Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 2;75(Pt 5):552–556. doi: 10.1107/S2056989019004195

Crystal structure of 1,3-di-tert-butyl-2-chloro-1,3,2-di­aza­phospho­rinane − a saturated six-membered phospho­rus nitro­gen heterocycle with a partially flattened chair conformation and a long PIII—Cl bond

Erik Mecke a, Walter Frank a,*
PMCID: PMC6505585  PMID: 31110784

Sublimation in vacuo slightly above room temperature gave crystals of the P-chloro-functionalized saturated six-membered N-heterocyclic title compound 1,3-di-tert-butyl-2-chloro-1,3,2-di­aza­phospho­rinane. In the crystal, no inter­actions stronger than van der Waals forces are found between the mol­ecules that neither suffer from chair conformation disorder nor from rotational disorder of the tert-butyl groups. Characteristic structural features are the partial flattening of the ‘cyclo­hexane-chair’ conformation at the heteroatom side of the six-membered ring and the length of the weakened P—Cl bond [2.2869 (6) Å].

Keywords: crystal structure, phospho­rus nitro­gen compound, six-membered heterocycle, N-heterocyclic phospho­rus compound, di­aza­phospho­rinane, chloro­phosphane, conformation

Abstract

Colourless blocks of 1,3-di-tert-butyl-2-chloro-1,3,2-di­aza­phospho­rinane, C11H24ClN2P (1), were obtained by sublimation in vacuo slightly above room temperature. The asymmetric unit of the monoclinic crystal structure of the six-membered N-heterocyclic compound is defined by one mol­ecule in a general position. The six-membered ring of the mol­ecule adopts a cyclo­hexane-like chair conformation; the chair at one side is to some extent flattened as a result of the approximately trigonal–planar coordination of both nitro­gen atoms. In detail, this modified chair conformation is characterized by an angle of 53.07 (15)° between the plane defined by the three carbon atoms and the best plane of the two nitro­gen atoms and the two carbon atoms bound to them, and an angle of 27.96 (7)° between the latter plane and the plane defined by the nitro­gen and phospho­rus atoms. The tert-butyl groups are oriented equatorially and the chloro substituent is oriented axially. The P—Cl bond length of 2.2869 (6) Å is substanti­ally longer than the P—Cl single-bond length in PCl3 [2.034 Å; Galy & Enjalbert (1982). J. Solid State Chem. 44, 1–23]. Inspection of the inter­molecular distances gives no evidence for inter­actions stronger than van der Waals forces. The closest contact is between the Cl atom and a methyl­ene group of a neighbouring mol­ecule with a Cl⋯C distance of 3.7134 (18) Å, excluding a significant influence on the P—Cl bonding.

Chemical context  

Over the past two decades, P-chloro­functionalized N-heterocyclic phosphanes (NHPCls) received considerable attention, mainly as precursors of N-heterocyclic phosphenium ions (NHPs) that are valence isoelectronic compounds of the well-known N-heterocyclic carbenes (NHCs) (Papke et al., 2017), but also as educts of tetra­kis­(amino)­diphosphanes (e.g. Bezombes et al., 2004; Blum et al., 2016; Edge et al., 2009; Frank et al., 1996), some of which reversibly dissociate to stable phosphinyl radicals (‘jack-in-the-box dipnictines’; Hinchley et al., 2001), and as starting materials in the synthesis of mixed-valent tetra­kis­(amino)­tetra­phosphetes (Breuers et al., 2015; Frank et al., 1996). Furthermore, NHPCls and NHPs have been used as ligands in transition metal complexes (Thomas et al., 2018), some of which have a potential application in catalysis (Gatien et al., 2018). In the context of NHP chemistry, the majority of compounds are five-membered cycles, and especially P-chloro­functionalized 1,3,2-di­aza­phospho­lenes (Denk et al., 1996; Carmalt & Lomeli, 1997) have gained a widespread use as precursors for 1,3,2-di­aza­phospho­lenium cations (the most prominent class of NHPs) that are weak σ-donors and strong π-acceptors (Caputo et al., 2008; Tuononen et al., 2007). A limited number of structurally characterized examples is known for the class of P-chloro­functionalized four-membered NHPCls Cl—P<(NR)2>E and the related NHPs. The fourth ring member >E, joining the class-defining Cl—P<(NR)2 fragment, is an >SiR 2 group in most cases (e.g. Breuers & Frank, 2016; Gün et al., 2017; Mo et al., 2018; Mo & Frank, 2019; Veith et al., 1988) but some compounds containing >C=N—R (Brazeau et al., 2012), >B—Ph (Konu et al., 2008) and >As—Cl (Hinz et al., 2015) have also been synthesized and structurally characterized. In contrast to the aforementioned compounds with four- and five-membered rings, six-membered NHPs and NHPCls are less present in recent publications, although 2-chloro-1,3,2-di­aza­phophorinanes H2C<(CH2NR)2>P–Cl, for instance, have been known since the early 1970s (Maryanoff & Hutchins, 1972; Nifant’ev et al., 1977). Temperature-dependent dynamical NMR investigations showed that in solution these substances are not subject to a fast conformation change, like the ring-inversion process of cyclo­hexane, and that in the predominant conformation the chloro substituent is expected to be in the axial position and the residues on the nitro­gen atoms are oriented ‘diequatorial’. This gives rise to a quite complex 1H-NMR spectrum with an AAKKQTX pattern (X = P, AAKK′ = C4 and C6 protons, Q and T = C5 protons; Hutchins et al., 1972). Furthermore, the number and position of the signals in the 1H-NMR spectrum are dependent on concentration, which was attributed to inter­molecular chlorine-exchange mechanisms. Even though this parent class of six-membered NHPCls has been known for quite some time, no crystal structure analysis has thus far been reported. Herein, we present the crystal structure of the title compound that allows for a structural comparison with the most closely related four- or five-membered NHPCls known, on one hand, and with phospha- and 1,3,2-dioxaphospha­cyclo­hexane deriv­atives, on the other hand.graphic file with name e-75-00552-scheme1.jpg

Structural commentary  

The mol­ecular structure of 1 in the crystal is shown in Fig. 1. The mol­ecule does not suffer from conformational disorder, which is often recognized in the solids of saturated N-heterocyclic compounds. The main characteristics of the mol­ecule are: (i) the partially flattened chair conformation of the central six-membered heterocycle (displayed in more detail in Fig. 2) with an angle of 53.07 (15)° between the plane defined by the carbon atoms and the best plane of C1, C3, N1 and N2, and an angle of 27.96 (7)° between the latter plane and the plane defined by the nitro­gen and phospho­rus atoms; (ii) the equatorial orientation of both tert-butyl groups, enforced by the approximate trigonal–planar coordination of the nitro­gen atoms [sums of angles 356.2 (N1) and 355.8 (N2)], in combination with the axial orientation of the chloro substituent (Fig. 2) [out of plane angle: 106.83 (5)°]; (iii) the length of the P1—Cl1 bond, 2.2869 (6) Å, is substanti­ally longer than the standard single bond (2.02 Å; Brown, 2016) and the longest bond found in a six-membered NHPCl so far. The P—N bond lengths [P1—N1 = 1.6584 (14) and P1—N2 = 1.6519 (14) Å] are significantly smaller than the standard single-bond length [P—N = 1.704 (4) Å; Brown & Altermatt, 1985] and are close to the lower limit of the range found for NHPCls. The P—Cl bond is substanti­ally longer than the P—Cl single-bond length in PCl3 (2.034 Å; Galy & Enjalbert, 1982). The closest related five-membered NHPCl, 2-chloro-1,3-di-tert-butyl-2,1,3-phospha­diazo­lidine (CH2NtBu)2>P–Cl shows almost identical bonding at the phospho­rus atom [P—N = 1.652 (2) and P—Cl = 2.3136 (7) Å; Denk et al., 1999]. Unfortunately, a similar close relationship cannot be found among the known crystal structures of four-membered NHPCls and the closest related compound seems to be the P-chloro-substituted di­aza­phosphasiletidine Cl—P<(NtBu)2>SiMe2 [P—N = 1.6815 (14) and P—Cl = 2.2498 (6) Å; Gün et al., 2017].

Figure 1.

Figure 1

Diagram of the mol­ecular structure of compound 1 in the crystal displaying the atom-labelling scheme. Anisotropic displacement ellipsoids are drawn at the 50% probability level, the radii of hydrogen atoms are chosen arbitrarily.

Figure 2.

Figure 2

Chair conformation of the mol­ecule (H atoms are omitted for clarity); note the cyclo­hexane-like conformation at the ‘carbon-atom side’ [folding angle 53.07 (15)° as compared to 54.5 (6)° in the ordered, monoclinic phase of C6H12 (Kahn et al., 1973)] and the ‘semi-flattened’ conformation [folding angle 27.96 (7)°] at the ‘phospho­rus/nitro­gen-atom side’.

A more general comparison with other P-chloro-functionalized six-membered heterocyclic phospho­rus compounds illustrates the P—Cl bond-length variation depending on the bonding situation in the heterocycle. Di-(3-methyl­indol-2-yl)chloro­phosphine-4-bromo­phenyl­methane (Mallov et al., 2012), exhibits a planar coordination at the two carbon atoms next to the nitro­gen atoms due to exo­alkyl­ene group bonding, with a P—Cl bond length of only 2.108 (2) Å. In 2-chloro-1,3,5,7-tetra­methyl-4,6,8-trioxa-2-phosphaadamantane (Downing et al., 2008), which can be considered as a chloro­phospho­rinane [(–CR)2>P—Cl] with an enforced chair conformation, P—Cl = 2.0754 (11) Å and in the 2-chloro-1,3,2-dioxaphophorinane derivative [(–O)2 >P—Cl] described by Pavan Kumar & Kumara Swamy (2007), P—Cl = 2.1227 (9) Å. Some examples of six-membered heterocycles with enforced ring flattening as a result of sterically demanding substituents (Brazeau et al., 2012; Burford et al., 2004; Holthausen et al., 2016; Schranz et al., 2000) and with flattening due to π-system involvement of the carbon atoms, such as 2-chloro-1,2,3,4-tetra­hydro-1,3,2-di­aza­phosphinium salts (Lesikar et al., 2007; Vidovic et al., 2006), 2-chloro-5,6-benzo-1,3,2-di­aza­phospho­rin-4-one (Sonnenburg et al., 1997) and 2-chloro-2,3-di­hydro-1H-naphtho­[1,8-de][1,3,2]di­aza­phosphinines (Kozma et al., 2015; Spinney et al., 2007) all show significantly shorter P—Cl bonds compared to 1, ranging from 2.072 (4) to 2.244 (3) Å. Further geometric details of 1 are given in the supporting information. C—C and C—N bond lengths, as well as endocyclic and exocyclic bond angles, are as expected taking into account the main structural characteristics given above. Finally it should be noted that the crystal structure determin­ation described here confirms the suggestions of Hutchins et al. (1972) concerning the structure of 2-chloro-1,3,2-di­aza­phophorinanes, derived by NMR spectroscopy.

Supra­molecular features  

Inspection of the inter­molecular distances gives no evidence for inter­actions stronger than van der Waals forces in the crystal of 1. The closest contact is given between Cl1 and the methyl­ene group of the neighbouring mol­ecule containing C1 at a Cl⋯C distance of 3.7134 (18) Å, symmetry related by the c glide plane (symmetry code: x, Inline graphic − y, Inline graphic + z). Fig. 3 shows the packing of the mol­ecules in the crystal. Space group-symmetry gives rise to an appealing wave-like pattern.

Figure 3.

Figure 3

Packing diagram of 1 (view direction [00Inline graphic]) showing a wave-like pattern. Inspection of the inter­molecular distances gives no evidence for inter­actions stronger than van der Waals forces and inter­molecular influence on the P—Cl bonding can be excluded.

Database survey  

A search of the Cambridge Structural Database (Version 5.40, November 2018 update; Groom et al., 2016) for the heterocycle substructure of 2-chloro-1,3,2-di­aza­phospho­rinanes (i.e. exclusively single bonds in the six-membered ring) yielded only one structure (DEHZOH; Mallov et al., 2012). However, two of the ring carbon atoms are bonded to exo­alkyl­ene groups and are in planar coordination. A more general search allowing for alternative P III-functionalization gave eight hits including N 1,N 11:N 4,N 8-bis­(μ2-methyl­phosphino)-1,4,8,11-tetra­aza­cyclo­tetra­decane (COLZUY; Hope et al., 1984), 1,3-di-tert-butyl-2-tri­phenyl­silyl-1,3,2-di­aza­phospho­rinane (DOD­DUV; Nifant’ev et al., 1985), the 1,3-di-tert-butyl-1,3,2-di­aza­phospho­rinan­yloxy)calix(4)arenes FEMLOZ and FEMLUF (Maslennikova et al., 2004), (η5-cyclo­penta­dien­yl)di­chloro­(1,3-dimethyl-1,3,2-di­aza­phosphol­yl)titanium (LAR­TED; Nifant’ev et al., 1991), the phosphatris(pyrrol­yl)- and -(indol­yl)methanes NEQBUG (Barnard & Mason, 2001a ) and YETDIK (Barnard & Mason, 2001b ) and finally 3-(tert-but­yl)tri­methyl­silyl­amino-2,4-di-tert-butyl-1-[2-(1,3-di-tert-butyl-1,3,2-di­aza­phospho­ridin­yl)]imino-3-thio-1,2,4,3-thiadi­aza­phos­phetidine (YOVYEN; Wrackmeyer et al., 1994). A search for P-chloro-functionalized six-membered ring compounds with any other three ring atoms joining the Cl—P<(NR)2 fragment and allowing for any kind of bonding in the ring gave 16 hits including eight with three carbon atoms. In addition to DEHZOH mentioned before, these include 2-chloro-1-(2′-chloro­eth­yl)-3-methyl-5,6-benzo-1,3,2-di­aza­phospho­rin-4-one (MAMBUX; Sonnenburg et al., 1997), the 2-chloro-1,3-diorganyl-2,3-di­hydro-1H-naphtho­[1,8-de][1,3,2]di­aza­phos­phinines OGOXAL (Kozma et al., 2015), REQKEE and TIPVIY (Spinney et al., 2007) and the 1,3-bis­(2,6-di-iso­propyl­phen­yl)-2-chloro-1,2,3,4-tetra­hydro-1,3,2-di­aza­phosphinium salts NIJXUA (Lesikar et al., 2007) and PENNUS (Vidovic et al., 2006).

Synthesis and crystallization  

The title compound was prepared under an argon atmosphere in oven-dried glassware using standard Schlenk techniques, modifying a published procedure (Nifant’ev et al., 1977) by including a li­thia­tion step. 3.75 g (20.1 mmol) of N,N′-di-tert-butyl-1,3-propanedi­amine were dissolved in a mixture of diethyl ether and n-hexane (35 ml/55 ml). 16 ml of an n-butyl­lithium solution (c = 2.5 mol l−1 in n-hexane, 40 mmol) were slowly added at 263 K. Half an hour later, the reaction mixture was allowed to reach room temperature and the resulting pale-yellow suspension was stirred for 16 h. 2.92 g of PCl3 (21.3 mmol) were added dropwise over a period of 15 minutes at 195 K. To complete the reaction, the yellow reaction mixture was stirred for another hour with cooling and finally for two h at room temperature. Subsequently, the LiCl precipitate was filtered off and, after removal of the solvent under reduced pressure, the crude product was obtained as a yellow solid. Colourless block-shaped crystals suitable for X-ray structure determination were obtained by sublimation in a vacuum (3·10−2 mbar) at 313 K (30% yield; m.p. 327 K), by NMR analysis proved to be pure substance. 1H-NMR (300 MHz, CDCl3, 298 K) δ 3.16–3.07 (m, 4 H), 1.90–1.80 (m, 2 H), 1.34 [d, 4 J(H,P) = 3.5 Hz, 18H].

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. Positions of all hydrogen atoms were identified via subsequent ΔF syntheses. In the refinement, a riding model was applied using idealized C—H bond lengths (0.98–0.99 Å) as well as H—C—H and C—C—H angles. In addition, the H atoms of the CH3 groups were allowed to rotate around the neighbouring C—C bonds. The U iso values were set to 1.5U eq(Cmeth­yl) and 1.2U eq(Cmethyl­ene).

Table 1. Experimental details.

Crystal data
Chemical formula C11H24ClN2P
M r 250.74
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 12.5954 (5), 9.1549 (3), 12.9614 (6)
β (°) 101.547 (3)
V3) 1464.33 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.48 × 0.28 × 0.25
 
Data collection
Diffractometer Stoe IPDS II
Absorption correction Multi-scan (XPREP; Bruker, 2008)
T min, T max 0.761, 0.929
No. of measured, independent and observed [I > 2σ(I)] reflections 16291, 3943, 3547
R int 0.050
(sin θ/λ)max−1) 0.686
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.109, 1.01
No. of reflections 3943
No. of parameters 142
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.21

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and DIAMOND (Brandenburg, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004195/pk2615sup1.cif

e-75-00552-sup1.cif (522.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004195/pk2615Isup2.hkl

e-75-00552-Isup2.hkl (314.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004195/pk2615Isup3.cml

CCDC reference: 1906304

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank E. Hammes for technical support.

supplementary crystallographic information

Crystal data

C11H24ClN2P F(000) = 544
Mr = 250.74 Dx = 1.137 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.5954 (5) Å Cell parameters from 20870 reflections
b = 9.1549 (3) Å θ = 4.5–59.2°
c = 12.9614 (6) Å µ = 0.35 mm1
β = 101.547 (3)° T = 173 K
V = 1464.33 (10) Å3 Block, colourless
Z = 4 0.48 × 0.28 × 0.25 mm

Data collection

Stoe IPDS II diffractometer 3547 reflections with I > 2σ(I)
ω–scans Rint = 0.050
Absorption correction: multi-scan (XPREP; Bruker, 2008) θmax = 29.2°, θmin = 2.7°
Tmin = 0.761, Tmax = 0.929 h = −17→17
16291 measured reflections k = −12→12
3943 independent reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: difference Fourier map
wR(F2) = 0.109 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.8644P] where P = (Fo2 + 2Fc2)/3
3943 reflections (Δ/σ)max = 0.001
142 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.85529 (4) 0.26976 (5) 0.83702 (4) 0.05736 (15)
P1 0.72874 (3) 0.09412 (5) 0.77742 (3) 0.03774 (11)
N1 0.67636 (11) 0.15879 (16) 0.65862 (11) 0.0411 (3)
N2 0.80820 (11) −0.03915 (15) 0.75215 (11) 0.0390 (3)
C1 0.73831 (16) 0.1599 (2) 0.57350 (14) 0.0511 (4)
H11 0.7950 0.2362 0.5881 0.061*
H12 0.6892 0.1842 0.5060 0.061*
C2 0.79040 (18) 0.0142 (3) 0.56389 (15) 0.0579 (5)
H21 0.7332 −0.0608 0.5451 0.070*
H22 0.8314 0.0187 0.5063 0.070*
C3 0.86546 (15) −0.0296 (2) 0.66384 (14) 0.0485 (4)
H31 0.8981 −0.1256 0.6538 0.058*
H32 0.9248 0.0428 0.6809 0.058*
C4 0.58516 (16) 0.2663 (2) 0.64533 (15) 0.0507 (4)
C5 0.6238 (2) 0.4171 (3) 0.6188 (2) 0.0810 (7)
H51 0.6437 0.4141 0.5495 0.122*
H52 0.6870 0.4457 0.6722 0.122*
H53 0.5654 0.4883 0.6176 0.122*
C6 0.49516 (19) 0.2120 (3) 0.5566 (2) 0.0804 (8)
H61 0.5245 0.1962 0.4930 0.121*
H62 0.4372 0.2850 0.5423 0.121*
H63 0.4660 0.1199 0.5777 0.121*
C7 0.5396 (2) 0.2788 (3) 0.7459 (2) 0.0756 (7)
H71 0.5958 0.3169 0.8030 0.113*
H72 0.5165 0.1822 0.7653 0.113*
H73 0.4774 0.3454 0.7337 0.113*
C8 0.85809 (15) −0.1413 (2) 0.83911 (15) 0.0489 (4)
C9 0.97954 (16) −0.1119 (3) 0.87176 (17) 0.0655 (6)
H91 1.0154 −0.1390 0.8141 0.098*
H92 1.0096 −0.1700 0.9343 0.098*
H93 0.9915 −0.0079 0.8879 0.098*
C10 0.8368 (3) −0.2973 (2) 0.7984 (2) 0.0860 (8)
H101 0.7585 −0.3146 0.7800 0.129*
H102 0.8699 −0.3664 0.8533 0.129*
H103 0.8684 −0.3110 0.7359 0.129*
C11 0.80696 (18) −0.1203 (3) 0.93605 (17) 0.0631 (6)
H111 0.7286 −0.1367 0.9164 0.095*
H112 0.8208 −0.0205 0.9629 0.095*
H113 0.8388 −0.1902 0.9908 0.095*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0692 (3) 0.0498 (3) 0.0529 (3) −0.0125 (2) 0.0117 (2) −0.0122 (2)
P1 0.0374 (2) 0.0386 (2) 0.0394 (2) 0.00313 (16) 0.01304 (15) 0.00418 (16)
N1 0.0410 (7) 0.0420 (7) 0.0407 (7) 0.0073 (6) 0.0093 (5) 0.0033 (6)
N2 0.0388 (7) 0.0362 (6) 0.0423 (7) 0.0030 (5) 0.0093 (5) 0.0012 (5)
C1 0.0553 (10) 0.0609 (11) 0.0386 (8) 0.0111 (9) 0.0133 (7) 0.0070 (8)
C2 0.0666 (12) 0.0672 (13) 0.0426 (9) 0.0142 (10) 0.0169 (9) −0.0053 (9)
C3 0.0493 (9) 0.0537 (10) 0.0451 (9) 0.0109 (8) 0.0158 (7) −0.0028 (8)
C4 0.0511 (10) 0.0481 (10) 0.0529 (10) 0.0149 (8) 0.0106 (8) 0.0062 (8)
C5 0.101 (2) 0.0493 (12) 0.0943 (18) 0.0181 (13) 0.0239 (15) 0.0167 (12)
C6 0.0526 (12) 0.098 (2) 0.0830 (16) 0.0202 (13) −0.0058 (11) −0.0045 (15)
C7 0.0733 (15) 0.0876 (17) 0.0719 (14) 0.0409 (14) 0.0291 (12) 0.0144 (13)
C8 0.0512 (10) 0.0434 (9) 0.0522 (10) 0.0103 (8) 0.0110 (8) 0.0108 (8)
C9 0.0477 (10) 0.0957 (17) 0.0521 (11) 0.0230 (11) 0.0076 (8) 0.0079 (11)
C10 0.115 (2) 0.0402 (11) 0.102 (2) 0.0101 (13) 0.0214 (17) 0.0085 (12)
C11 0.0636 (12) 0.0692 (13) 0.0612 (12) 0.0141 (10) 0.0234 (10) 0.0278 (10)

Geometric parameters (Å, º)

Cl1—P1 2.2869 (6) C5—H53 0.9800
P1—N2 1.6519 (14) C6—H61 0.9800
P1—N1 1.6584 (14) C6—H62 0.9800
N1—C1 1.473 (2) C6—H63 0.9800
N1—C4 1.496 (2) C7—H71 0.9800
N2—C3 1.472 (2) C7—H72 0.9800
N2—C8 1.502 (2) C7—H73 0.9800
C1—C2 1.502 (3) C8—C10 1.527 (3)
C1—H11 0.9900 C8—C9 1.527 (3)
C1—H12 0.9900 C8—C11 1.534 (3)
C2—C3 1.498 (3) C9—H91 0.9800
C2—H21 0.9900 C9—H92 0.9800
C2—H22 0.9900 C9—H93 0.9800
C3—H31 0.9900 C10—H101 0.9800
C3—H32 0.9900 C10—H102 0.9800
C4—C5 1.526 (3) C10—H103 0.9800
C4—C6 1.527 (3) C11—H111 0.9800
C4—C7 1.529 (3) C11—H112 0.9800
C5—H51 0.9800 C11—H113 0.9800
C5—H52 0.9800
N2—P1—N1 102.93 (7) H52—C5—H53 109.5
N2—P1—Cl1 100.22 (5) C4—C6—H61 109.5
N1—P1—Cl1 100.57 (6) C4—C6—H62 109.5
C1—N1—C4 114.76 (14) H61—C6—H62 109.5
C1—N1—P1 121.73 (11) C4—C6—H63 109.5
C4—N1—P1 119.69 (12) H61—C6—H63 109.5
C3—N2—C8 115.07 (13) H62—C6—H63 109.5
C3—N2—P1 121.39 (12) C4—C7—H71 109.5
C8—N2—P1 119.34 (11) C4—C7—H72 109.5
N1—C1—C2 111.20 (16) H71—C7—H72 109.5
N1—C1—H11 109.4 C4—C7—H73 109.5
C2—C1—H11 109.4 H71—C7—H73 109.5
N1—C1—H12 109.4 H72—C7—H73 109.5
C2—C1—H12 109.4 N2—C8—C10 107.76 (17)
H11—C1—H12 108.0 N2—C8—C9 110.10 (16)
C3—C2—C1 112.13 (16) C10—C8—C9 110.9 (2)
C3—C2—H21 109.2 N2—C8—C11 110.81 (15)
C1—C2—H21 109.2 C10—C8—C11 109.06 (19)
C3—C2—H22 109.2 C9—C8—C11 108.19 (17)
C1—C2—H22 109.2 C8—C9—H91 109.5
H21—C2—H22 107.9 C8—C9—H92 109.5
N2—C3—C2 111.45 (15) H91—C9—H92 109.5
N2—C3—H31 109.3 C8—C9—H93 109.5
C2—C3—H31 109.3 H91—C9—H93 109.5
N2—C3—H32 109.3 H92—C9—H93 109.5
C2—C3—H32 109.3 C8—C10—H101 109.5
H31—C3—H32 108.0 C8—C10—H102 109.5
N1—C4—C5 110.44 (17) H101—C10—H102 109.5
N1—C4—C6 108.04 (17) C8—C10—H103 109.5
C5—C4—C6 110.3 (2) H101—C10—H103 109.5
N1—C4—C7 111.19 (15) H102—C10—H103 109.5
C5—C4—C7 108.4 (2) C8—C11—H111 109.5
C6—C4—C7 108.5 (2) C8—C11—H112 109.5
C4—C5—H51 109.5 H111—C11—H112 109.5
C4—C5—H52 109.5 C8—C11—H113 109.5
H51—C5—H52 109.5 H111—C11—H113 109.5
C4—C5—H53 109.5 H112—C11—H113 109.5
H51—C5—H53 109.5
N2—P1—N1—C1 −33.19 (16) C1—C2—C3—N2 59.3 (2)
Cl1—P1—N1—C1 69.98 (15) C1—N1—C4—C5 −48.7 (2)
N2—P1—N1—C4 170.01 (13) P1—N1—C4—C5 109.66 (18)
Cl1—P1—N1—C4 −86.82 (14) C1—N1—C4—C6 72.0 (2)
N1—P1—N2—C3 33.52 (15) P1—N1—C4—C6 −129.63 (17)
Cl1—P1—N2—C3 −69.94 (13) C1—N1—C4—C7 −169.02 (19)
N1—P1—N2—C8 −170.64 (13) P1—N1—C4—C7 −10.7 (2)
Cl1—P1—N2—C8 85.90 (13) C3—N2—C8—C10 −72.3 (2)
C4—N1—C1—C2 −153.99 (17) P1—N2—C8—C10 130.43 (17)
P1—N1—C1—C2 48.1 (2) C3—N2—C8—C9 48.8 (2)
N1—C1—C2—C3 −58.7 (2) P1—N2—C8—C9 −108.48 (16)
C8—N2—C3—C2 154.03 (17) C3—N2—C8—C11 168.49 (17)
P1—N2—C3—C2 −49.2 (2) P1—N2—C8—C11 11.2 (2)

References

  1. Barnard, T. S. & Mason, M. R. (2001a). Inorg. Chem. 40, 5001–5009. [DOI] [PubMed]
  2. Barnard, T. S. & Mason, M. R. (2001b). Organometallics, 20, 206–214.
  3. Bezombes, J. P., Borisenko, K. B., Hitchcock, P. B., Lappert, M. F., Nycz, J. E., Rankin, D. W. H. & Robertson, H. E. (2004). Dalton Trans. pp. 1980–1988. [DOI] [PubMed]
  4. Blum, M., Puntigam, O., Plebst, S., Ehret, F., Bender, J., Nieger, M. & Gudat, D. (2016). Dalton Trans. 45, 1987–1997. [DOI] [PubMed]
  5. Brandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Brazeau, A. L., Hänninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398–5414. [DOI] [PubMed]
  7. Breuers, V. & Frank, W. (2016). Z. Kristallogr. New Cryst. Struct. 231, 529–532.
  8. Breuers, V., Lehmann, C. W. & Frank, W. (2015). Chem. Eur. J. 21, 4596–4606. [DOI] [PubMed]
  9. Brown, I. D. (2016). Accumulated Table Of Bond Valence Parameters. Private communication.
  10. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  11. Bruker (2008). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  12. Burford, N., Conroy, K. D., Landry, J. C., Ragogna, P. J., Ferguson, M. J. & McDonald, R. (2004). Inorg. Chem. 43, 8245–8251. [DOI] [PubMed]
  13. Caputo, C. A., Price, J. T., Jennings, M. C., McDonald, R. & Jones, N. D. (2008). Dalton Trans. pp. 3461–3469. [DOI] [PubMed]
  14. Carmalt, C. J. & Lomeli, V. (1997). Chem. Commun. pp. 2095–2096.
  15. Denk, M. K., Gupta, S. & Lough, A. J. (1999). Eur. J. Inorg. Chem. 1999, 41–49.
  16. Denk, M. K., Gupta, S. & Ramachandran, R. (1996). Tetrahedron Lett. 37, 9025–9028.
  17. Downing, J. H., Floure, J., Heslop, K., Haddow, M. F., Hopewell, J., Lusi, M., Phetmung, H., Orpen, A. G., Pringle, P. G., Pugh, R. I. & Zambrano-Williams, D. (2008). Organometallics, 27, 3216–3224.
  18. Edge, R., Less, R. J., McInnes, E. J. L., Müther, K., Naseri, V., Rawson, J. M. & Wright, D. S. (2009). Chem. Commun. pp. 1691–1693. [DOI] [PubMed]
  19. Frank, W., Petry, V., Gerwalin, E. & Reiss, G. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1512–1514.
  20. Galy, J. & Enjalbert, R. (1982). J. Solid State Chem. 44, 1–23.
  21. Gatien, A. V., Lavoie, C. M., Bennett, R. N., Ferguson, M. J., McDonald, R., Johnson, E. R., Speed, A. W. H. & Stradiotto, M. (2018). ACS Catal. 8, 5328–5339.
  22. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  23. Gün, H., Mettlach née Casel, C. & Frank, W. (2017). Z. Naturforsch. Teil B, 72, 873–882.
  24. Hinchley, S. L., Morrison, C. A., Rankin, D. W. H., Macdonald, C. L. B., Wiacek, R. J., Voigt, A., Cowley, A. H., Lappert, M. F., Gundersen, G., Clyburne, J. A. C. & Power, P. P. (2001). J. Am. Chem. Soc. 123, 9045–9053. [DOI] [PubMed]
  25. Hinz, A., Schulz, A. & Villinger, A. (2015). Angew. Chem. Int. Ed. 54, 668–672. [DOI] [PubMed]
  26. Holthausen, M. H., Sala, C. & Weigand, J. J. (2016). Eur. J. Inorg. Chem. 2016, 667–677.
  27. Hope, H., Viggiano, M., Moezzi, B. & Power, P. P. (1984). Inorg. Chem. 23, 2550–2552.
  28. Hutchins, R. O., Maryanoff, B. E., Albrand, J. P., Cogne, A., Gagnaire, D. & Robert, J. B. (1972). J. Am. Chem. Soc. 94, 9151–9158.
  29. Kahn, R., Fourme, R., André, D. & Renaud, M. (1973). Acta Cryst. B29, 131–138.
  30. Konu, J., Tuononen, H. M., Chivers, T., Corrente, A. M., Boeré, R. T. & Roemmele, T. L. (2008). Inorg. Chem. 47, 3823–3831. [DOI] [PubMed]
  31. Kozma, A., Rust, J. & Alcarazo, M. (2015). Chem. Eur. J. 21, 10829–10834. [DOI] [PubMed]
  32. Lesikar, L. A., Woodul, W. D. & Richards, A. F. (2007). Polyhedron, 26, 3242–3246.
  33. Mallov, I., Spinney, H., Jurca, T., Gorelsky, S., Burchell, T. & Richeson, D. (2012). Inorg. Chim. Acta, 392, 5–9.
  34. Maryanoff, B. E. & Hutchins, R. O. (1972). J. Org. Chem. 37, 3475–3480.
  35. Maslennikova, V., Serkova, O., Gruner, M., Goutal, S., Bauer, I., Habicher, W., Lyssenko, K., Antipin, M. & Nifantyev, E. E. (2004). Eur. J. Org. Chem. pp. 4884–4893.
  36. Mo, D. & Frank, W. (2019). Acta Cryst. E75, 405–409. [DOI] [PMC free article] [PubMed]
  37. Mo, D., Serio, M. & Frank, W. (2018). Z. Kristallogr. New Cryst. Struct. 233, 139–142.
  38. Nifant’ev, E. E., Sorokina, S. F., Vorob’eva, L. A., Borisenko, A. A. & Nevskii, N. N. (1985). Zh. Obshch. Khim. 55, 738–748.
  39. Nifant’ev, E. E., Zavalishina, A. I., Sorokina, S. F., Borisenko, A. A., Smirnova, E. I. & Gustova, I. V. (1977). Russ. J. Gen. Chem. 47, 1793–1802.
  40. Nifant’ev, I. E., Manzhukova, L. F., Antipin, M. Y., Struchkov, Y. T. & Nifant’ev, E. E. (1991). Metalloorg. Khim. 4, 475–478.
  41. Papke, M., Dettling, L., Sklorz, J. A. W., Szieberth, D., Nyulászi, L. & Müller, C. (2017). Angew. Chem. Int. Ed. 56, 16484–16489. [DOI] [PubMed]
  42. Pavan Kumar, K. V. P. & Kumara Swamy, K. C. (2007). Carbohydr. Res. 342, 1182–1188. [DOI] [PubMed]
  43. Schranz, I., Grocholl, L. P., Stahl, L., Staples, R. J. & Johnson, A. (2000). Inorg. Chem. 39, 3037–3041. [DOI] [PubMed]
  44. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  45. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  46. Sonnenburg, R., Borkenhagen, F., Neda, I., Thönnessen, H., Jones, P. G. & Schmutzler, R. (1997). Phosphorus Sulfur Silicon Relat. Elem. 126, 11–26.
  47. Spinney, H. A., Korobkov, I., DiLabio, G. A., Yap, G. P. A. & Richeson, D. S. (2007). Organometallics, 26, 4972–4982.
  48. Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.
  49. Thomas, C. M., Hatzis, G. P. & Pepi, M. J. (2018). Polyhedron, 143, 215–222.
  50. Tuononen, H. M., Roesler, R., Dutton, J. L. & Ragogna, P. J. (2007). Inorg. Chem. 46, 10693–10706. [DOI] [PubMed]
  51. Veith, M. & Bertsch, B. (1988). Z. Anorg. Allg. Chem. 557, 7–22.
  52. Vidovic, D., Lu, Z., Reeske, G., Moore, J. A. & Cowley, A. H. (2006). Chem. Commun. pp. 3501–3503. [DOI] [PubMed]
  53. Wrackmeyer, B., Köhler, C., Milius, W. & Herberhold, M. (1994). Phosphorus Sulfur Silicon, 89, 151–162.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004195/pk2615sup1.cif

e-75-00552-sup1.cif (522.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004195/pk2615Isup2.hkl

e-75-00552-Isup2.hkl (314.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004195/pk2615Isup3.cml

CCDC reference: 1906304

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES