated via peripheral opioid receptors in free-moving rats with inflammatory hyperalgesia. European Journal of Pain. 2013;17(10):1447–1457. doi: 10.1002/j.1532-2149.2013.00325.x. [DOI] [PubMed] [Google Scholar]
  • 24.Goldman N., Chen M., Fujita T., et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nature Neuroscience. 2010;13(7):883–888. doi: 10.1038/nn.2562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Torres-Rosas R., Yehia G., Pena G., Mishra P., Del Rocio Thompson-Bonilla M., Moreno-Eutimio M. A. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nature Medicine. 2014;20(3):291–295. doi: 10.1038/nm.3479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Chen L., Xu A., Yin N., et al. Enhancement of immune cytokines and splenic CD4+ T cells by electroacupuncture at ST36 acupoint of SD rats. Plos One. 2017;12(4) doi: 10.1371/journal.pone.0175568.e0175568 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Jang J.-H., Lee D.-J., Bae C.-H., et al. Changes in small intestinal motility and related hormones by acupuncture stimulation at Zusanli (ST 36) in mice. Chinese Journal of Integrative Medicine. 2017;23(3):215–220. doi: 10.1007/s11655-016-2609-8. [DOI] [PubMed] [Google Scholar]
  • 28.Park J. Y., Kim S. N., Yoo J., et al. Novel neuroprotective effects of melanin-concentrating hormone in parkinson's disease. Molecular Neurobiology. 2017 doi: 10.1007/s12035-016-0258-8. [DOI] [PubMed] [Google Scholar]
  • 29.Deng B., Bai F., Zhou H., et al. Electroacupuncture enhances rehabilitation through miR-181b targeting PirB after ischemic stroke. Scientific Reports. 2016;6(1) doi: 10.1038/srep38997.38997 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Chen S., Sun H., Zhang Y., Xu H., Yang Y., Wang F. Effects of acupuncture at Baihui (GV 20) and Zusanli (ST 36) on peripheral serum expression of MicroRNA 124, laminin and integrin β1 in rats with cerebral ischemia reperfusion injury. Chinese Journal of Integrative Medicine. 2016;22(1):49–55. doi: 10.1007/s11655-015-2112-7. [DOI] [PubMed] [Google Scholar]
  • 31.Zheng H.-Z., Jiang W., Zhao X.-F., et al. Electroacupuncture induces acute changes in cerebral cortical miRNA profile, improves cerebral blood flow and alleviates neurological deficits in a rat model of stroke. Neural Regeneration Research. 2016;11(12):1940–1950. doi: 10.4103/1673-5374.197135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Zhou H., Yang C., Bai F., et al. Electroacupuncture alleviated brain damages through miR-191a-5p targeting neuronal calcium sensor 1 after ischemic stroke. Rejuvenation Research. 2017;20(6):492–505. doi: 10.1089/rej.2017.1920. [DOI] [PubMed] [Google Scholar]
  • 33.Liu W., Wang X., Zheng Y., et al. Electroacupuncture inhibits inflammatory injury by targeting the miR-9-mediated NF-κB signaling pathway following ischemic stroke. Molecular Medicine Reports. 2016;13(2):1618–1626. doi: 10.3892/mmr.2015.4745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Zheng C. X., Lu M., Guo Y. B., et al. Electroacupuncture ameliorates learning and memory and improves synaptic plasticity via activation of the PKA/CREB signaling pathway in cerebral hypoperfusion. Evidence-Based Complementary and Alternative Medicine. 2016;2016:11. doi: 10.1155/2016/7893710.7893710 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Wang J.-Y., Li H., Zhang L., et al. Adenosine as a probing tool for the mechanistic study of acupuncture treatment. Clinical and Experimental Pharmacology and Physiology. 2014;41(11):933–939. doi: 10.1111/1440-1681.12304. [DOI] [PubMed] [Google Scholar]
  • 36.Wang J. Y., Li H., Ma C. M., et al. MicroRNA profiling response to acupuncture therapy in spontaneously hypertensive rats. Evidence-Based Complementary and Alternative Medicine. 2015;2015:9. doi: 10.1155/2015/204367.204367 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Liu P. Y., Tian Y., Xu S. Y. Mediated protective effect of electroacupuncture pretreatment by miR-214 on myocardial ischemia/reperfusion injury. Journal of Geriatric Cardiology. 2014;11(4):303–310. doi: 10.11909/j.issn.1671-5411.2014.04.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Zhu Y., Wu Y., Zhang R. Electro-acupuncture promotes the proliferation of neural stem cells and the survival of neurons by downregulating mir-449a in rat with spinal cord injury. Excli Journal. 2017;16:363–374. doi: 10.17179/excli2017-123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Liu J., Wu Y. Electro-acupuncture-modulated miR-214 prevents neuronal apoptosis by targeting Bax and inhibits sodium channel Nav1.3 expression in rats after spinal cord injury. Biomedicine & Pharmacotherapy. 2017;89:1125–1135. doi: 10.1016/j.biopha.2017.02.077. [DOI] [PubMed] [Google Scholar]
  • 40.Su Z., Robinson A., Hu L., et al. Acupuncture plus low-frequency electrical stimulation (Acu-LFES) attenuates diabetic myopathy by enhancing muscle regeneration. Plos One. 2015;10(7) doi: 10.1371/journal.pone.0134511.e0134511 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Liu W., Wu J., Huang J., et al. Electroacupuncture regulates hippocampal synaptic plasticity via mir-134-mediated LIMK1 function in rats with ischemic stroke. Neural Plasticity. 2017;2017:11. doi: 10.1155/2017/9545646.9545646 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Duan D. M., Dong X., Tu Y., Liu P. A microarray study of chronic unpredictable mild stress rat blood serum with electro-acupuncture intervention. Neuroscience Letters. 2016;627:160–167. doi: 10.1016/j.neulet.2016.05.054. [DOI] [PubMed] [Google Scholar]
  • 43.Su Z., Hu L., Cheng J., et al. Acupuncture plus low-frequency electrical stimulation (Acu-LFES) attenuates denervation-induced muscle atrophy. Journal of Applied Physiology. 2016;120(4):426–436. doi: 10.1152/japplphysiol.00175.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Bo A., Si L., Wang Y., Bao L., Yuan H. Mechanism of Mongolian medical warm acupuncture in treating insomnia by regulating miR-101a in rats with insomnia. Experimental and Therapeutic Medicine. 2017;14(1):289–297. doi: 10.3892/etm.2017.4452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Cui L., Ding Y., Feng Y., et al. MiRNAs are involved in chronic electroacupuncture tolerance in the rat hypothalamus. Molecular Neurobiology. 2017;54(2):1429–1439. doi: 10.1007/s12035-016-9759-8. [DOI] [PubMed] [Google Scholar]
  • 46.Zhang J., Huang K., Zhong G., et al. Acupuncture decreases NF-kappaB p65, miR-155, and miR-21 and increases miR-146a expression in chronic atrophic gastritis rats. Evidence-Based Complementary and Alternative Medicine. 2016;2016:9. doi: 10.1155/2016/9404629.9404629 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Deng J., Yang S., Yuan Q., et al. Acupuncture ameliorates postoperative ileus via IL-6–miR-19a–KIT axis to protect interstitial cells of cajal. American Journal of Chinese Medicine. 2017;45(04):737–755. doi: 10.1142/S0192415X17500392. [DOI] [PubMed] [Google Scholar]
  • 48.Hu L., Klein J. D., Hassounah F., et al. Low-frequency electrical stimulation attenuates muscle atrophy in CKD-a potential treatment strategy. Journal of the American Society of Nephrology. 2015;26(3):626–635. doi: 10.1681/asn.2014020144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Zhu J., Chen Z., Meng Z., et al. Electroacupuncture alleviates surgical trauma-induced hypothalamus pituitary adrenal axis hyperactivity via microRNA-142. Frontiers in Molecular Neuroscience. 2017;10, article no. 308 doi: 10.3389/fnmol.2017.00308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Zhang K., Zhu Y., Liu P., Ji R. R. MiR-124 inhibits neural apoptosis in ischemic stroke. International Journal of Clinical and Experimental Pathology. 2016;9(10):9924–9930. [Google Scholar]
  • 51.Wei N., Xiao L., Xue R., et al. MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Molecular Neurobiology. 2016;53(10):6809–6817. doi: 10.1007/s12035-015-9605-4. [DOI] [PubMed] [Google Scholar]
  • 52.Che F., Du H., Zhang W., Cheng Z., Tong Y. MicroRNA-132 modifies angiogenesis in patients with ischemic cerebrovascular disease by suppressing the NF-κB and VEGF pathway. Molecular Medicine Reports. 2017;17(2):2724–2730. doi: 10.3892/mmr.2017.8138. [DOI] [PubMed] [Google Scholar]
  • 53.Zhao W., Zhao S. P., Zhao Y. H. MicroRNA-143/-145 in cardiovascular diseases. BioMed Research International. 2015;2015:9. doi: 10.1155/2015/531740.531740 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Xin M., Small E. M., Sutherland L. B., et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes & Development. 2009;23(18):2166–2178. doi: 10.1101/gad.1842409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Boettger T., Beetz N., Kostin S., et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. The Journal of Clinical Investigation. 2009;119(9):2634–2647. doi: 10.1172/JCI38864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Zhao Y., Ponnusamy M., Zhang L., et al. The role of miR-214 in cardiovascular diseases. European Journal of Pharmacology. 2017;816:138–145. doi: 10.1016/j.ejphar.2017.08.009. [DOI] [PubMed] [Google Scholar]
  • 57.Yildirim S. S., Akman D., Catalucci D., Turan B. Relationship between downregulation of miRNAs and increase of oxidative stress in the development of diabetic cardiac dysfunction: junctin as a target protein of miR-1. Cell Biochemistry and Biophysics. 2013;67(3):1397–1408. doi: 10.1007/s12013-013-9672-y. [DOI] [PubMed] [Google Scholar]
  • 58.Williams A. H., Valdez G., Moresi V., et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science. 2009;326(5959):1549–1554. doi: 10.1126/science.1181046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Sun W., Zhang L., Li R. Overexpression of miR-206 ameliorates chronic constriction injury-induced neuropathic pain in rats via the MEK/ERK pathway by targeting brain-derived neurotrophic factor. Neuroscience Letters. 2017;646:68–74. doi: 10.1016/j.neulet.2016.12.047. [DOI] [PubMed] [Google Scholar]

Articles from Evidence-based Complementary and Alternative Medicine : eCAM are provided here courtesy of Wiley

RESOURCES