Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 9;75(Pt 5):607–610. doi: 10.1107/S2056989019004663

Na+[Me3NB12Cl11]·SO2: a rare example of a sodium–SO2 complex

Carsten Jenne a,*, Valentin van Lessen a
PMCID: PMC6505586  PMID: 31110796

In the title compound, the SO2 mol­ecule is η 1-O-coordinated to the Na+ cation. The Na+ cation has a coordination number of eight in a distorted twofold capped trigonal prism and makes contacts to three individual boron cluster anions resulting in an overall three-dimensional network.

Keywords: boron cluster, crystal structure, sodium, sulfur dioxide, weakly coordinating anion

Abstract

In the title compound, Na+[Me3NB12Cl11]·SO2 [systematic name: sodium 1-(trimethylammonio)­undeca­chloro-closo-dodeca­borate sulfur dioxide], the SO2 mol­ecule is η 1-O-coordinated to the Na+ cation. Surprisingly, the SO2 mol­ecule is more weakly bound to sodium than is found in other sodium–SO2 complexes and the SO2 mol­ecule is essentially undistorted compared to the structure of free SO2. The Na+ cation has a coordination number of eight in a distorted twofold-capped trigonal prism and makes contacts to three individual boron cluster anions, resulting in an overall three-dimensional network. Although the number of known η 1-O-coordinated SO2 complexes is growing, sodium-SO2 complexes are still rare.

Chemical context  

Liquid sulfur dioxide is a polar but only very weakly coordinating solvent (Waddington, 1965), which is frequently used in organic and inorganic synthesis. The coordination chemistry in and of sulfur dioxide has been the topic of various reviews (Mingos, 1978; Ryan et al., 1981; Mews et al., 2000). Initially, only S- and η 2-S,O-coordination of SO2 with soft transition-metal centers were investigated, but it was subsequently shown that η 1-O-coordination of SO2 is preferred with hard main-group and transition-metal cations. Theoretical studies established that the oxygen–metal cation bonds are purely ionic (Decken et al., 2009; Derendorf et al., 2010). Mews and co-workers crystallized metal hexa­fluoro arsenates M[AsF6] (M = alkaline-earth and transition-metal cations) from liquid sulfur dioxide to obtain their SO2 complexes (Mews et al., 2000). Unfortunately, the alkali-metal hexa­fluoro arsenates, M[AsF6] (M = Li, Na, K), are almost insoluble in liquid sulfur dioxide and the corresponding SO2 complexes remained elusive. Until recently, only two examples of alkali-metal–SO2 complexes were known; namely, the η 2-O,O bridged coordination complexes, [Li(OSO)6/2][AlCl4] (Simon et al., 1980) and [Na(OSO)1.5][AlCl4] (Peters et al., 1982), crystallized in the presence of the [AlCl4] anion. Only after the introduction of modern weakly coordinating anions into sulfur dioxide coordination chemistry could alkali-metal sulfur dioxide complexes be studied intentionally. By using a large fluorinated aluminate anion, the crystal structure of [(OSO)2Li{AlF(Al(OR)3}Li{Al(OR)4}] [R = C(CF3)3] (Cameron et al., 2010) was determined. In addition, use of halogenated closo-dodeca­borates [B12 X 12]2− (X = F–I) led to a systematic study of alkali-metal sulfur dioxide complexes (Derendorf et al., 2010). Halogenated closo-dodeca­borates belong to the growing class of modern weakly coordinating anions (Knapp, 2013). The [Me3NB12Cl11] anion represents a recent modification of the halogenated closo-dodeca­borates and possesses a reduced charge of −1 (Bolli et al., 2014). This anion has been utilized very recently to stabilize a variety of reactive cations in the solid state (e.g. Bertocco et al., 2016) and has been applied in silver-free gold catalysis (Wegener et al., 2015). From a failed attempt to prepare [Et3SiOS(H)OSiEt3][Me3NB12Cl11], we obtained single crystals of the title compound as a by-product. Na+[Me3NB12Cl11]·SO2 is a rare example of a sodium–SO2 complex, and its crystal structure is discussed herein.graphic file with name e-75-00607-scheme1.jpg

Structural commentary  

The title salt crystallizes with one SO2 mol­ecule per formula unit (Fig. 1). The SO2 mol­ecule is η 1-O-bonded to the Na+ cation, as is expected for SO2 coordination to hard-metal centers. The Na+—O distance of 2.428 (4) Å is about 0.1 Å longer than the average Na+⋯O distance (of 2.34 Å) found in the Na2[B12 X 12nSO2 (X = H, Cl–I) complexes, which indicates weaker coordination. The S—O bonds are essentially of equal length [1.428 (3) and 1.412 (4) Å; Table 1] and very close to the values found in a free SO2 mol­ecule in either the solid state [1.4299 (3) Å; Grabowsky et al., 2012] or in the gas phase [1.4343 (3) Å; Holder & Fink, 1981]. This behaviour is in contrast to that observed in other coordination compounds with η 1-O-coordinated terminal SO2 ligands (e.g. Mews et al., 2000) where lengthening of the S—Oc bond and shortening of the S—Ot bond occurs, as predicted by theoretical concepts (Decken et al., 2009; Derendorf et al., 2010). Thus, the current finding is in accord with weaker coordination of the SO2 mol­ecule to Na+ than is found in other SO2 complexes of hard metal cations. In addition to coordinating to the SO2 mol­ecule, each sodium cation coordinates to seven of the eleven chlorine atoms of the boron cluster (Fig. 1).

Figure 1.

Figure 1

Coordination sphere around the Na+ cation. The Na+ cation makes a total of eight contacts (dashed lines) to three individual boron cluster anions and to one sulfur dioxide mol­ecule. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are shown with arbitrary radii. Symmetry codes: (a) 1 + x, y, z; (b) −1 + x, −Inline graphic + y, Inline graphic − z.

Table 1. Selected geometric parameters (Å, °).

Cl4—Na1i 3.209 (2) Cl5—B5 1.800 (5)
Cl5—Na1ii 3.050 (2) Cl6—B6 1.801 (4)
Cl6—Na1ii 3.031 (2) Cl7—B7 1.792 (5)
Cl7—Na1 3.179 (2) Cl8—B8 1.783 (4)
Cl9—Na1i 2.975 (2) Cl9—B9 1.803 (4)
Cl10—Na1ii 3.051 (2) Cl10—B10 1.800 (5)
Cl12—Na1 2.870 (2) Cl11—B11 1.779 (5)
S1—O1 1.428 (3) Cl12—B12 1.796 (5)
S1—O2 1.412 (4) N1—B1 1.600 (5)
Na1—O1 2.428 (4) N1—C1 1.510 (5)
Cl2—B2 1.785 (5) N1—C2 1.503 (5)
Cl3—B3 1.797 (4) N1—C3 1.503 (6)
Cl4—B4 1.800 (5)    
       
O1—S1—O2 116.8 (2) S1—O1—Na1 147.0 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

In the packed structure, two sodium cations are coordinated in an η 2-fashion to two chlorine atoms, while a third sodium cation is coordinated in an η 3-manner to three chlorine atoms (Fig. 2). The Cl⋯Na+ distances range from 2.870 (2) to 3.209 (2) Å, and are, on average, longer than those in Na2[B12Cl12]·4SO2 (i.e. 3.052 vs 2.929 Å) (Derendorf et al., 2010), and are in accord with the sum of the van der Waals radius of chlorine (1.75 Å; Mantina et al., 2009) and the ionic radius of sodium (1.18 Å; Shannon, 1976) of 2.93 Å. However, when anisotropy of the van der Waals radius (Batsanov, 2001) is taken into account, the inter­molecular distances are still in the expected range. The B—Cl bond lengths of the chlorine atoms coordinating to Na+ lie in the range 1.796 (5) to 1.803 (4) Å (av. 1.799 Å) and are only slightly longer than those of the non-coordinating chlorine atoms [1.779 (5) to 1.797 (4) Å, av. 1.786 Å]. It has previously been noted that the presence of strong Lewis acids, such as Me+ or R 3Si+, leads to a significant elongation of the B—Cl bonds by up to 0.1 Å (Bolli et al., 2010, 2014; Kessler et al., 2010). Therefore, in the title compound, the Cl⋯Na+ inter­action can be classified as weak and the singly charged [Me3NB12Cl11] anion is more weakly coordinating towards Na+ than the doubly charged [B12Cl12]2− anion.

Figure 2.

Figure 2

Coordination sphere around one [Me3NB12Cl11] anion. The boron cluster anions form a total of seven contacts (dashed lines) to three individual Na+ cations. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are shown with arbitrary radii. Symmetry codes: (a) 1 + x, y, z; (b) 1 − x, Inline graphic + y, Inline graphic − z.

Supra­molecular features  

The Na+ cation is surrounded by seven chlorine atoms from three different boron clusters and one oxygen atom from a SO2 mol­ecule, resulting in a total coordination number of 8 (Fig. 1) and giving rise to a three-dimensional network. The polyhedron around Na+ may be best described as a distorted twofold-capped trigonal prism (Fig. 3). The structure of the title compound is reminiscent of that of Ag[Me3NB12Cl11]·SO2 (Jenne & Wegener, 2018), although the coordination sphere around the metal cations is different in the two structures. The Na+⋯Cl contacts are weaker than the Ag+⋯Cl contacts and there is also only one SO2 mol­ecule per cation present in the title compound. The [Me3NB12Cl11] anions are placed in a body-centered cubic arrangement (Fig. 4) with some of the inter­molecular Cl⋯Cl distances being shorter than the sum of the van Waals radii (3.50 Å; Mantina et al., 2009). The [Me3NB12Cl11] anions pack quite efficiently in the solid state and unlike in Na2[B12Cl12]·4SO2, where the structure contains two mol­ecules of SO2 per sodium cation to separate the doubly charged anions, only one SO2 mol­ecule is required in this case.

Figure 3.

Figure 3

Distorted twofold-capped trigonal prism around the Na+ cation. Displacement ellipsoids are drawn at the 50% probability level.

Figure 4.

Figure 4

Part of the crystal structure illustrating the distorted body-centered cubic arrangement of the [Me3NB12Cl11] anions. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms were omitted for clarity. Selected inter­molecular contacts below 3.5 Å are shown [dashed lines; Cl2⋯Cl6 = 3.492 (14) Å and Cl8⋯Cl11 = 3.3760 (14) Å].

Database survey  

The [Me3NB12Cl11] anion was first reported in 2014 (Bolli et al., 2014) and a variety of crystal structures containing this anion have been published (e.g. Saleh et al., 2016; Bertocco et al., 2016; Bolli et al., 2017; Jenne & Wegener, 2018), in which the [Me3NB12Cl11] anion is essentially identical to that reported in this study. Sodium complexes of fluorinated closo-dodeca­borates were studied recently by Strauss and co-workers (Bukovsky et al., 2017a,b ). Sodium–SO2 complexes are still rare. Only the complex [Na(OSO)1.5][AlCl4] (Peters et al., 1982) and four complexes of the type Na2[B12 X 12nSO2 (X = H, Cl–I) (Derendorf et al., 2010) are known. The number of η 1-O-bonded SO2 complexes is growing, although there is still some terra incognita in the Periodic Table. Structures published before the year 2000 are compiled in a review (Mews et al., 2000). Recent examples include alkali-metal (Cameron et al., 2010; Derendorf et al., 2010; Malischewski et al., 2016) and transition-metal complexes (Knapp & Mews, 2005; Akkuş et al., 2006; Decken et al., 2009; Aris et al., 2011; Malischewski et al., 2016, Jenne & Wegener, 2018).

Synthesis and crystallization  

The crystals were obtained as a by-product from a reaction of [CPh3][Me3NB12Cl11] with Et3SiH and SO2 in 1,2-di­fluoro­benzene designed to give [Et3SiOS(H)OSiEt3][Me3NB12Cl11] in analogy to a published procedure (Kessler et al., 2010). Crystallization of the red–brown product from 1,2-di­fluoro­benzene/n-pentane yielded the title compound as colorless crystals. The source of the sodium cation remains uncertain, but it may arise from an incomplete conversion of Na[Me3NB12Cl11] to [CPh3][Me3NB12Cl11] (Bolli et al., 2014).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions and refined as riding with C—H = 0.96 Å and U iso(H) = 1.5U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula Na+C3H9B12Cl11N·SO2
M r 665.83
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 9.1943 (3), 12.9081 (4), 19.4486 (5)
V3) 2308.19 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.44
Crystal size (mm) 0.06 × 0.05 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos, Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.984, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10389, 4967, 4560
R int 0.032
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.031, 0.064, 1.04
No. of reflections 4967
No. of parameters 283
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.44
Absolute structure Flack x determined using 1789 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter −0.09 (5)

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 1999) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004663/cq2030sup1.cif

e-75-00607-sup1.cif (408.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004663/cq2030Isup2.hkl

e-75-00607-Isup2.hkl (395.4KB, hkl)

CCDC reference: 1908217

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

Na+·C3H9B12Cl11N·SO2 Dx = 1.916 Mg m3
Mr = 665.83 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 4780 reflections
a = 9.1943 (3) Å θ = 2.6–28.9°
b = 12.9081 (4) Å µ = 1.44 mm1
c = 19.4486 (5) Å T = 150 K
V = 2308.19 (11) Å3 Block, colourless
Z = 4 0.06 × 0.05 × 0.05 mm
F(000) = 1296

Data collection

Rigaku Oxford Diffraction Xcalibur, Eos, Gemini ultra diffractometer 4967 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 4560 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
Detector resolution: 16.2705 pixels mm-1 θmax = 27.0°, θmin = 1.9°
ω scans h = −11→8
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) k = −16→12
Tmin = 0.984, Tmax = 1.000 l = −24→24
10389 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.026P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.32 e Å3
4967 reflections Δρmin = −0.44 e Å3
283 parameters Absolute structure: Flack x determined using 1789 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 restraints Absolute structure parameter: −0.09 (5)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl3 0.54490 (10) 0.60120 (8) 0.50279 (5) 0.0174 (2)
Cl6 1.01248 (10) 0.32550 (8) 0.37747 (5) 0.0167 (2)
Cl5 1.06356 (11) 0.58650 (8) 0.30581 (5) 0.0194 (2)
Cl8 0.43371 (11) 0.66888 (8) 0.33691 (5) 0.0183 (2)
Cl2 0.68060 (11) 0.32798 (8) 0.49788 (5) 0.0183 (2)
Cl4 0.79016 (11) 0.76099 (7) 0.38771 (5) 0.0181 (2)
Cl10 0.88045 (11) 0.39211 (9) 0.21212 (5) 0.0189 (2)
Cl11 0.65146 (11) 0.23842 (8) 0.32551 (5) 0.0171 (2)
Cl12 0.49042 (11) 0.44663 (8) 0.22120 (5) 0.0186 (2)
Cl9 0.74597 (11) 0.66169 (8) 0.21672 (5) 0.0197 (2)
Cl7 0.37526 (11) 0.40537 (8) 0.39531 (5) 0.0172 (2)
S1 0.11196 (13) 0.57107 (9) 0.11604 (6) 0.0263 (3)
Na1 0.19934 (19) 0.38485 (15) 0.25524 (9) 0.0273 (4)
O1 0.1870 (3) 0.4912 (2) 0.15243 (16) 0.0274 (8)
N1 0.9459 (4) 0.5473 (3) 0.49125 (17) 0.0160 (7)
B1 0.8383 (5) 0.5239 (4) 0.4285 (2) 0.0108 (9)
B6 0.8625 (5) 0.4148 (4) 0.3718 (2) 0.0112 (9)
B10 0.7980 (5) 0.4478 (4) 0.2875 (2) 0.0127 (9)
B7 0.5540 (5) 0.4545 (3) 0.3782 (2) 0.0122 (9)
B2 0.7093 (5) 0.4170 (4) 0.4290 (2) 0.0118 (9)
C1 0.8866 (5) 0.6276 (4) 0.5402 (2) 0.0263 (11)
H1A 0.860583 0.688810 0.515050 0.039*
H1B 0.959336 0.644482 0.573805 0.039*
H1C 0.802058 0.600510 0.562979 0.039*
B5 0.8909 (5) 0.5418 (4) 0.3378 (2) 0.0123 (9)
B4 0.7569 (5) 0.6247 (3) 0.3761 (2) 0.0128 (9)
B9 0.7332 (5) 0.5772 (3) 0.2902 (2) 0.0122 (9)
B11 0.6889 (5) 0.3712 (4) 0.3426 (2) 0.0130 (10)
B3 0.6441 (4) 0.5479 (4) 0.4315 (2) 0.0106 (9)
C2 1.0899 (5) 0.5885 (4) 0.4670 (2) 0.0314 (12)
H2A 1.134523 0.539081 0.436710 0.047*
H2B 1.152153 0.600198 0.505865 0.047*
H2C 1.075159 0.652549 0.442895 0.047*
B8 0.5822 (5) 0.5814 (4) 0.3473 (2) 0.0117 (9)
C3 0.9774 (6) 0.4535 (4) 0.5346 (3) 0.0359 (13)
H3A 0.889899 0.431478 0.557199 0.054*
H3B 1.049605 0.470500 0.568433 0.054*
H3C 1.012930 0.398568 0.505844 0.054*
B12 0.6101 (5) 0.4728 (3) 0.2921 (2) 0.0120 (9)
O2 0.1730 (4) 0.6032 (3) 0.05292 (16) 0.0382 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl3 0.0191 (5) 0.0190 (5) 0.0140 (5) 0.0024 (4) 0.0047 (4) −0.0039 (4)
Cl6 0.0121 (5) 0.0151 (5) 0.0231 (5) 0.0039 (4) −0.0010 (4) −0.0001 (4)
Cl5 0.0131 (5) 0.0220 (6) 0.0231 (5) −0.0063 (4) 0.0040 (4) −0.0007 (4)
Cl8 0.0164 (5) 0.0185 (5) 0.0200 (5) 0.0073 (4) −0.0030 (4) 0.0016 (4)
Cl2 0.0239 (5) 0.0172 (5) 0.0138 (5) −0.0002 (4) 0.0010 (4) 0.0054 (4)
Cl4 0.0229 (6) 0.0098 (5) 0.0217 (5) −0.0018 (4) 0.0002 (4) −0.0018 (4)
Cl10 0.0191 (5) 0.0234 (6) 0.0141 (5) −0.0009 (4) 0.0052 (4) −0.0054 (4)
Cl11 0.0212 (5) 0.0117 (5) 0.0183 (5) −0.0027 (4) −0.0042 (4) −0.0031 (4)
Cl12 0.0170 (5) 0.0256 (6) 0.0131 (5) −0.0022 (4) −0.0049 (4) −0.0010 (4)
Cl9 0.0252 (5) 0.0191 (6) 0.0149 (5) −0.0024 (4) 0.0008 (4) 0.0070 (4)
Cl7 0.0099 (5) 0.0225 (5) 0.0193 (5) −0.0037 (4) 0.0022 (4) 0.0002 (5)
S1 0.0254 (6) 0.0214 (6) 0.0322 (7) 0.0024 (5) −0.0012 (5) 0.0017 (5)
Na1 0.0230 (9) 0.0285 (11) 0.0303 (10) 0.0011 (8) 0.0057 (8) 0.0049 (8)
O1 0.0253 (17) 0.0265 (19) 0.0303 (19) −0.0009 (15) −0.0034 (15) 0.0026 (15)
N1 0.0158 (17) 0.0180 (19) 0.0140 (18) 0.0008 (15) −0.0060 (15) −0.0035 (15)
B1 0.011 (2) 0.009 (2) 0.012 (2) 0.0009 (17) −0.0018 (19) −0.0025 (18)
B6 0.010 (2) 0.013 (2) 0.010 (2) 0.0026 (18) 0.0006 (18) −0.0012 (18)
B10 0.009 (2) 0.016 (2) 0.013 (2) −0.0010 (18) −0.0003 (18) −0.0010 (19)
B7 0.008 (2) 0.015 (2) 0.014 (2) −0.0011 (18) −0.0003 (19) 0.0004 (18)
B2 0.013 (2) 0.013 (2) 0.009 (2) −0.0019 (18) −0.0010 (18) 0.0008 (18)
C1 0.027 (2) 0.032 (3) 0.020 (2) 0.005 (2) −0.008 (2) −0.012 (2)
B5 0.011 (2) 0.014 (2) 0.012 (2) −0.0023 (18) 0.0009 (19) −0.0007 (18)
B4 0.015 (2) 0.009 (2) 0.015 (2) −0.0027 (18) 0.0004 (19) 0.0014 (17)
B9 0.013 (2) 0.014 (2) 0.009 (2) −0.0013 (19) 0.0012 (18) 0.0028 (18)
B11 0.013 (2) 0.015 (2) 0.011 (2) −0.0015 (18) −0.0022 (18) −0.0028 (18)
B3 0.009 (2) 0.012 (2) 0.011 (2) 0.0011 (18) 0.0007 (18) 0.0003 (18)
C2 0.017 (2) 0.049 (4) 0.029 (3) −0.007 (2) −0.005 (2) −0.012 (2)
B8 0.011 (2) 0.011 (2) 0.013 (2) −0.0001 (18) −0.0029 (18) 0.0032 (18)
C3 0.054 (4) 0.026 (3) 0.028 (3) 0.001 (2) −0.028 (2) 0.004 (2)
B12 0.013 (2) 0.014 (2) 0.009 (2) −0.0008 (18) −0.0004 (19) 0.0007 (18)
O2 0.049 (2) 0.041 (2) 0.0248 (19) −0.0089 (19) −0.0077 (16) 0.0012 (17)

Geometric parameters (Å, º)

Cl4—Na1i 3.209 (2) B6—B5 1.787 (6)
Cl5—Na1ii 3.050 (2) B6—B11 1.785 (6)
Cl6—Na1ii 3.031 (2) B10—B5 1.777 (6)
Cl7—Na1 3.179 (2) B10—B9 1.774 (6)
Cl9—Na1i 2.975 (2) B10—B11 1.770 (6)
Cl10—Na1ii 3.051 (2) B10—B12 1.760 (6)
Cl12—Na1 2.870 (2) B7—B2 1.802 (6)
S1—O1 1.428 (3) B7—B11 1.782 (6)
S1—O2 1.412 (4) B7—B3 1.792 (6)
Na1—O1 2.428 (4) B7—B8 1.764 (6)
Cl2—B2 1.785 (5) B7—B12 1.769 (6)
Cl3—B3 1.797 (4) B2—B11 1.791 (6)
Cl4—B4 1.800 (5) B2—B3 1.794 (7)
Cl5—B5 1.800 (5) C1—H1A 0.9600
Cl6—B6 1.801 (4) C1—H1B 0.9600
Cl7—B7 1.792 (5) C1—H1C 0.9600
Cl8—B8 1.783 (4) B5—B4 1.794 (6)
Cl9—B9 1.803 (4) B5—B9 1.779 (6)
Cl10—B10 1.800 (5) B4—B9 1.792 (6)
Cl11—B11 1.779 (5) B4—B3 1.794 (6)
Cl12—B12 1.796 (5) B4—B8 1.791 (6)
N1—B1 1.600 (5) B9—B8 1.779 (6)
N1—C1 1.510 (5) B9—B12 1.760 (6)
N1—C2 1.503 (5) B11—B12 1.792 (7)
N1—C3 1.503 (6) B3—B8 1.785 (6)
B1—B6 1.803 (6) C2—H2A 0.9600
B1—B2 1.820 (6) C2—H2B 0.9600
B1—B5 1.844 (7) C2—H2C 0.9600
B1—B4 1.813 (6) B8—B12 1.785 (6)
B1—B3 1.813 (6) C3—H3A 0.9600
B6—B10 1.794 (6) C3—H3B 0.9600
B6—B2 1.795 (6) C3—H3C 0.9600
B6—Cl6—Na1ii 102.94 (15) H1A—C1—H1B 109.5
B5—Cl5—Na1ii 101.48 (16) H1A—C1—H1C 109.5
B4—Cl4—Na1i 112.56 (16) H1B—C1—H1C 109.5
B10—Cl10—Na1ii 101.13 (15) Cl5—B5—B1 127.0 (3)
B12—Cl12—Na1 116.54 (15) B6—B5—Cl5 123.4 (3)
B9—Cl9—Na1i 116.86 (15) B6—B5—B1 59.5 (2)
B7—Cl7—Na1 109.68 (16) B6—B5—B4 107.0 (3)
O1—S1—O2 116.8 (2) B10—B5—Cl5 116.9 (3)
Cl6iii—Na1—Cl5iii 74.39 (5) B10—B5—B1 108.3 (3)
Cl6iii—Na1—Cl4iv 124.79 (7) B10—B5—B6 60.4 (2)
Cl6iii—Na1—Cl10iii 71.26 (5) B10—B5—B4 107.8 (3)
Cl6iii—Na1—Cl7 68.74 (4) B10—B5—B9 59.8 (2)
Cl5iii—Na1—Cl4iv 135.81 (7) B4—B5—Cl5 123.9 (3)
Cl5iii—Na1—Cl10iii 70.67 (5) B4—B5—B1 59.8 (2)
Cl5iii—Na1—Cl7 82.00 (5) B9—B5—Cl5 117.2 (3)
Cl10iii—Na1—Cl4iv 78.81 (5) B9—B5—B1 108.4 (3)
Cl10iii—Na1—Cl7 136.21 (6) B9—B5—B6 108.0 (3)
Cl12—Na1—Cl6iii 141.23 (7) B9—B5—B4 60.2 (3)
Cl12—Na1—Cl5iii 102.65 (6) Cl4—B4—B1 124.1 (3)
Cl12—Na1—Cl4iv 84.87 (5) B5—B4—Cl4 121.2 (3)
Cl12—Na1—Cl10iii 145.50 (7) B5—B4—B1 61.5 (3)
Cl12—Na1—Cl9iv 98.84 (6) B5—B4—B3 108.5 (3)
Cl12—Na1—Cl7 72.55 (5) B9—B4—Cl4 118.1 (3)
Cl9iv—Na1—Cl6iii 72.98 (5) B9—B4—B1 109.1 (3)
Cl9iv—Na1—Cl5iii 146.78 (7) B9—B4—B5 59.5 (3)
Cl9iv—Na1—Cl4iv 70.81 (5) B9—B4—B3 107.4 (3)
Cl9iv—Na1—Cl10iii 104.04 (6) B3—B4—Cl4 124.3 (3)
Cl9iv—Na1—Cl7 80.65 (5) B3—B4—B1 60.3 (2)
Cl7—Na1—Cl4iv 140.24 (6) B8—B4—Cl4 119.8 (3)
O1—Na1—Cl6iii 139.66 (10) B8—B4—B1 108.8 (3)
O1—Na1—Cl5iii 76.35 (9) B8—B4—B5 107.5 (3)
O1—Na1—Cl4iv 64.50 (9) B8—B4—B9 59.5 (2)
O1—Na1—Cl10iii 73.23 (9) B8—B4—B3 59.8 (2)
O1—Na1—Cl12 72.33 (9) B10—B9—Cl9 121.6 (3)
O1—Na1—Cl9iv 134.94 (10) B10—B9—B5 60.0 (3)
O1—Na1—Cl7 133.02 (10) B10—B9—B4 108.0 (3)
S1—O1—Na1 147.0 (2) B10—B9—B8 108.1 (3)
C1—N1—B1 112.8 (3) B5—B9—Cl9 121.0 (3)
C2—N1—B1 111.8 (3) B5—B9—B4 60.3 (3)
C2—N1—C1 105.9 (3) B5—B9—B8 108.6 (3)
C2—N1—C3 106.9 (4) B4—B9—Cl9 121.6 (3)
C3—N1—B1 113.3 (3) B8—B9—Cl9 121.8 (3)
C3—N1—C1 105.6 (4) B8—B9—B4 60.2 (2)
N1—B1—B6 122.5 (3) B12—B9—Cl9 121.4 (3)
N1—B1—B2 122.8 (3) B12—B9—B10 59.7 (2)
N1—B1—B5 123.0 (3) B12—B9—B5 108.5 (3)
N1—B1—B4 123.3 (3) B12—B9—B4 108.7 (3)
N1—B1—B3 123.5 (3) B12—B9—B8 60.6 (2)
B6—B1—B2 59.4 (2) Cl11—B11—B6 122.4 (3)
B6—B1—B5 58.7 (2) Cl11—B11—B7 121.3 (3)
B6—B1—B4 105.5 (3) Cl11—B11—B2 120.9 (3)
B6—B1—B3 105.9 (3) Cl11—B11—B12 121.7 (3)
B2—B1—B5 105.7 (3) B6—B11—B2 60.3 (2)
B4—B1—B2 106.2 (3) B6—B11—B12 107.7 (3)
B4—B1—B5 58.7 (2) B10—B11—Cl11 122.4 (3)
B3—B1—B2 59.2 (2) B10—B11—B6 60.6 (2)
B3—B1—B5 105.5 (3) B10—B11—B7 107.0 (3)
B3—B1—B4 59.3 (2) B10—B11—B2 108.9 (3)
Cl6—B6—B1 123.8 (3) B10—B11—B12 59.2 (2)
B10—B6—Cl6 117.5 (3) B7—B11—B6 108.0 (3)
B10—B6—B1 109.4 (3) B7—B11—B2 60.6 (3)
B10—B6—B2 107.7 (3) B7—B11—B12 59.3 (3)
B2—B6—Cl6 124.9 (3) B2—B11—B12 108.4 (3)
B2—B6—B1 60.8 (2) Cl3—B3—B1 126.1 (3)
B5—B6—Cl6 119.9 (3) B7—B3—Cl3 118.0 (3)
B5—B6—B1 61.8 (3) B7—B3—B1 108.8 (3)
B5—B6—B10 59.5 (3) B7—B3—B2 60.3 (2)
B5—B6—B2 109.2 (3) B7—B3—B4 107.0 (3)
B11—B6—Cl6 120.2 (3) B2—B3—Cl3 123.5 (3)
B11—B6—B1 109.3 (3) B2—B3—B1 60.6 (2)
B11—B6—B10 59.3 (2) B2—B3—B4 108.1 (3)
B11—B6—B2 60.1 (2) B4—B3—Cl3 123.0 (3)
B11—B6—B5 107.6 (3) B4—B3—B1 60.4 (2)
B6—B10—Cl10 120.7 (3) B8—B3—Cl3 116.9 (3)
B5—B10—Cl10 121.2 (3) B8—B3—B1 109.0 (3)
B5—B10—B6 60.1 (3) B8—B3—B7 59.1 (3)
B9—B10—Cl10 122.8 (3) B8—B3—B2 108.1 (3)
B9—B10—B6 107.9 (3) B8—B3—B4 60.0 (2)
B9—B10—B5 60.1 (3) N1—C2—H2A 109.5
B11—B10—Cl10 120.6 (3) N1—C2—H2B 109.5
B11—B10—B6 60.1 (3) N1—C2—H2C 109.5
B11—B10—B5 108.7 (3) H2A—C2—H2B 109.5
B11—B10—B9 108.5 (3) H2A—C2—H2C 109.5
B12—B10—Cl10 121.9 (3) H2B—C2—H2C 109.5
B12—B10—B6 108.8 (3) Cl8—B8—B4 121.7 (3)
B12—B10—B5 108.6 (3) Cl8—B8—B3 120.1 (3)
B12—B10—B9 59.7 (3) Cl8—B8—B12 122.6 (3)
B12—B10—B11 61.0 (3) B7—B8—Cl8 121.0 (3)
Cl7—B7—B2 122.0 (3) B7—B8—B4 108.4 (3)
B11—B7—Cl7 119.8 (3) B7—B8—B9 107.4 (3)
B11—B7—B2 60.0 (3) B7—B8—B3 60.6 (2)
B11—B7—B3 108.0 (3) B7—B8—B12 59.8 (3)
B3—B7—Cl7 123.7 (3) B9—B8—Cl8 123.1 (3)
B3—B7—B2 59.9 (2) B9—B8—B4 60.3 (2)
B8—B7—Cl7 121.7 (3) B9—B8—B3 108.4 (3)
B8—B7—B2 108.6 (3) B9—B8—B12 59.2 (2)
B8—B7—B11 109.0 (3) B3—B8—B4 60.2 (2)
B8—B7—B3 60.3 (2) B12—B8—B4 107.7 (3)
B8—B7—B12 60.7 (3) B12—B8—B3 108.4 (3)
B12—B7—Cl7 119.4 (3) N1—C3—H3A 109.5
B12—B7—B2 108.9 (3) N1—C3—H3B 109.5
B12—B7—B11 60.6 (3) N1—C3—H3C 109.5
B12—B7—B3 108.8 (3) H3A—C3—H3B 109.5
Cl2—B2—B1 126.1 (3) H3A—C3—H3C 109.5
Cl2—B2—B6 124.9 (3) H3B—C3—H3C 109.5
Cl2—B2—B7 117.8 (3) B10—B12—Cl12 121.9 (3)
Cl2—B2—B11 118.5 (3) B10—B12—B7 108.0 (3)
Cl2—B2—B3 122.5 (3) B10—B12—B9 60.5 (3)
B6—B2—B1 59.8 (2) B10—B12—B11 59.8 (3)
B6—B2—B7 106.6 (3) B10—B12—B8 108.4 (3)
B7—B2—B1 108.0 (3) B7—B12—Cl12 121.5 (3)
B11—B2—B1 108.3 (3) B7—B12—B11 60.1 (3)
B11—B2—B6 59.7 (2) B7—B12—B8 59.5 (3)
B11—B2—B7 59.5 (3) B9—B12—Cl12 121.5 (3)
B11—B2—B3 107.5 (3) B9—B12—B7 108.0 (3)
B3—B2—B1 60.2 (2) B9—B12—B11 108.2 (3)
B3—B2—B6 107.1 (3) B9—B12—B8 60.2 (3)
B3—B2—B7 59.8 (2) B11—B12—Cl12 122.0 (3)
N1—C1—H1A 109.5 B8—B12—Cl12 121.4 (3)
N1—C1—H1B 109.5 B8—B12—B11 107.6 (3)
N1—C1—H1C 109.5
Cl3—B3—B8—Cl8 2.8 (5) B2—B1—B3—B4 −137.0 (3)
Cl3—B3—B8—B7 −108.0 (3) B2—B1—B3—B8 −100.5 (3)
Cl3—B3—B8—B4 114.4 (3) B2—B6—B10—Cl10 −146.9 (3)
Cl3—B3—B8—B9 152.0 (3) B2—B6—B10—B5 102.3 (3)
Cl3—B3—B8—B12 −145.3 (3) B2—B6—B10—B9 64.5 (4)
Cl6—B6—B10—Cl10 0.6 (5) B2—B6—B10—B11 −37.0 (3)
Cl6—B6—B10—B5 −110.2 (3) B2—B6—B10—B12 1.2 (4)
Cl6—B6—B10—B9 −148.0 (3) B2—B6—B5—Cl5 155.9 (3)
Cl6—B6—B10—B11 110.5 (3) B2—B6—B5—B1 39.3 (3)
Cl6—B6—B10—B12 148.7 (3) B2—B6—B5—B10 −99.6 (3)
Cl6—B6—B2—Cl2 −2.3 (5) B2—B6—B5—B4 1.5 (4)
Cl6—B6—B2—B1 112.8 (4) B2—B6—B5—B9 −61.9 (4)
Cl6—B6—B2—B7 −145.7 (3) B2—B6—B11—Cl11 −109.7 (4)
Cl6—B6—B2—B11 −107.8 (4) B2—B6—B11—B10 138.6 (3)
Cl6—B6—B2—B3 151.6 (3) B2—B6—B11—B7 38.8 (3)
Cl6—B6—B5—Cl5 1.8 (5) B2—B6—B11—B12 101.4 (3)
Cl6—B6—B5—B1 −114.9 (3) B2—B7—B11—Cl11 110.3 (4)
Cl6—B6—B5—B10 106.2 (3) B2—B7—B11—B6 −38.6 (3)
Cl6—B6—B5—B4 −152.6 (3) B2—B7—B11—B10 −102.5 (3)
Cl6—B6—B5—B9 143.9 (3) B2—B7—B11—B12 −139.0 (3)
Cl6—B6—B11—Cl11 5.7 (5) B2—B7—B3—Cl3 −114.6 (3)
Cl6—B6—B11—B10 −106.0 (3) B2—B7—B3—B1 37.8 (3)
Cl6—B6—B11—B7 154.2 (3) B2—B7—B3—B4 101.6 (3)
Cl6—B6—B11—B2 115.4 (3) B2—B7—B3—B8 139.2 (3)
Cl6—B6—B11—B12 −143.1 (3) B2—B7—B8—Cl8 −146.1 (3)
Cl5—B5—B4—Cl4 −2.0 (5) B2—B7—B8—B4 1.5 (4)
Cl5—B5—B4—B1 −116.6 (4) B2—B7—B8—B9 65.1 (4)
Cl5—B5—B4—B9 104.5 (4) B2—B7—B8—B3 −36.6 (3)
Cl5—B5—B4—B3 −155.8 (3) B2—B7—B8—B12 101.7 (3)
Cl5—B5—B4—B8 141.1 (3) B2—B7—B12—Cl12 148.3 (3)
Cl5—B5—B9—Cl9 −4.2 (5) B2—B7—B12—B10 −0.1 (4)
Cl5—B5—B9—B10 106.8 (3) B2—B7—B12—B9 −64.1 (4)
Cl5—B5—B9—B4 −115.4 (3) B2—B7—B12—B11 36.9 (3)
Cl5—B5—B9—B8 −152.6 (3) B2—B7—B12—B8 −101.3 (3)
Cl5—B5—B9—B12 143.1 (3) B2—B11—B12—Cl12 −147.6 (3)
Cl8—B8—B12—Cl12 1.0 (5) B2—B11—B12—B10 101.5 (3)
Cl8—B8—B12—B10 149.9 (3) B2—B11—B12—B7 −37.0 (3)
Cl8—B8—B12—B7 −109.5 (4) B2—B11—B12—B9 63.7 (4)
Cl8—B8—B12—B9 111.9 (4) B2—B11—B12—B8 0.1 (4)
Cl8—B8—B12—B11 −146.9 (3) B2—B3—B8—Cl8 147.5 (3)
Cl2—B2—B11—Cl11 −3.7 (5) B2—B3—B8—B7 36.7 (3)
Cl2—B2—B11—B6 −115.9 (3) B2—B3—B8—B4 −100.9 (3)
Cl2—B2—B11—B10 −153.4 (3) B2—B3—B8—B9 −63.3 (4)
Cl2—B2—B11—B7 107.3 (3) B2—B3—B8—B12 −0.6 (4)
Cl2—B2—B11—B12 143.8 (3) C1—N1—B1—B6 −167.5 (4)
Cl2—B2—B3—Cl3 0.1 (5) C1—N1—B1—B2 −95.3 (4)
Cl2—B2—B3—B1 116.1 (4) C1—N1—B1—B5 121.3 (4)
Cl2—B2—B3—B7 −105.7 (4) C1—N1—B1—B4 49.6 (5)
Cl2—B2—B3—B4 154.7 (3) C1—N1—B1—B3 −23.1 (5)
Cl2—B2—B3—B8 −141.8 (3) B5—B1—B6—Cl6 108.7 (4)
Cl4—B4—B9—Cl9 1.4 (5) B5—B1—B6—B10 −36.9 (3)
Cl4—B4—B9—B10 149.3 (3) B5—B1—B6—B2 −136.8 (3)
Cl4—B4—B9—B5 111.5 (3) B5—B1—B6—B11 −100.1 (3)
Cl4—B4—B9—B8 −109.8 (3) B5—B1—B2—Cl2 150.7 (3)
Cl4—B4—B9—B12 −147.4 (3) B5—B1—B2—B6 37.4 (3)
Cl4—B4—B3—Cl3 2.9 (5) B5—B1—B2—B7 −61.7 (4)
Cl4—B4—B3—B1 −113.1 (4) B5—B1—B2—B11 1.2 (4)
Cl4—B4—B3—B7 144.6 (3) B5—B1—B2—B3 −99.0 (3)
Cl4—B4—B3—B2 −151.8 (3) B5—B1—B4—Cl4 −110.1 (4)
Cl4—B4—B3—B8 107.3 (4) B5—B1—B4—B9 36.8 (3)
Cl4—B4—B8—Cl8 −5.6 (5) B5—B1—B4—B3 136.5 (3)
Cl4—B4—B8—B7 −153.0 (3) B5—B1—B4—B8 100.2 (3)
Cl4—B4—B8—B9 107.1 (3) B5—B1—B3—Cl3 −148.8 (3)
Cl4—B4—B8—B3 −114.7 (4) B5—B1—B3—B7 61.6 (4)
Cl4—B4—B8—B12 143.8 (3) B5—B1—B3—B2 99.3 (3)
Cl10—B10—B5—Cl5 5.2 (5) B5—B1—B3—B4 −37.7 (3)
Cl10—B10—B5—B1 −146.4 (3) B5—B1—B3—B8 −1.2 (4)
Cl10—B10—B5—B6 −109.8 (4) B5—B6—B10—Cl10 110.7 (3)
Cl10—B10—B5—B4 150.3 (3) B5—B6—B10—B9 −37.8 (3)
Cl10—B10—B5—B9 112.5 (4) B5—B6—B10—B11 −139.3 (3)
Cl10—B10—B9—Cl9 0.1 (5) B5—B6—B10—B12 −101.1 (3)
Cl10—B10—B9—B5 −109.9 (4) B5—B6—B2—Cl2 −154.9 (3)
Cl10—B10—B9—B4 −147.8 (3) B5—B6—B2—B1 −39.7 (3)
Cl10—B10—B9—B8 148.5 (3) B5—B6—B2—B7 61.8 (4)
Cl10—B10—B9—B12 110.5 (4) B5—B6—B2—B11 99.7 (3)
Cl10—B10—B11—Cl11 −1.7 (5) B5—B6—B2—B3 −1.0 (4)
Cl10—B10—B11—B6 110.1 (3) B5—B6—B11—Cl11 147.8 (3)
Cl10—B10—B11—B7 −148.5 (3) B5—B6—B11—B10 36.1 (3)
Cl10—B10—B11—B2 147.5 (3) B5—B6—B11—B7 −63.7 (4)
Cl10—B10—B11—B12 −111.9 (4) B5—B6—B11—B2 −102.5 (3)
Cl10—B10—B12—Cl12 −1.3 (5) B5—B6—B11—B12 −1.1 (4)
Cl10—B10—B12—B7 147.0 (3) B5—B10—B9—Cl9 110.0 (4)
Cl10—B10—B12—B9 −112.1 (4) B5—B10—B9—B4 −37.9 (3)
Cl10—B10—B12—B11 109.9 (4) B5—B10—B9—B8 −101.6 (3)
Cl10—B10—B12—B8 −150.0 (3) B5—B10—B9—B12 −139.5 (3)
Cl11—B11—B12—Cl12 −0.5 (5) B5—B10—B11—Cl11 −148.4 (3)
Cl11—B11—B12—B10 −111.4 (4) B5—B10—B11—B6 −36.6 (3)
Cl11—B11—B12—B7 110.1 (4) B5—B10—B11—B7 64.8 (4)
Cl11—B11—B12—B9 −149.2 (3) B5—B10—B11—B2 0.8 (4)
Cl11—B11—B12—B8 147.2 (3) B5—B10—B11—B12 101.3 (3)
Cl9—B9—B8—Cl8 −0.4 (5) B5—B10—B12—Cl12 147.3 (3)
Cl9—B9—B8—B7 147.6 (3) B5—B10—B12—B7 −64.5 (4)
Cl9—B9—B8—B4 −110.8 (4) B5—B10—B12—B9 36.4 (3)
Cl9—B9—B8—B3 −148.4 (3) B5—B10—B12—B11 −101.6 (3)
Cl9—B9—B8—B12 110.7 (4) B5—B10—B12—B8 −1.5 (4)
Cl9—B9—B12—Cl12 −0.7 (5) B5—B4—B9—Cl9 −110.2 (4)
Cl9—B9—B12—B10 110.8 (4) B5—B4—B9—B10 37.8 (3)
Cl9—B9—B12—B7 −148.2 (3) B5—B4—B9—B8 138.7 (3)
Cl9—B9—B12—B11 148.2 (3) B5—B4—B9—B12 101.1 (3)
Cl9—B9—B12—B8 −111.4 (4) B5—B4—B3—Cl3 155.7 (3)
Cl7—B7—B2—Cl2 0.1 (5) B5—B4—B3—B1 39.7 (3)
Cl7—B7—B2—B1 −150.6 (3) B5—B4—B3—B7 −62.7 (4)
Cl7—B7—B2—B6 146.4 (3) B5—B4—B3—B2 1.0 (4)
Cl7—B7—B2—B11 108.4 (4) B5—B4—B3—B8 −99.9 (3)
Cl7—B7—B2—B3 −113.1 (4) B5—B4—B8—Cl8 −149.3 (3)
Cl7—B7—B11—Cl11 −1.7 (5) B5—B4—B8—B7 63.3 (4)
Cl7—B7—B11—B6 −150.6 (3) B5—B4—B8—B9 −36.6 (3)
Cl7—B7—B11—B10 145.5 (3) B5—B4—B8—B3 101.6 (3)
Cl7—B7—B11—B2 −112.0 (4) B5—B4—B8—B12 0.1 (4)
Cl7—B7—B11—B12 109.0 (4) B5—B9—B8—Cl8 147.7 (3)
Cl7—B7—B3—Cl3 −4.1 (5) B5—B9—B8—B7 −64.4 (4)
Cl7—B7—B3—B1 148.3 (3) B5—B9—B8—B4 37.2 (3)
Cl7—B7—B3—B2 110.5 (4) B5—B9—B8—B3 −0.3 (4)
Cl7—B7—B3—B4 −148.0 (3) B5—B9—B8—B12 −101.2 (3)
Cl7—B7—B3—B8 −110.3 (4) B5—B9—B12—Cl12 −147.8 (3)
Cl7—B7—B8—Cl8 3.9 (5) B5—B9—B12—B10 −36.4 (3)
Cl7—B7—B8—B4 151.5 (3) B5—B9—B12—B7 64.6 (4)
Cl7—B7—B8—B9 −144.9 (3) B5—B9—B12—B11 1.1 (4)
Cl7—B7—B8—B3 113.4 (4) B5—B9—B12—B8 101.4 (3)
Cl7—B7—B8—B12 −108.3 (4) B4—B1—B6—Cl6 145.6 (3)
Cl7—B7—B12—Cl12 1.7 (5) B4—B1—B6—B10 0.0 (4)
Cl7—B7—B12—B10 −146.7 (3) B4—B1—B6—B2 −99.9 (3)
Cl7—B7—B12—B9 149.3 (3) B4—B1—B6—B5 36.9 (3)
Cl7—B7—B12—B11 −109.7 (4) B4—B1—B6—B11 −63.2 (4)
Cl7—B7—B12—B8 112.1 (3) B4—B1—B2—Cl2 −148.0 (3)
Na1ii—Cl6—B6—B1 −106.3 (3) B4—B1—B2—B6 98.8 (3)
Na1ii—Cl6—B6—B10 36.8 (3) B4—B1—B2—B7 −0.4 (4)
Na1ii—Cl6—B6—B2 178.1 (3) B4—B1—B2—B11 62.5 (4)
Na1ii—Cl6—B6—B5 −32.1 (3) B4—B1—B2—B3 −37.6 (3)
Na1ii—Cl6—B6—B11 105.4 (3) B4—B1—B5—Cl5 111.7 (4)
Na1ii—Cl5—B5—B1 104.0 (3) B4—B1—B5—B6 −137.4 (3)
Na1ii—Cl5—B5—B6 29.3 (4) B4—B1—B5—B10 −100.4 (3)
Na1ii—Cl5—B5—B10 −41.6 (3) B4—B1—B5—B9 −37.0 (3)
Na1ii—Cl5—B5—B4 179.4 (3) B4—B1—B3—Cl3 −111.1 (4)
Na1ii—Cl5—B5—B9 −109.7 (3) B4—B1—B3—B7 99.3 (3)
Na1i—Cl4—B4—B1 143.7 (3) B4—B1—B3—B2 137.0 (3)
Na1i—Cl4—B4—B5 69.0 (3) B4—B1—B3—B8 36.5 (3)
Na1i—Cl4—B4—B9 −0.5 (3) B4—B5—B9—Cl9 111.2 (4)
Na1i—Cl4—B4—B3 −141.4 (3) B4—B5—B9—B10 −137.7 (3)
Na1i—Cl4—B4—B8 −69.6 (3) B4—B5—B9—B8 −37.2 (3)
Na1ii—Cl10—B10—B6 −37.0 (3) B4—B5—B9—B12 −101.5 (3)
Na1ii—Cl10—B10—B5 34.4 (3) B4—B9—B8—Cl8 110.4 (4)
Na1ii—Cl10—B10—B9 106.8 (3) B4—B9—B8—B7 −101.6 (3)
Na1ii—Cl10—B10—B11 −108.1 (3) B4—B9—B8—B3 −37.6 (3)
Na1ii—Cl10—B10—B12 179.1 (3) B4—B9—B8—B12 −138.4 (3)
Na1—Cl12—B12—B10 147.4 (3) B4—B9—B12—Cl12 148.2 (3)
Na1—Cl12—B12—B7 3.4 (4) B4—B9—B12—B10 −100.4 (3)
Na1—Cl12—B12—B9 −139.9 (3) B4—B9—B12—B7 0.6 (4)
Na1—Cl12—B12—B11 75.5 (3) B4—B9—B12—B11 −62.9 (4)
Na1—Cl12—B12—B8 −67.8 (3) B4—B9—B12—B8 37.4 (3)
Na1i—Cl9—B9—B10 −145.2 (3) B4—B3—B8—Cl8 −111.5 (4)
Na1i—Cl9—B9—B5 −73.5 (3) B4—B3—B8—B7 137.6 (3)
Na1i—Cl9—B9—B4 −1.5 (4) B4—B3—B8—B9 37.6 (3)
Na1i—Cl9—B9—B8 70.7 (3) B4—B3—B8—B12 100.3 (3)
Na1i—Cl9—B9—B12 143.3 (3) B4—B8—B12—Cl12 −148.1 (3)
Na1—Cl7—B7—B2 −147.3 (3) B4—B8—B12—B10 0.8 (4)
Na1—Cl7—B7—B11 −76.1 (3) B4—B8—B12—B7 101.4 (3)
Na1—Cl7—B7—B3 139.9 (3) B4—B8—B12—B9 −37.2 (3)
Na1—Cl7—B7—B8 66.7 (3) B4—B8—B12—B11 64.0 (4)
Na1—Cl7—B7—B12 −5.1 (3) B9—B10—B5—Cl5 −107.3 (3)
N1—B1—B6—Cl6 −2.8 (6) B9—B10—B5—B1 101.1 (3)
N1—B1—B6—B10 −148.5 (3) B9—B10—B5—B6 137.7 (3)
N1—B1—B6—B2 111.7 (4) B9—B10—B5—B4 37.8 (3)
N1—B1—B6—B5 −111.5 (4) B9—B10—B11—Cl11 147.8 (3)
N1—B1—B6—B11 148.3 (4) B9—B10—B11—B6 −100.4 (3)
N1—B1—B2—Cl2 2.0 (5) B9—B10—B11—B7 1.0 (4)
N1—B1—B2—B6 −111.2 (4) B9—B10—B11—B2 −63.0 (4)
N1—B1—B2—B7 149.6 (3) B9—B10—B11—B12 37.5 (3)
N1—B1—B2—B11 −147.5 (3) B9—B10—B12—Cl12 110.8 (4)
N1—B1—B2—B3 112.4 (4) B9—B10—B12—B7 −100.9 (3)
N1—B1—B5—Cl5 0.0 (6) B9—B10—B12—B11 −138.0 (3)
N1—B1—B5—B6 110.8 (4) B9—B10—B12—B8 −37.9 (3)
N1—B1—B5—B10 147.9 (3) B9—B5—B4—Cl4 −106.4 (4)
N1—B1—B5—B4 −111.8 (4) B9—B5—B4—B1 138.9 (3)
N1—B1—B5—B9 −148.7 (3) B9—B5—B4—B3 99.8 (3)
N1—B1—B4—Cl4 1.1 (5) B9—B5—B4—B8 36.6 (3)
N1—B1—B4—B5 111.3 (4) B9—B4—B3—Cl3 −141.4 (3)
N1—B1—B4—B9 148.1 (4) B9—B4—B3—B1 102.5 (3)
N1—B1—B4—B3 −112.3 (4) B9—B4—B3—B7 0.2 (4)
N1—B1—B4—B8 −148.6 (4) B9—B4—B3—B2 63.8 (4)
N1—B1—B3—Cl3 0.7 (6) B9—B4—B3—B8 −37.0 (3)
N1—B1—B3—B7 −148.9 (4) B9—B4—B8—Cl8 −112.8 (4)
N1—B1—B3—B2 −111.2 (4) B9—B4—B8—B7 99.9 (3)
N1—B1—B3—B4 111.8 (4) B9—B4—B8—B3 138.2 (3)
N1—B1—B3—B8 148.3 (4) B9—B4—B8—B12 36.7 (3)
B1—B6—B10—Cl10 148.6 (3) B9—B8—B12—Cl12 −110.9 (4)
B1—B6—B10—B5 37.9 (3) B9—B8—B12—B10 38.0 (3)
B1—B6—B10—B9 0.1 (4) B9—B8—B12—B7 138.6 (3)
B1—B6—B10—B11 −101.4 (3) B9—B8—B12—B11 101.2 (3)
B1—B6—B10—B12 −63.2 (4) B11—B6—B10—Cl10 −109.9 (4)
B1—B6—B2—Cl2 −115.1 (4) B11—B6—B10—B5 139.3 (3)
B1—B6—B2—B7 101.5 (3) B11—B6—B10—B9 101.5 (3)
B1—B6—B2—B11 139.4 (3) B11—B6—B10—B12 38.2 (3)
B1—B6—B2—B3 38.8 (3) B11—B6—B2—Cl2 105.4 (4)
B1—B6—B5—Cl5 116.7 (4) B11—B6—B2—B1 −139.4 (3)
B1—B6—B5—B10 −138.9 (3) B11—B6—B2—B7 −37.9 (3)
B1—B6—B5—B4 −37.7 (3) B11—B6—B2—B3 −100.7 (3)
B1—B6—B5—B9 −101.2 (3) B11—B6—B5—Cl5 −140.4 (3)
B1—B6—B11—Cl11 −146.7 (3) B11—B6—B5—B1 102.9 (3)
B1—B6—B11—B10 101.6 (3) B11—B6—B5—B10 −36.0 (3)
B1—B6—B11—B7 1.8 (4) B11—B6—B5—B4 65.2 (4)
B1—B6—B11—B2 −37.0 (3) B11—B6—B5—B9 1.7 (4)
B1—B6—B11—B12 64.5 (4) B11—B10—B5—Cl5 151.6 (3)
B1—B2—B11—Cl11 148.5 (3) B11—B10—B5—B1 0.0 (4)
B1—B2—B11—B6 36.3 (3) B11—B10—B5—B6 36.6 (3)
B1—B2—B11—B10 −1.3 (4) B11—B10—B5—B4 −63.2 (4)
B1—B2—B11—B7 −100.6 (3) B11—B10—B5—B9 −101.1 (3)
B1—B2—B11—B12 −64.1 (4) B11—B10—B9—Cl9 −148.5 (3)
B1—B2—B3—Cl3 −116.0 (4) B11—B10—B9—B5 101.4 (3)
B1—B2—B3—B7 138.2 (3) B11—B10—B9—B4 63.5 (4)
B1—B2—B3—B4 38.6 (3) B11—B10—B9—B8 −0.1 (4)
B1—B2—B3—B8 102.1 (3) B11—B10—B9—B12 −38.1 (3)
B1—B5—B4—Cl4 114.6 (4) B11—B10—B12—Cl12 −111.1 (4)
B1—B5—B4—B9 −138.9 (3) B11—B10—B12—B7 37.1 (3)
B1—B5—B4—B3 −39.1 (3) B11—B10—B12—B9 138.0 (3)
B1—B5—B4—B8 −102.3 (3) B11—B10—B12—B8 100.1 (3)
B1—B5—B9—Cl9 148.0 (3) B11—B7—B2—Cl2 −108.3 (3)
B1—B5—B9—B10 −101.0 (3) B11—B7—B2—B1 101.0 (3)
B1—B5—B9—B4 36.8 (3) B11—B7—B2—B6 38.0 (3)
B1—B5—B9—B8 −0.4 (4) B11—B7—B2—B3 138.4 (3)
B1—B5—B9—B12 −64.7 (4) B11—B7—B3—Cl3 −151.7 (3)
B1—B4—B9—Cl9 −147.8 (3) B11—B7—B3—B1 0.7 (4)
B1—B4—B9—B10 0.1 (4) B11—B7—B3—B2 −37.1 (3)
B1—B4—B9—B5 −37.7 (3) B11—B7—B3—B4 64.4 (4)
B1—B4—B9—B8 101.0 (3) B11—B7—B3—B8 102.1 (3)
B1—B4—B9—B12 63.4 (4) B11—B7—B8—Cl8 150.1 (3)
B1—B4—B3—Cl3 116.1 (4) B11—B7—B8—B4 −62.3 (4)
B1—B4—B3—B7 −102.3 (3) B11—B7—B8—B9 1.4 (4)
B1—B4—B3—B2 −38.7 (3) B11—B7—B8—B3 −100.3 (3)
B1—B4—B3—B8 −139.5 (3) B11—B7—B8—B12 37.9 (3)
B1—B4—B8—Cl8 145.6 (3) B11—B7—B12—Cl12 111.4 (4)
B1—B4—B8—B7 −1.7 (4) B11—B7—B12—B10 −37.0 (3)
B1—B4—B8—B9 −101.6 (3) B11—B7—B12—B9 −101.0 (3)
B1—B4—B8—B3 36.6 (3) B11—B7—B12—B8 −138.2 (3)
B1—B4—B8—B12 −64.9 (4) B11—B2—B3—Cl3 142.5 (3)
B1—B3—B8—Cl8 −148.2 (3) B11—B2—B3—B1 −101.4 (3)
B1—B3—B8—B7 101.0 (3) B11—B2—B3—B7 36.8 (3)
B1—B3—B8—B4 −36.6 (3) B11—B2—B3—B4 −62.8 (4)
B1—B3—B8—B9 1.0 (4) B11—B2—B3—B8 0.7 (4)
B1—B3—B8—B12 63.7 (4) B3—B1—B6—Cl6 −152.5 (3)
B6—B1—B2—Cl2 113.2 (4) B3—B1—B6—B10 61.9 (4)
B6—B1—B2—B7 −99.1 (3) B3—B1—B6—B2 −38.0 (3)
B6—B1—B2—B11 −36.2 (3) B3—B1—B6—B5 98.8 (3)
B6—B1—B2—B3 −136.4 (3) B3—B1—B6—B11 −1.4 (4)
B6—B1—B5—Cl5 −110.9 (4) B3—B1—B2—Cl2 −110.4 (4)
B6—B1—B5—B10 37.0 (3) B3—B1—B2—B6 136.4 (3)
B6—B1—B5—B4 137.4 (3) B3—B1—B2—B7 37.3 (3)
B6—B1—B5—B9 100.4 (3) B3—B1—B2—B11 100.2 (3)
B6—B1—B4—Cl4 −147.0 (3) B3—B1—B5—Cl5 149.7 (3)
B6—B1—B4—B5 −36.9 (3) B3—B1—B5—B6 −99.5 (3)
B6—B1—B4—B9 −0.1 (4) B3—B1—B5—B10 −62.4 (4)
B6—B1—B4—B3 99.6 (3) B3—B1—B5—B4 37.9 (3)
B6—B1—B4—B8 63.3 (4) B3—B1—B5—B9 1.0 (4)
B6—B1—B3—Cl3 150.0 (3) B3—B1—B4—Cl4 113.4 (4)
B6—B1—B3—B7 0.4 (4) B3—B1—B4—B5 −136.5 (3)
B6—B1—B3—B2 38.1 (3) B3—B1—B4—B9 −99.6 (3)
B6—B1—B3—B4 −98.9 (3) B3—B1—B4—B8 −36.3 (3)
B6—B1—B3—B8 −62.4 (4) B3—B7—B2—Cl2 113.2 (3)
B6—B10—B5—Cl5 115.0 (3) B3—B7—B2—B1 −37.4 (3)
B6—B10—B5—B1 −36.6 (3) B3—B7—B2—B6 −100.4 (3)
B6—B10—B5—B4 −99.9 (3) B3—B7—B2—B11 −138.4 (3)
B6—B10—B5—B9 −137.7 (3) B3—B7—B11—Cl11 147.4 (3)
B6—B10—B9—Cl9 147.8 (3) B3—B7—B11—B6 −1.5 (4)
B6—B10—B9—B5 37.8 (3) B3—B7—B11—B10 −65.4 (4)
B6—B10—B9—B4 −0.1 (4) B3—B7—B11—B2 37.1 (3)
B6—B10—B9—B8 −63.8 (4) B3—B7—B11—B12 −101.9 (3)
B6—B10—B9—B12 −101.7 (3) B3—B7—B8—Cl8 −109.5 (3)
B6—B10—B11—Cl11 −111.8 (4) B3—B7—B8—B4 38.1 (3)
B6—B10—B11—B7 101.4 (3) B3—B7—B8—B9 101.7 (3)
B6—B10—B11—B2 37.4 (3) B3—B7—B8—B12 138.3 (3)
B6—B10—B11—B12 138.0 (3) B3—B7—B12—Cl12 −148.1 (3)
B6—B10—B12—Cl12 −149.0 (3) B3—B7—B12—B10 63.6 (4)
B6—B10—B12—B7 −0.7 (4) B3—B7—B12—B9 −0.5 (4)
B6—B10—B12—B9 100.2 (3) B3—B7—B12—B11 100.5 (3)
B6—B10—B12—B11 −37.8 (3) B3—B7—B12—B8 −37.6 (3)
B6—B10—B12—B8 62.3 (4) B3—B2—B11—Cl11 −147.9 (3)
B6—B2—B11—Cl11 112.2 (4) B3—B2—B11—B6 99.9 (3)
B6—B2—B11—B10 −37.5 (3) B3—B2—B11—B10 62.4 (4)
B6—B2—B11—B7 −136.9 (3) B3—B2—B11—B7 −37.0 (3)
B6—B2—B11—B12 −100.4 (3) B3—B2—B11—B12 −0.5 (4)
B6—B2—B3—Cl3 −154.6 (3) B3—B4—B9—Cl9 148.3 (3)
B6—B2—B3—B1 −38.6 (3) B3—B4—B9—B10 −63.8 (4)
B6—B2—B3—B7 99.6 (3) B3—B4—B9—B5 −101.6 (3)
B6—B2—B3—B4 0.0 (4) B3—B4—B9—B8 37.1 (3)
B6—B2—B3—B8 63.5 (4) B3—B4—B9—B12 −0.5 (4)
B6—B5—B4—Cl4 152.2 (3) B3—B4—B8—Cl8 109.0 (4)
B6—B5—B4—B1 37.6 (3) B3—B4—B8—B7 −38.3 (3)
B6—B5—B4—B9 −101.3 (3) B3—B4—B8—B9 −138.2 (3)
B6—B5—B4—B3 −1.5 (4) B3—B4—B8—B12 −101.5 (3)
B6—B5—B4—B8 −64.7 (4) B3—B8—B12—Cl12 148.2 (3)
B6—B5—B9—Cl9 −149.1 (3) B3—B8—B12—B10 −62.8 (4)
B6—B5—B9—B10 −38.0 (3) B3—B8—B12—B7 37.7 (3)
B6—B5—B9—B4 99.7 (3) B3—B8—B12—B9 −100.9 (3)
B6—B5—B9—B8 62.6 (4) B3—B8—B12—B11 0.4 (4)
B6—B5—B9—B12 −1.7 (4) C2—N1—B1—B6 73.4 (5)
B6—B11—B12—Cl12 148.7 (3) C2—N1—B1—B2 145.5 (4)
B6—B11—B12—B10 37.8 (3) C2—N1—B1—B5 2.1 (5)
B6—B11—B12—B7 −100.8 (3) C2—N1—B1—B4 −69.6 (5)
B6—B11—B12—B9 0.0 (4) C2—N1—B1—B3 −142.2 (4)
B6—B11—B12—B8 −63.7 (4) B8—B7—B2—Cl2 150.0 (3)
B10—B6—B2—Cl2 142.1 (3) B8—B7—B2—B1 −0.7 (4)
B10—B6—B2—B1 −102.8 (3) B8—B7—B2—B6 −63.7 (4)
B10—B6—B2—B7 −1.3 (4) B8—B7—B2—B11 −101.7 (3)
B10—B6—B2—B11 36.6 (3) B8—B7—B2—B3 36.8 (3)
B10—B6—B2—B3 −64.0 (4) B8—B7—B11—Cl11 −148.7 (3)
B10—B6—B5—Cl5 −104.4 (4) B8—B7—B11—B6 62.4 (4)
B10—B6—B5—B1 138.9 (3) B8—B7—B11—B10 −1.5 (4)
B10—B6—B5—B4 101.2 (3) B8—B7—B11—B2 101.0 (3)
B10—B6—B5—B9 37.7 (3) B8—B7—B11—B12 −38.0 (3)
B10—B6—B11—Cl11 111.7 (4) B8—B7—B3—Cl3 106.2 (3)
B10—B6—B11—B7 −99.8 (3) B8—B7—B3—B1 −101.4 (3)
B10—B6—B11—B2 −138.6 (3) B8—B7—B3—B2 −139.2 (3)
B10—B6—B11—B12 −37.2 (3) B8—B7—B3—B4 −37.7 (3)
B10—B5—B4—Cl4 −144.1 (3) B8—B7—B12—Cl12 −110.4 (4)
B10—B5—B4—B1 101.3 (3) B8—B7—B12—B10 101.2 (3)
B10—B5—B4—B9 −37.6 (3) B8—B7—B12—B9 37.2 (3)
B10—B5—B4—B3 62.1 (4) B8—B7—B12—B11 138.2 (3)
B10—B5—B4—B8 −1.0 (4) B8—B4—B9—Cl9 111.1 (3)
B10—B5—B9—Cl9 −111.1 (4) B8—B4—B9—B10 −100.9 (3)
B10—B5—B9—B4 137.7 (3) B8—B4—B9—B5 −138.7 (3)
B10—B5—B9—B8 100.6 (3) B8—B4—B9—B12 −37.6 (3)
B10—B5—B9—B12 36.3 (3) B8—B4—B3—Cl3 −104.4 (4)
B10—B9—B8—Cl8 −148.7 (3) B8—B4—B3—B1 139.5 (3)
B10—B9—B8—B7 −0.8 (4) B8—B4—B3—B7 37.2 (3)
B10—B9—B8—B4 100.8 (3) B8—B4—B3—B2 100.9 (3)
B10—B9—B8—B3 63.3 (4) B8—B9—B12—Cl12 110.7 (4)
B10—B9—B8—B12 −37.6 (3) B8—B9—B12—B10 −137.8 (3)
B10—B9—B12—Cl12 −111.4 (4) B8—B9—B12—B7 −36.8 (3)
B10—B9—B12—B7 101.0 (3) B8—B9—B12—B11 −100.4 (3)
B10—B9—B12—B11 37.5 (3) C3—N1—B1—B6 −47.6 (5)
B10—B9—B12—B8 137.8 (3) C3—N1—B1—B2 24.5 (5)
B10—B11—B12—Cl12 110.9 (4) C3—N1—B1—B5 −118.9 (4)
B10—B11—B12—B7 −138.5 (3) C3—N1—B1—B4 169.5 (4)
B10—B11—B12—B9 −37.8 (3) C3—N1—B1—B3 96.8 (5)
B10—B11—B12—B8 −101.4 (3) B12—B10—B5—Cl5 −143.6 (3)
B7—B2—B11—Cl11 −110.9 (4) B12—B10—B5—B1 64.8 (4)
B7—B2—B11—B6 136.9 (3) B12—B10—B5—B6 101.4 (3)
B7—B2—B11—B10 99.3 (4) B12—B10—B5—B4 1.6 (4)
B7—B2—B11—B12 36.5 (3) B12—B10—B5—B9 −36.3 (3)
B7—B2—B3—Cl3 105.7 (3) B12—B10—B9—Cl9 −110.4 (4)
B7—B2—B3—B1 −138.2 (3) B12—B10—B9—B5 139.5 (3)
B7—B2—B3—B4 −99.7 (3) B12—B10—B9—B4 101.6 (3)
B7—B2—B3—B8 −36.1 (3) B12—B10—B9—B8 38.0 (3)
B7—B11—B12—Cl12 −110.6 (4) B12—B10—B11—Cl11 110.2 (4)
B7—B11—B12—B10 138.5 (3) B12—B10—B11—B6 −138.0 (3)
B7—B11—B12—B9 100.8 (3) B12—B10—B11—B7 −36.6 (3)
B7—B11—B12—B8 37.1 (3) B12—B10—B11—B2 −100.6 (4)
B7—B3—B8—Cl8 110.9 (3) B12—B7—B2—Cl2 −145.5 (3)
B7—B3—B8—B4 −137.6 (3) B12—B7—B2—B1 63.8 (4)
B7—B3—B8—B9 −100.0 (3) B12—B7—B2—B6 0.8 (4)
B7—B3—B8—B12 −37.3 (3) B12—B7—B2—B11 −37.2 (3)
B7—B8—B12—Cl12 110.6 (4) B12—B7—B2—B3 101.3 (3)
B7—B8—B12—B10 −100.5 (3) B12—B7—B11—Cl11 −110.7 (4)
B7—B8—B12—B9 −138.6 (3) B12—B7—B11—B6 100.4 (3)
B7—B8—B12—B11 −37.3 (3) B12—B7—B11—B10 36.5 (3)
B2—B1—B6—Cl6 −114.5 (4) B12—B7—B11—B2 139.0 (3)
B2—B1—B6—B10 99.9 (3) B12—B7—B3—Cl3 144.0 (3)
B2—B1—B6—B5 136.8 (3) B12—B7—B3—B1 −63.6 (4)
B2—B1—B6—B11 36.7 (3) B12—B7—B3—B2 −101.4 (3)
B2—B1—B5—Cl5 −148.7 (3) B12—B7—B3—B4 0.2 (4)
B2—B1—B5—B6 −37.8 (3) B12—B7—B3—B8 37.8 (3)
B2—B1—B5—B10 −0.7 (4) B12—B7—B8—Cl8 112.2 (4)
B2—B1—B5—B4 99.6 (3) B12—B7—B8—B4 −100.2 (3)
B2—B1—B5—B9 62.7 (4) B12—B7—B8—B9 −36.5 (3)
B2—B1—B4—Cl4 151.0 (3) B12—B7—B8—B3 −138.3 (3)
B2—B1—B4—B5 −98.9 (3) B12—B9—B8—Cl8 −111.1 (4)
B2—B1—B4—B9 −62.1 (4) B12—B9—B8—B7 36.8 (3)
B2—B1—B4—B3 37.6 (3) B12—B9—B8—B4 138.4 (3)
B2—B1—B4—B8 1.3 (4) B12—B9—B8—B3 100.9 (3)
B2—B1—B3—Cl3 111.8 (4) O2—S1—O1—Na1 176.9 (3)
B2—B1—B3—B7 −37.7 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x+1, y, z; (iii) x−1, y, z; (iv) −x+1, y−1/2, −z+1/2.

References

  1. Akkuş, Ö. N., Decken, A., Knapp, C. & Passmore, J. (2006). J. Chem. Crystallogr. 36, 321–329.
  2. Aris, D., Beck, J., Decken, A., Dionne, I., Schmedt auf der Günne, J., Hoffbauer, W., Köchner, T., Krossing, I., Passmore, J., Rivard, E., Steden, F. & Wang, X. (2011). Dalton Trans. 40, 5865–5880. [DOI] [PubMed]
  3. Batsanov, S. S. (2001). Inorg. Mater. 37, 871–885.
  4. Bertocco, P., Bolli, C., Derendorf, J., Jenne, C., Klein, A. & Stirnat, K. (2016). Chem. Eur. J. 22, 16032–16036. [DOI] [PubMed]
  5. Bolli, C., Derendorf, J., Jenne, C. & Kessler, M. (2017). Eur. J. Inorg. Chem. pp. 4552–4558.
  6. Bolli, C., Derendorf, J., Jenne, C., Scherer, H., Sindlinger, C. P. & Wegener, B. (2014). Chem. Eur. J. 20, 13783–13792. [DOI] [PubMed]
  7. Bolli, C., Derendorf, J., Kessler, M., Knapp, C., Scherer, H., Schulz, C. & Warneke, J. (2010). Angew. Chem. Int. Ed. 49, 3536–3538. [DOI] [PubMed]
  8. Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  9. Bukovsky, E. V., Peryshkov, D. V., Wu, H., Zhou, W., Tang, W. S., Jones, W. M., Stavila, V., Udovic, T. J. & Strauss, S. H. (2017a). Inorg. Chem. 56, 4369–4379. [DOI] [PubMed]
  10. Bukovsky, E. V., Pluntze, A. M. & Strauss, S. H. (2017b). J. Fluor. Chem. 203, 90–98.
  11. Cameron, T. S., Nikiforov, G. B., Passmore, J. & Rautiainen, J. M. (2010). Dalton Trans. 39, 2587–2596. [DOI] [PubMed]
  12. Decken, A., Knapp, C., Nikiforov, G. B., Passmore, J., Rautiainen, J. M., Wang, X. & Zeng, X. (2009). Chem. Eur. J. 15, 6504–6517. [DOI] [PubMed]
  13. Derendorf, J., Kessler, M., Knapp, C., Rühle, M. & Schulz, C. (2010). Dalton Trans. 39, 8671–8678. [DOI] [PubMed]
  14. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  15. Grabowsky, S., Luger, P., Buschmann, J., Schneider, T., Schirmeister, T., Sobolev, A. N. & Jayatilaka, D. (2012). Angew. Chem. Int. Ed. 51, 6776–6779. [DOI] [PubMed]
  16. Holder, C. H. & Fink, M. (1981). J. Chem. Phys. 75, 5323–5325.
  17. Jenne, C. & Wegener, B. (2018). Z. Anorg. Allg. Chem. 644, 1123–1132.
  18. Kessler, M., Knapp, C., Sagawe, V., Scherer, H. & Uzun, R. (2010). Inorg. Chem. 49, 5223–5230. [DOI] [PubMed]
  19. Knapp, C. (2013). Comprehensive Inorganic Chemistry II Vol. 1, edited by J. Reedijk & K. Poeppelmeier, pp. 651–679. Amsterdam: Elsevier.
  20. Knapp, C. & Mews, R. (2005). Eur. J. Inorg. Chem. pp. 3536–3542.
  21. Malischewski, M., Peryshkov, D. V., Bukovsky, E. V., Seppelt, K. & Strauss, S. H. (2016). Inorg. Chem. 55, 12254–12262. [DOI] [PubMed]
  22. Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806–5812. [DOI] [PMC free article] [PubMed]
  23. Mews, R., Lork, E., Watson, P. G. & Görtler, B. (2000). Coord. Chem. Rev. 197, 277–320.
  24. Mingos, D. M. P. (1978). Transition Met. Chem. 3, 1–15.
  25. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  26. Peters, K., Simon, A., Peters, E. M., Kühnl, H. & Koslowski, B. (1982). Z. Anorg. Allg. Chem. 492, 7–14.
  27. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  28. Ryan, R. R., Kubas, G. J., Moody, D. C. & Eller, P. G. (1981). Struct. Bond. 46, 47–100.
  29. Saleh, M., Powell, D. R. & Wehmschulte, R. J. (2016). Inorg. Chem. 55, 10617–10627. [DOI] [PubMed]
  30. Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  31. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  32. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  33. Simon, A., Peters, K., Peters, E. M., Kühnl, H. & Koslowski, B. (1980). Z. Anorg. Allg. Chem. 469, 94–100.
  34. Waddington, T. C. (1965). Non-Aqueous Solvent Systems. London: Academic Press.
  35. Wegener, M., Huber, F., Bolli, C., Jenne, C. & Kirsch, S. F. (2015). Chem. Eur. J. 21, 1328–1336. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004663/cq2030sup1.cif

e-75-00607-sup1.cif (408.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004663/cq2030Isup2.hkl

e-75-00607-Isup2.hkl (395.4KB, hkl)

CCDC reference: 1908217

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES