Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 9;75(Pt 5):593–599. doi: 10.1107/S2056989019004250

Crystal structure, Hirshfeld surface analysis and DFT study of (2Z)-2-(2,4-di­chloro­benzyl­idene)-4-[2-(2-oxo-1,3-oxazolidin-3-yl)eth­yl]-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

Brahim Hni a,*, Nada Kheira Sebbar b,a, Tuncer Hökelek c, Lhoussaine El Ghayati a, Younes Bouzian a, Joel T Mague d, El Mokhtar Essassi a,e
PMCID: PMC6505589  PMID: 31110793

In the title compound, the heterocyclic portion of the di­hydro­benzo­thia­zine unit adopts a flattened-boat conformation, while the oxazolidine ring adopts an envelope conformation. The 2-carbon link to the oxazole ring is perpendicular to the best plane through the di­hydro­benzo­thia­zine unit. In the crystal, the mol­ecules form stacks extending along the normal to (104) through π-stacking inter­actions between the two carbonyl groups and inversion-related oxazole rings. Aromatic rings from neighbouring stacks inter­calate to form an overall layer structure.

Keywords: crystal structure, di­hydro­benzo­thia­zine, oxazole, π-stacking, Hirshfeld surface

Abstract

The title compound, C20H16Cl2N2O3S, is built up from a di­hydro­benzo­thia­zine moiety linked by –CH– and –C2H4– units to 2,4-di­chloro­phenyl and 2-oxo-1,3-oxazolidine substituents, where the oxazole ring and the heterocyclic portion of the di­hydro­benzo­thia­zine unit adopt envelope and flattened-boat conformations, respectively. The 2-carbon link to the oxazole ring is nearly perpendicular to the mean plane of the di­hydro­benzo­thia­zine unit. In the crystal, the mol­ecules form stacks extending along the normal to (104) with the aromatic rings from neighbouring stacks inter­calating to form an overall layer structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (28.4%), H⋯Cl/Cl⋯H (19.3%), H⋯O/O⋯H (17.0%), H⋯C/C⋯H (14.5%) and C⋯C (8.2%) inter­actions. Weak hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap.

Chemical context  

Compounds containing a 1,4-benzo­thia­zine backbone have been studied extensively both in academic and industrial laboratories. These mol­ecules exhibit a wide range of biological applications indicating that the 1,4-benzo­thia­zine moiety is a template potentially useful in medicinal chemistry research and therapeutic applications such as anti­pyretic (Warren & Knaus, 1987), anti-microbial (Armenise et al., 2012; Rathore & Kumar, 2006; Sabatini et al., 2008) , anti-viral (Malagu et al., 1998), herbicide (Takemoto et al., 1994), anti-cancer (Gupta & Kumar, 1986) and anti-oxidant (Zia-ur-Rehman et al., 2009) areas. They have also been reported as precursors for the syntheses of new compounds (Vidal et al., 2006) possessing anti-diabetic (Tawada et al., 1990) and anti-corrosion activities (Ellouz et al., 2016a ,b ). 1,4-Benzo­thia­zine-containing compounds are important because of their potential applications in the treatment of diabetes complications, by inhibiting aldose reductase (Aotsuka et al., 1994). They are also used as analgesics (Wammack et al., 2002) and and antagonists of Ca2+ (Fujimura et al., 1996). As a continuation of our previous work on the syntheses and the biological properties of new 1,4-benzo­thia­zine derivatives (Sebbar et al., 2016a ,b ; Ellouz et al., 2015a ,b , 2017a ,b ), we report herein on the synthesis and the mol­ecular and crystal structures of the title compound, (I), along with the Hirshfeld surface analysis and the density functional theory (DFT) calculations.graphic file with name e-75-00593-scheme1.jpg

Structural commentary  

The title compound, (I), is built up from a di­hydro­benzo­thia­zine moiety linked by –CH– and C2H2– units to 2,4-di­chloro­phenyl and 2-oxo-1,3-oxazolidine substituents, respectively (Fig. 1). The benzene ring, A (C1–C6), is oriented at a dihedral angle of 11.27 (6)° with respect to the phenyl ring D (C15–C20), ring. A puckering analysis of the heterocyclic portion (ring B; S1/N1/C1/C6–C8) of the di­hydro­benzo­thia­zine unit gave the parameters Q T = 0.1206 (14) Å, q 2 = 0.1190 (14) Å, q 3 = −0.0174 (16) Å, φ = 178.2 (8)° and θ = 98.4 (8)°, indicating a flattened-boat conformation. A similar analysis for the oxazolidine ring C (O2/N2/C11–C13) yielded q 2 = 0.1125 (18) Å and φ2 = 45.7 (9)°, indicating an envelope conformation with atom C12 at the flap position and at a distance of 0.175 (2) Å from the best plane of the other four atoms. The C9/C10 chain C is essentially perpendicular to the di­hydro­benzo­thia­zine unit, as indicated by the C6—N1—C9—C10 torsion angle of 90.61 (19)°. In the heterocyclic ring B, the C1—S1—C8 [104.29 (8)°], S1—C8—C7 [121.39 (12)°], C8—C7—N1 [120.77 (14)°], C7—N1—C6 [126.86 (14)°], C6—C1—S1 [123.97 (13)°] and N1—C6—C1 [121.60 (15)°] bond angles are enlarged compared with the corresponding values in the closely related compounds (2Z)-2-(4-chloro­benzyl­idene)-4-[2-(2-oxooxazoliden-3-yl)eth­yl]-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one, (II), (Ellouz et al., 2017a ) and (2Z)-2-[(4-fluoro­benzyl­idene]-4-(prop-2-yn-1-yl)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one, (III), (Hni et al., 2019), and they are nearly the same as those in (2Z)-4-[2-(2-oxo-1,3-oxazolidin-3-yl)eth­yl]-2(phenyl­methyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one, (IV), (Sebbar et al., 2016a ), where the heterocyclic portions of the di­hydro­benzo­thia­zine units are planar in (IV) and non-planar in (II) and (III).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, the mol­ecules form stacks extending along the normal to (104) through π-stacking inter­actions between C7=O1 and the C ring at −x + 1, −y + 1, −z + 1 [O1⋯centroid = 3.2744 (16) Å, C7⋯centroid = 3.5448 (18) Å and C7=O1⋯centroid = 92.4 (1)°] and between C13=O3 and the C ring at −x + 1, −y + 1, −z [O3⋯centroid = 3.3332 (15) Å, C13⋯centroid = 3.4800 (18) Å and C13=O3⋯centroid = 86.7 (1)°] (Figs. 2 and 3). Inter­calation of the aromatic rings between stacks (Fig. 4) leads to an overall layer structure with the layers approximately parallel to (101) (Fig. 3).

Figure 2.

Figure 2

A partial packing diagram viewed along the a-axis direction with the π-stacking inter­actions shown by dashed lines.

Figure 3.

Figure 3

A partial packing diagram viewed along the b-axis direction with the π-stacking inter­actions shown by dashed lines.

Figure 4.

Figure 4

A partial packing diagram viewed along the c-axis direction with the π-stacking inter­actions shown by dashed lines.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 5), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corres­ponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 6. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no πring–πring inter­actions. Fig. 7 clearly suggest that there are no π–π inter­actions in (I).

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.1152 to 1.5656 a.u.

Figure 6.

Figure 6

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.

Figure 7.

Figure 7

Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 8 a, and those delineated into H⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C, H⋯S/S⋯H, C⋯Cl/Cl⋯C, S⋯Cl/Cl⋯S, O⋯Cl/Cl⋯O, O⋯C/C⋯O and O⋯N/N⋯O contacts (McKinnon et al., 2007) are illustrated in Fig. 8 bl, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H (Table 1) contributing 28.4% to the overall crystal packing, which is reflected in Fig. 8 b as widely scattered points of high density with the tip at d e = d i = 1.06 Å. The pair of the scattered points of wings in the fingerprint plot delineated into H⋯Cl/Cl⋯H contacts (19.3% contribution to the HS) have a nearly symmetrical distribution of points, Fig. 8 c, with thin edges at d e + d i = 2.88 Å. The fingerprint plot delineated into H⋯O/O⋯H contacts (17.0%), Fig. 8 d, has a pair of characteristic wings with a pair of spikes with the tips at d e + d i = 2.48 Å. In the absence of C—H⋯π inter­actions, the pair of wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (14.5%) have a nearly symmetrical distribution of points, Fig. 8 e, with thick edges at d e + d i ∼2.66 Å. The C⋯C contacts (8.2%), Fig. 8 f, have an arrow-shaped distribution of points with the tip at d e = d i ∼1.68 Å. Finally, the H⋯S/S⋯H (Fig. 8 g) and C⋯Cl/Cl⋯C (Fig. 8 h) contacts (3.7% and 2.9%, respectively), and are seen as pairs of wide and thin spikes with the tips at d e + d i = 3.30 and 3.60 Å, respectively.

Figure 8.

Figure 8

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯Cl/Cl⋯H, (d) H⋯O/O⋯H, (e) H⋯C/C⋯H, (f) C⋯C, (g) H⋯S/S⋯H, (h) C⋯Cl/Cl⋯C, (i) S⋯Cl/Cl⋯S, (j) O⋯Cl/Cl⋯O, (k) O⋯C/C⋯O and (l) O⋯N/N⋯O inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Table 1. Selected interatomic distances (Å).

Cl1⋯S1i 3.5625 (7) O3⋯H10B 2.61 (2)
Cl2⋯C12ii 3.470 (2) O3⋯H5ii 2.78 (2)
Cl2⋯C3iii 3.557 (2) O3⋯H11B ii 2.80 (2)
Cl2⋯O2ii 3.3371 (13) O3⋯H9A v 2.73 (2)
Cl1⋯H3iv 3.01 (3) O3⋯H9B v 2.90 (2)
Cl1⋯H16i 2.97 (3) O3⋯H11A vi 2.82 (2)
Cl2⋯H14 2.51 (2) N2⋯O3vi 3.165 (2)
Cl2⋯H4iii 3.12 (2) N2⋯C13vi 3.190 (2)
Cl2⋯H12A ii 3.15 (2) N2⋯H9B v 2.91 (2)
Cl2⋯H3iii 2.97 (3) C5⋯C10 3.422 (3)
S1⋯N1 3.1231 (14) C7⋯C12v 3.580 (3)
S1⋯C16 3.136 (2) C9⋯C13v 3.287 (2)
S1⋯H16 2.45 (2) C10⋯C13vi 3.369 (2)
O1⋯C10 3.187 (2) C13⋯C13vi 3.320 (2)
O1⋯C12ii 3.038 (2) C5⋯H10A 2.97 (2)
O1⋯C12v 3.304 (3) C5⋯H9A 2.53 (2)
O2⋯C10vi 3.255 (2) C7⋯H10B 2.99 (2)
O2⋯C7v 3.143 (2) C8⋯H16 2.99 (2)
O3⋯N2vi 3.165 (2) C9⋯H5 2.52 (2)
O3⋯C11vi 3.328 (3) C9⋯H9B v 2.92 (2)
O3⋯C11ii 3.375 (2) C10⋯H5 2.92 (2)
O3⋯C9v 3.196 (2) C13⋯H9B v 2.70 (2)
O1⋯H12B ii 2.75 (2) C14⋯H12B v 2.98 (2)
O1⋯H9B 2.23 (2) H5⋯H9A 2.06 (3)
O1⋯H10B 2.73 (2) H5⋯H10A 2.49 (3)
O1⋯H12A ii 2.74 (2) H9A⋯H11B 2.58 (3)
O1⋯H12B v 2.79 (2) H9B⋯H9B v 2.26 (3)
O1⋯H14 2.23 (2) H10A⋯H11A 2.58 (3)
O2⋯H10B vi 2.75 (2) H10B⋯H12A vi 2.45 (3)
O2⋯H4ii 2.62 (2) H12A⋯H10B vi 2.45 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C and H⋯S/S⋯H inter­actions in Fig. 9 af, respectively.

Figure 9.

Figure 9

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯Cl/Cl⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) C⋯C and (f) H⋯S/S⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

DFT calculations  

The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement. The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 10. The HOMO and LUMO are localized in the plane extending from the whole (2Z)-2-[(2,4-di­chloro­phen­yl)methyl­idene]-4-[2-(2-oxo-1,3-oxa­zolidin-3-yl)eth­yl]3,4-di­hydro-2H-1,4- benzo­thia­zin-3-one ring. The energy band gap [ΔE = E LUMO − E HOMO] of the mol­ecule is about 3.42 eV, and the frontier mol­ecular orbital energies, E HOMO and E LUMO are −5.44 and −2.02 eV, respectively.

Figure 10.

Figure 10

The energy-band gap of the title compound.

Database survey  

A search of the Cambridge Crystallographic Database (Groom et al., 2016; updated to Nov. 2018) using the fragment II (R 1 = Ph, R 2 = C; Fig. 11) gave 14 hits with R 1 = Ph and R 2 = CH2COOH (Sebbar et al., 2016c ), n-octa­decyl (Sebbar et al., 2017a ), CH2C≡CH (Sebbar et al., 2014a ), IIa (Sebbar et al., 2016a ), CH2COOEt (Zerzouf et al., 2001), IIb (Ellouz et al., 2015a ), n-Bu (Sebbar et al., 2014b ), IIc (Sebbar et al., 2016d ), Me (Ellouz et al., 2015b ) and IId (Sebbar et al., 2015). In addition, there are structures with R 1 = 4-ClC6H4 and R 2 = CH2Ph2 (Ellouz et al., 2016c ), n-Bu (Ellouz et al., 2017a ), IIa (Ellouz et al., 2017c ) and R 1 = 2-ClC6H4, R 2 = CH2C≡CH (Sebbar et al., 2017b ). In the majority of these, the heterocyclic ring is quite non-planar with the dihedral angle between the plane defined by the benzene ring plus the nitro­gen and sulfur atoms and that defined by nitro­gen and sulfur and the other two carbon atoms separating them ranging from ca 29° in CH2C≡CH (Sebbar et al., 2014a ), to 36° in IId (Sebbar et al., 2015), which includes the value of ca 30° for 2H-1,4-benzo­thia­zin-3(4H)-one (WAKLUQ 01; Merola, 2013). The other three (IIa, IIc and R 1 = 4-ClC6H4 and R 2 = CH2Ph2; Ellouz et al., 2016c ) have the benzo­thia­zine unit nearly planar with a corresponding dihedral angle of ca 3–4°. In the case of IIa, the displacement ellipsoid for the sulfur atom shows a considerable elongation perpendicular to the mean plane of the heterocyclic ring, suggesting disorder, and a greater degree of non-planarity, but for the other two, there is no obvious source for the near planarity.

Figure 11.

Figure 11

Related structures.

Synthesis and crystallization  

Tetra-n-butyl­ammonium bromide (0.1 mmol), 2.20 equiv. of bis­(2-chloro­eth­yl)amine hydro­chloride and 2.00 equiv. of potassium carbonate were added to a solution of (Z)-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one (1.5 mmol) in DMF (25 ml). The mixture was stirred at 353 K for 6 h. After removal of salts by filtration, the solution was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The remaining salts were extracted with distilled water. The residue obtained was chromatographed on a silica gel column (eluent: ethyl acetate/hexa­ne: 3/2). The isolated solid was recrystallized from ethanol solution to afford colourless crystals [light yellow in CIF?] (yield: 67%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were located in a difference-Fourier map, and freely refined.

Table 2. Experimental details.

Crystal data
Chemical formula C20H16Cl2N2O3S
M r 435.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 18.4615 (8), 12.8567 (5), 7.9251 (4)
β (°) 96.926 (2)
V3) 1867.33 (14)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.40
Crystal size (mm) 0.21 × 0.12 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015)
T min, T max 0.51, 0.80
No. of measured, independent and observed [I > 2σ(I)] reflections 14033, 3678, 3252
R int 0.032
(sin θ/λ)max−1) 0.619
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.093, 1.05
No. of reflections 3678
No. of parameters 317
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.37, −0.38

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019004250/lh5895sup1.cif

e-75-00593-sup1.cif (438.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004250/lh5895Isup2.hkl

e-75-00593-Isup2.hkl (293.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004250/lh5895Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989019004250/lh5895Isup4.cml

CCDC reference: 1906476

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C20H16Cl2N2O3S F(000) = 896
Mr = 435.31 Dx = 1.548 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 18.4615 (8) Å Cell parameters from 9952 reflections
b = 12.8567 (5) Å θ = 3.5–72.5°
c = 7.9251 (4) Å µ = 4.39 mm1
β = 96.926 (2)° T = 150 K
V = 1867.33 (14) Å3 Column, light yellow
Z = 4 0.21 × 0.12 × 0.05 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 3678 independent reflections
Radiation source: INCOATEC IµS micro–focus source 3252 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.032
Detector resolution: 10.4167 pixels mm-1 θmax = 72.5°, θmin = 2.4°
ω scans h = −22→21
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −14→15
Tmin = 0.51, Tmax = 0.80 l = −9→9
14033 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: difference Fourier map
wR(F2) = 0.093 All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.9972P] where P = (Fo2 + 2Fc2)/3
3678 reflections (Δ/σ)max = 0.001
317 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.02396 (3) 0.92135 (4) 0.75404 (8) 0.05021 (17)
Cl2 0.23463 (3) 0.91630 (3) 0.51698 (8) 0.04067 (15)
S1 0.17782 (2) 0.48226 (3) 0.53284 (7) 0.03232 (14)
O1 0.35726 (7) 0.62658 (10) 0.44041 (18) 0.0330 (3)
O2 0.61496 (6) 0.46053 (10) 0.16700 (16) 0.0267 (3)
O3 0.54282 (7) 0.59880 (10) 0.19909 (16) 0.0299 (3)
N1 0.33467 (7) 0.45458 (11) 0.42952 (18) 0.0227 (3)
N2 0.49920 (8) 0.43048 (11) 0.19710 (19) 0.0240 (3)
C1 0.21852 (9) 0.36941 (13) 0.4668 (2) 0.0237 (3)
C2 0.17612 (10) 0.27967 (14) 0.4671 (3) 0.0298 (4)
H2 0.1287 (13) 0.2873 (18) 0.496 (3) 0.036 (6)*
C3 0.20375 (10) 0.18467 (15) 0.4260 (3) 0.0328 (4)
H3 0.1739 (14) 0.125 (2) 0.424 (3) 0.043 (6)*
C4 0.27384 (10) 0.17928 (14) 0.3800 (2) 0.0299 (4)
H4 0.2935 (12) 0.1146 (19) 0.352 (3) 0.037 (6)*
C5 0.31603 (10) 0.26806 (14) 0.3770 (2) 0.0255 (4)
H5 0.3619 (13) 0.2616 (18) 0.342 (3) 0.035 (6)*
C6 0.28970 (9) 0.36498 (13) 0.4241 (2) 0.0221 (3)
C7 0.31385 (9) 0.55557 (13) 0.4532 (2) 0.0238 (3)
C8 0.23937 (9) 0.57999 (13) 0.5014 (2) 0.0233 (3)
C9 0.41197 (9) 0.44207 (14) 0.4043 (2) 0.0235 (3)
H9A 0.4306 (11) 0.3741 (17) 0.457 (3) 0.029 (5)*
H9B 0.4388 (11) 0.4975 (17) 0.468 (3) 0.028 (5)*
C10 0.42367 (9) 0.45187 (15) 0.2187 (2) 0.0264 (4)
H10A 0.3897 (12) 0.4031 (17) 0.146 (3) 0.031 (5)*
H10B 0.4108 (12) 0.5235 (18) 0.181 (3) 0.033 (6)*
C11 0.52850 (10) 0.32643 (14) 0.1876 (3) 0.0285 (4)
H11A 0.4991 (13) 0.2859 (18) 0.099 (3) 0.038 (6)*
H11B 0.5292 (13) 0.2906 (19) 0.295 (3) 0.043 (6)*
C12 0.60490 (10) 0.34916 (14) 0.1433 (2) 0.0272 (4)
H12A 0.6082 (12) 0.3331 (18) 0.024 (3) 0.037 (6)*
H12B 0.6420 (13) 0.3167 (19) 0.219 (3) 0.039 (6)*
C13 0.54980 (9) 0.50543 (13) 0.1887 (2) 0.0227 (3)
C14 0.22602 (9) 0.68205 (14) 0.5250 (2) 0.0246 (4)
H14 0.2654 (11) 0.7266 (17) 0.504 (3) 0.027 (5)*
C15 0.16331 (9) 0.73590 (13) 0.5785 (2) 0.0241 (4)
C16 0.10234 (10) 0.68752 (15) 0.6352 (3) 0.0311 (4)
H16 0.0973 (13) 0.612 (2) 0.640 (3) 0.044 (7)*
C17 0.04455 (10) 0.74288 (16) 0.6871 (3) 0.0344 (4)
H17 0.0037 (15) 0.710 (2) 0.725 (3) 0.050 (7)*
C18 0.04662 (10) 0.84994 (16) 0.6841 (3) 0.0330 (4)
C19 0.10510 (10) 0.90291 (15) 0.6301 (3) 0.0325 (4)
H19 0.1073 (11) 0.9771 (19) 0.626 (3) 0.032 (6)*
C20 0.16222 (10) 0.84560 (14) 0.5794 (2) 0.0271 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0335 (3) 0.0432 (3) 0.0774 (4) 0.0150 (2) 0.0207 (3) −0.0079 (3)
Cl2 0.0354 (3) 0.0187 (2) 0.0718 (4) −0.00040 (17) 0.0224 (2) 0.0036 (2)
S1 0.0250 (2) 0.0169 (2) 0.0593 (3) −0.00047 (16) 0.0225 (2) −0.00057 (19)
O1 0.0279 (6) 0.0224 (7) 0.0522 (8) −0.0045 (5) 0.0198 (6) −0.0021 (6)
O2 0.0227 (6) 0.0208 (6) 0.0390 (7) −0.0020 (5) 0.0131 (5) −0.0006 (5)
O3 0.0380 (7) 0.0183 (6) 0.0349 (7) 0.0008 (5) 0.0106 (5) 0.0001 (5)
N1 0.0187 (7) 0.0201 (7) 0.0308 (7) 0.0006 (5) 0.0097 (5) −0.0007 (6)
N2 0.0224 (7) 0.0182 (7) 0.0338 (8) −0.0002 (5) 0.0131 (6) −0.0008 (6)
C1 0.0231 (8) 0.0175 (8) 0.0316 (9) 0.0011 (6) 0.0080 (7) 0.0013 (6)
C2 0.0232 (8) 0.0219 (9) 0.0454 (11) −0.0026 (7) 0.0097 (7) 0.0003 (8)
C3 0.0306 (9) 0.0192 (9) 0.0493 (12) −0.0039 (7) 0.0079 (8) −0.0017 (8)
C4 0.0323 (9) 0.0187 (9) 0.0395 (10) 0.0027 (7) 0.0070 (8) −0.0039 (7)
C5 0.0252 (8) 0.0221 (9) 0.0304 (9) 0.0036 (7) 0.0083 (7) −0.0007 (7)
C6 0.0220 (8) 0.0183 (8) 0.0268 (8) −0.0015 (6) 0.0060 (6) 0.0008 (6)
C7 0.0225 (8) 0.0186 (8) 0.0320 (9) −0.0007 (6) 0.0105 (7) 0.0000 (7)
C8 0.0212 (8) 0.0187 (8) 0.0319 (9) −0.0005 (6) 0.0103 (6) 0.0012 (6)
C9 0.0167 (7) 0.0272 (9) 0.0274 (8) 0.0014 (7) 0.0063 (6) −0.0011 (7)
C10 0.0219 (8) 0.0298 (10) 0.0287 (9) 0.0022 (7) 0.0079 (7) 0.0010 (7)
C11 0.0294 (9) 0.0171 (8) 0.0412 (10) −0.0003 (7) 0.0137 (8) 0.0007 (7)
C12 0.0280 (9) 0.0189 (8) 0.0365 (10) 0.0015 (7) 0.0116 (8) −0.0030 (7)
C13 0.0257 (8) 0.0212 (8) 0.0224 (8) −0.0008 (7) 0.0085 (6) 0.0008 (6)
C14 0.0217 (8) 0.0193 (8) 0.0346 (9) −0.0008 (7) 0.0109 (7) 0.0007 (7)
C15 0.0229 (8) 0.0206 (8) 0.0299 (9) 0.0021 (6) 0.0075 (7) 0.0005 (7)
C16 0.0265 (9) 0.0236 (9) 0.0456 (11) −0.0001 (7) 0.0143 (8) −0.0021 (8)
C17 0.0255 (9) 0.0330 (10) 0.0475 (12) 0.0011 (8) 0.0155 (8) −0.0029 (8)
C18 0.0255 (9) 0.0328 (10) 0.0416 (10) 0.0085 (8) 0.0087 (8) −0.0040 (8)
C19 0.0311 (10) 0.0226 (9) 0.0445 (11) 0.0062 (7) 0.0070 (8) −0.0002 (8)
C20 0.0250 (8) 0.0219 (9) 0.0353 (9) 0.0019 (7) 0.0070 (7) 0.0010 (7)

Geometric parameters (Å, º)

Cl1—C18 1.7385 (19) C7—C8 1.504 (2)
Cl2—C20 1.7373 (18) C8—C14 1.352 (2)
S1—C8 1.7321 (17) C9—C10 1.518 (2)
S1—C1 1.7430 (17) C9—H9A 1.01 (2)
O1—C7 1.227 (2) C9—H9B 0.97 (2)
O2—C13 1.364 (2) C10—H10A 1.01 (2)
O2—C12 1.453 (2) C10—H10B 0.99 (2)
O3—C13 1.211 (2) C11—C12 1.522 (2)
N1—C7 1.374 (2) C11—H11A 0.98 (2)
N1—C6 1.418 (2) C11—H11B 0.97 (3)
N1—C9 1.473 (2) C12—H12A 0.97 (2)
N2—C13 1.349 (2) C12—H12B 0.95 (2)
N2—C11 1.448 (2) C14—C15 1.455 (2)
N2—C10 1.451 (2) C14—H14 0.96 (2)
C1—C2 1.394 (2) C15—C16 1.406 (2)
C1—C6 1.397 (2) C15—C20 1.411 (2)
C2—C3 1.378 (3) C16—C17 1.386 (3)
C2—H2 0.94 (2) C16—H16 0.97 (3)
C3—C4 1.388 (3) C17—C18 1.377 (3)
C3—H3 0.94 (3) C17—H17 0.95 (3)
C4—C5 1.384 (3) C18—C19 1.387 (3)
C4—H4 0.94 (2) C19—C20 1.385 (3)
C5—C6 1.404 (2) C19—H19 0.96 (2)
C5—H5 0.93 (2)
Cl1···S1i 3.5625 (7) O3···H10B 2.61 (2)
Cl2···C12ii 3.470 (2) O3···H5ii 2.78 (2)
Cl2···C3iii 3.557 (2) O3···H11Bii 2.80 (2)
Cl2···O2ii 3.3371 (13) O3···H9Av 2.73 (2)
Cl1···H3iv 3.01 (3) O3···H9Bv 2.90 (2)
Cl1···H16i 2.97 (3) O3···H11Avi 2.82 (2)
Cl2···H14 2.51 (2) N2···O3vi 3.165 (2)
Cl2···H4iii 3.12 (2) N2···C13vi 3.190 (2)
Cl2···H12Aii 3.15 (2) N2···H9Bv 2.91 (2)
Cl2···H3iii 2.97 (3) C5···C10 3.422 (3)
S1···N1 3.1231 (14) C7···C12v 3.580 (3)
S1···C16 3.136 (2) C9···C13v 3.287 (2)
S1···H16 2.45 (2) C10···C13vi 3.369 (2)
O1···C10 3.187 (2) C13···C13vi 3.320 (2)
O1···C12ii 3.038 (2) C5···H10A 2.97 (2)
O1···C12v 3.304 (3) C5···H9A 2.53 (2)
O2···C10vi 3.255 (2) C7···H10B 2.99 (2)
O2···C7v 3.143 (2) C8···H16 2.99 (2)
O3···N2vi 3.165 (2) C9···H5 2.52 (2)
O3···C11vi 3.328 (3) C9···H9Bv 2.92 (2)
O3···C11ii 3.375 (2) C10···H5 2.92 (2)
O3···C9v 3.196 (2) C13···H9Bv 2.70 (2)
O1···H12Bii 2.75 (2) C14···H12Bv 2.98 (2)
O1···H9B 2.23 (2) H5···H9A 2.06 (3)
O1···H10B 2.73 (2) H5···H10A 2.49 (3)
O1···H12Aii 2.74 (2) H9A···H11B 2.58 (3)
O1···H12Bv 2.79 (2) H9B···H9Bv 2.26 (3)
O1···H14 2.23 (2) H10A···H11A 2.58 (3)
O2···H10Bvi 2.75 (2) H10B···H12Avi 2.45 (3)
O2···H4ii 2.62 (2) H12A···H10Bvi 2.45 (3)
C8—S1—C1 104.29 (8) C9—C10—H10A 110.3 (12)
C13—O2—C12 109.43 (13) N2—C10—H10B 109.8 (13)
C7—N1—C6 126.86 (14) C9—C10—H10B 108.4 (13)
C7—N1—C9 114.42 (14) H10A—C10—H10B 107.1 (17)
C6—N1—C9 118.72 (14) N2—C11—C12 101.36 (14)
C13—N2—C11 113.07 (14) N2—C11—H11A 110.5 (13)
C13—N2—C10 123.45 (15) C12—C11—H11A 112.7 (14)
C11—N2—C10 123.45 (14) N2—C11—H11B 111.1 (14)
C2—C1—C6 120.75 (16) C12—C11—H11B 112.3 (14)
C2—C1—S1 115.20 (13) H11A—C11—H11B 108.8 (19)
C6—C1—S1 123.97 (13) O2—C12—C11 105.47 (13)
C3—C2—C1 120.61 (17) O2—C12—H12A 108.2 (14)
C3—C2—H2 122.4 (14) C11—C12—H12A 110.6 (13)
C1—C2—H2 117.0 (14) O2—C12—H12B 106.3 (14)
C2—C3—C4 119.33 (17) C11—C12—H12B 112.9 (14)
C2—C3—H3 119.4 (15) H12A—C12—H12B 113.0 (19)
C4—C3—H3 121.2 (15) O3—C13—N2 128.64 (16)
C5—C4—C3 120.53 (17) O3—C13—O2 122.07 (15)
C5—C4—H4 119.3 (14) N2—C13—O2 109.30 (14)
C3—C4—H4 120.1 (14) C8—C14—C15 131.80 (16)
C4—C5—C6 120.93 (16) C8—C14—H14 113.7 (13)
C4—C5—H5 117.9 (14) C15—C14—H14 114.5 (13)
C6—C5—H5 121.2 (14) C16—C15—C20 115.34 (16)
C1—C6—C5 117.79 (15) C16—C15—C14 125.33 (16)
C1—C6—N1 121.60 (15) C20—C15—C14 119.31 (16)
C5—C6—N1 120.60 (15) C17—C16—C15 122.84 (18)
O1—C7—N1 119.71 (15) C17—C16—H16 114.8 (15)
O1—C7—C8 119.48 (15) C15—C16—H16 122.4 (15)
N1—C7—C8 120.77 (14) C18—C17—C16 118.95 (18)
C14—C8—C7 115.16 (15) C18—C17—H17 118.7 (16)
C14—C8—S1 123.40 (13) C16—C17—H17 122.4 (16)
C7—C8—S1 121.39 (12) C17—C18—C19 121.36 (17)
N1—C9—C10 112.06 (14) C17—C18—Cl1 119.91 (15)
N1—C9—H9A 109.0 (12) C19—C18—Cl1 118.70 (15)
C10—C9—H9A 113.1 (12) C20—C19—C18 118.45 (18)
N1—C9—H9B 106.8 (12) C20—C19—H19 118.9 (13)
C10—C9—H9B 108.7 (12) C18—C19—H19 122.7 (13)
H9A—C9—H9B 106.9 (16) C19—C20—C15 123.05 (17)
N2—C10—C9 110.45 (14) C19—C20—Cl2 116.31 (14)
N2—C10—H10A 110.7 (12) C15—C20—Cl2 120.64 (13)
C8—S1—C1—C2 −175.06 (14) C11—N2—C10—C9 81.1 (2)
C8—S1—C1—C6 8.14 (18) N1—C9—C10—N2 −175.21 (14)
C6—C1—C2—C3 0.3 (3) C13—N2—C11—C12 −8.6 (2)
S1—C1—C2—C3 −176.63 (16) C10—N2—C11—C12 173.17 (16)
C1—C2—C3—C4 −1.5 (3) C13—O2—C12—C11 −10.95 (19)
C2—C3—C4—C5 0.6 (3) N2—C11—C12—O2 11.27 (19)
C3—C4—C5—C6 1.5 (3) C11—N2—C13—O3 −177.18 (18)
C2—C1—C6—C5 1.8 (3) C10—N2—C13—O3 1.1 (3)
S1—C1—C6—C5 178.44 (13) C11—N2—C13—O2 2.2 (2)
C2—C1—C6—N1 −177.45 (16) C10—N2—C13—O2 −179.56 (15)
S1—C1—C6—N1 −0.8 (2) C12—O2—C13—O3 −174.76 (16)
C4—C5—C6—C1 −2.7 (3) C12—O2—C13—N2 5.81 (18)
C4—C5—C6—N1 176.56 (16) C7—C8—C14—C15 −176.93 (18)
C7—N1—C6—C1 −9.1 (3) S1—C8—C14—C15 0.3 (3)
C9—N1—C6—C1 172.24 (16) C8—C14—C15—C16 6.6 (3)
C7—N1—C6—C5 171.68 (17) C8—C14—C15—C20 −175.08 (19)
C9—N1—C6—C5 −7.0 (2) C20—C15—C16—C17 0.6 (3)
C6—N1—C7—O1 −173.69 (16) C14—C15—C16—C17 179.02 (19)
C9—N1—C7—O1 5.0 (2) C15—C16—C17—C18 −0.3 (3)
C6—N1—C7—C8 8.7 (3) C16—C17—C18—C19 0.1 (3)
C9—N1—C7—C8 −172.58 (15) C16—C17—C18—Cl1 −178.22 (16)
O1—C7—C8—C14 0.9 (3) C17—C18—C19—C20 −0.3 (3)
N1—C7—C8—C14 178.52 (16) Cl1—C18—C19—C20 178.04 (15)
O1—C7—C8—S1 −176.37 (14) C18—C19—C20—C15 0.7 (3)
N1—C7—C8—S1 1.2 (2) C18—C19—C20—Cl2 −178.85 (15)
C1—S1—C8—C14 174.78 (16) C16—C15—C20—C19 −0.8 (3)
C1—S1—C8—C7 −8.17 (17) C14—C15—C20—C19 −179.34 (18)
C7—N1—C9—C10 −88.22 (19) C16—C15—C20—Cl2 178.68 (14)
C6—N1—C9—C10 90.61 (19) C14—C15—C20—Cl2 0.2 (2)
C13—N2—C10—C9 −97.0 (2)

Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x, y+1, z; (iv) −x, −y+1, −z+1; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y+1, −z.

Funding Statement

This work was funded by Tulane University grant . National Science Foundation grant 1228232. Hacettepe Üniversitesi grant 013 D04 602 004 to T. Hökelek.

References

  1. Aotsuka, T., Hosono, H., Kurihara, T., Nakamura, Y., Matsui, T. & Kobayashi, F. (1994). Chem. Pharm. Bull. 42, 1264–1271. [DOI] [PubMed]
  2. Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. 50, 1178–1188.
  3. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  6. Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497.
  7. Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.
  8. Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819.
  9. Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o1022–o1023. [DOI] [PMC free article] [PubMed]
  10. Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.
  11. Ellouz, M., Sebbar, N. K., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o862–o863. [DOI] [PMC free article] [PubMed]
  12. Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097.
  13. Ellouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017c). IUCrData, 2, x170870.
  14. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
  15. Fujimura, K., Ota, A. & Kawashima, Y. (1996). Chem. Pharm. Bull. 44, 542–546. [DOI] [PubMed]
  16. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  17. Gupta, R. R. & Kumar, R. (1986). J. Fluor. Chem. 31, 19–24.
  18. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  19. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  20. Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019). Acta Cryst. E75, 372–377. [DOI] [PMC free article] [PubMed]
  21. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  22. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  23. Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.
  24. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. [DOI] [PubMed]
  25. Merola, J. S. (2013). Private Communication (refcode 977080). CCDC, Cambridge, England.
  26. Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682. [DOI] [PubMed]
  27. Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330. [DOI] [PubMed]
  28. Sebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o686. [DOI] [PMC free article] [PubMed]
  29. Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016d). IUCrData, 1, x161823.
  30. Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423–o424. [DOI] [PMC free article] [PubMed]
  31. Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). IUCrData, 1, x161012.
  32. Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. & Mague, J. T. (2017a). IUCrData, 2, x170695.
  33. Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.
  34. Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCr Data 2, x170889.
  35. Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845–6862.
  36. Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614. [DOI] [PMC free article] [PubMed]
  37. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  38. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  39. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  40. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  41. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst. Eng. Comm, 10, 377–388.
  42. Takemoto, I., Yamasaki, K. & Kaminaka, H. (1994). Biosci. Biotechnol. Biochem. 58, 788–789.
  43. Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245. [DOI] [PubMed]
  44. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  45. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
  46. Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591–593.
  47. Wammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596–601. [DOI] [PubMed]
  48. Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415.
  49. Zerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498–o499.
  50. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019004250/lh5895sup1.cif

e-75-00593-sup1.cif (438.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004250/lh5895Isup2.hkl

e-75-00593-Isup2.hkl (293.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004250/lh5895Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989019004250/lh5895Isup4.cml

CCDC reference: 1906476

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES