In the title compound, the heterocyclic portion of the dihydrobenzothiazine unit adopts a flattened-boat conformation, while the oxazolidine ring adopts an envelope conformation. The 2-carbon link to the oxazole ring is perpendicular to the best plane through the dihydrobenzothiazine unit. In the crystal, the molecules form stacks extending along the normal to (104) through π-stacking interactions between the two carbonyl groups and inversion-related oxazole rings. Aromatic rings from neighbouring stacks intercalate to form an overall layer structure.
Keywords: crystal structure, dihydrobenzothiazine, oxazole, π-stacking, Hirshfeld surface
Abstract
The title compound, C20H16Cl2N2O3S, is built up from a dihydrobenzothiazine moiety linked by –CH– and –C2H4– units to 2,4-dichlorophenyl and 2-oxo-1,3-oxazolidine substituents, where the oxazole ring and the heterocyclic portion of the dihydrobenzothiazine unit adopt envelope and flattened-boat conformations, respectively. The 2-carbon link to the oxazole ring is nearly perpendicular to the mean plane of the dihydrobenzothiazine unit. In the crystal, the molecules form stacks extending along the normal to (104) with the aromatic rings from neighbouring stacks intercalating to form an overall layer structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (28.4%), H⋯Cl/Cl⋯H (19.3%), H⋯O/O⋯H (17.0%), H⋯C/C⋯H (14.5%) and C⋯C (8.2%) interactions. Weak hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap.
Chemical context
Compounds containing a 1,4-benzothiazine backbone have been studied extensively both in academic and industrial laboratories. These molecules exhibit a wide range of biological applications indicating that the 1,4-benzothiazine moiety is a template potentially useful in medicinal chemistry research and therapeutic applications such as antipyretic (Warren & Knaus, 1987 ▸), anti-microbial (Armenise et al., 2012 ▸; Rathore & Kumar, 2006 ▸; Sabatini et al., 2008 ▸) , anti-viral (Malagu et al., 1998 ▸), herbicide (Takemoto et al., 1994 ▸), anti-cancer (Gupta & Kumar, 1986 ▸) and anti-oxidant (Zia-ur-Rehman et al., 2009 ▸) areas. They have also been reported as precursors for the syntheses of new compounds (Vidal et al., 2006 ▸) possessing anti-diabetic (Tawada et al., 1990 ▸) and anti-corrosion activities (Ellouz et al., 2016a
▸,b
▸). 1,4-Benzothiazine-containing compounds are important because of their potential applications in the treatment of diabetes complications, by inhibiting aldose reductase (Aotsuka et al., 1994 ▸). They are also used as analgesics (Wammack et al., 2002 ▸) and and antagonists of Ca2+ (Fujimura et al., 1996 ▸). As a continuation of our previous work on the syntheses and the biological properties of new 1,4-benzothiazine derivatives (Sebbar et al., 2016a
▸,b
▸; Ellouz et al., 2015a
▸,b
▸, 2017a
▸,b
▸), we report herein on the synthesis and the molecular and crystal structures of the title compound, (I), along with the Hirshfeld surface analysis and the density functional theory (DFT) calculations.
Structural commentary
The title compound, (I), is built up from a dihydrobenzothiazine moiety linked by –CH– and C2H2– units to 2,4-dichlorophenyl and 2-oxo-1,3-oxazolidine substituents, respectively (Fig. 1 ▸). The benzene ring, A (C1–C6), is oriented at a dihedral angle of 11.27 (6)° with respect to the phenyl ring D (C15–C20), ring. A puckering analysis of the heterocyclic portion (ring B; S1/N1/C1/C6–C8) of the dihydrobenzothiazine unit gave the parameters Q T = 0.1206 (14) Å, q 2 = 0.1190 (14) Å, q 3 = −0.0174 (16) Å, φ = 178.2 (8)° and θ = 98.4 (8)°, indicating a flattened-boat conformation. A similar analysis for the oxazolidine ring C (O2/N2/C11–C13) yielded q 2 = 0.1125 (18) Å and φ2 = 45.7 (9)°, indicating an envelope conformation with atom C12 at the flap position and at a distance of 0.175 (2) Å from the best plane of the other four atoms. The C9/C10 chain C is essentially perpendicular to the dihydrobenzothiazine unit, as indicated by the C6—N1—C9—C10 torsion angle of 90.61 (19)°. In the heterocyclic ring B, the C1—S1—C8 [104.29 (8)°], S1—C8—C7 [121.39 (12)°], C8—C7—N1 [120.77 (14)°], C7—N1—C6 [126.86 (14)°], C6—C1—S1 [123.97 (13)°] and N1—C6—C1 [121.60 (15)°] bond angles are enlarged compared with the corresponding values in the closely related compounds (2Z)-2-(4-chlorobenzylidene)-4-[2-(2-oxooxazoliden-3-yl)ethyl]-3,4-dihydro-2H-1,4-benzothiazin-3-one, (II), (Ellouz et al., 2017a ▸) and (2Z)-2-[(4-fluorobenzylidene]-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-1,4-benzothiazin-3-one, (III), (Hni et al., 2019 ▸), and they are nearly the same as those in (2Z)-4-[2-(2-oxo-1,3-oxazolidin-3-yl)ethyl]-2(phenylmethylidene)-3,4-dihydro-2H-1,4-benzothiazin-3-one, (IV), (Sebbar et al., 2016a ▸), where the heterocyclic portions of the dihydrobenzothiazine units are planar in (IV) and non-planar in (II) and (III).
Figure 1.
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Supramolecular features
In the crystal, the molecules form stacks extending along the normal to (104) through π-stacking interactions between C7=O1 and the C ring at −x + 1, −y + 1, −z + 1 [O1⋯centroid = 3.2744 (16) Å, C7⋯centroid = 3.5448 (18) Å and C7=O1⋯centroid = 92.4 (1)°] and between C13=O3 and the C ring at −x + 1, −y + 1, −z [O3⋯centroid = 3.3332 (15) Å, C13⋯centroid = 3.4800 (18) Å and C13=O3⋯centroid = 86.7 (1)°] (Figs. 2 ▸ and 3 ▸). Intercalation of the aromatic rings between stacks (Fig. 4 ▸) leads to an overall layer structure with the layers approximately parallel to (101) (Fig. 3 ▸).
Figure 2.
A partial packing diagram viewed along the a-axis direction with the π-stacking interactions shown by dashed lines.
Figure 3.
A partial packing diagram viewed along the b-axis direction with the π-stacking interactions shown by dashed lines.
Figure 4.
A partial packing diagram viewed along the c-axis direction with the π-stacking interactions shown by dashed lines.
Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977 ▸; Spackman & Jayatilaka, 2009 ▸) was carried out by using CrystalExplorer17.5 (Turner et al., 2017 ▸). In the HS plotted over d norm (Fig. 5 ▸), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016 ▸). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008 ▸; Jayatilaka et al., 2005 ▸), as shown in Fig. 6 ▸. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no πring–πring interactions. Fig. 7 ▸ clearly suggest that there are no π–π interactions in (I).
Figure 5.
View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.1152 to 1.5656 a.u.
Figure 6.
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.
Figure 7.
Hirshfeld surface of the title compound plotted over shape-index.
The overall two-dimensional fingerprint plot, Fig. 8 ▸ a, and those delineated into H⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C, H⋯S/S⋯H, C⋯Cl/Cl⋯C, S⋯Cl/Cl⋯S, O⋯Cl/Cl⋯O, O⋯C/C⋯O and O⋯N/N⋯O contacts (McKinnon et al., 2007 ▸) are illustrated in Fig. 8 ▸ b–l, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H (Table 1 ▸) contributing 28.4% to the overall crystal packing, which is reflected in Fig. 8 ▸ b as widely scattered points of high density with the tip at d e = d i = 1.06 Å. The pair of the scattered points of wings in the fingerprint plot delineated into H⋯Cl/Cl⋯H contacts (19.3% contribution to the HS) have a nearly symmetrical distribution of points, Fig. 8 ▸ c, with thin edges at d e + d i = 2.88 Å. The fingerprint plot delineated into H⋯O/O⋯H contacts (17.0%), Fig. 8 ▸ d, has a pair of characteristic wings with a pair of spikes with the tips at d e + d i = 2.48 Å. In the absence of C—H⋯π interactions, the pair of wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (14.5%) have a nearly symmetrical distribution of points, Fig. 8 ▸ e, with thick edges at d e + d i ∼2.66 Å. The C⋯C contacts (8.2%), Fig. 8 ▸ f, have an arrow-shaped distribution of points with the tip at d e = d i ∼1.68 Å. Finally, the H⋯S/S⋯H (Fig. 8 ▸ g) and C⋯Cl/Cl⋯C (Fig. 8 ▸ h) contacts (3.7% and 2.9%, respectively), and are seen as pairs of wide and thin spikes with the tips at d e + d i = 3.30 and 3.60 Å, respectively.
Figure 8.
The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) H⋯H, (c) H⋯Cl/Cl⋯H, (d) H⋯O/O⋯H, (e) H⋯C/C⋯H, (f) C⋯C, (g) H⋯S/S⋯H, (h) C⋯Cl/Cl⋯C, (i) S⋯Cl/Cl⋯S, (j) O⋯Cl/Cl⋯O, (k) O⋯C/C⋯O and (l) O⋯N/N⋯O interactions. The d i and d e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface contacts.
Table 1. Selected interatomic distances (Å).
| Cl1⋯S1i | 3.5625 (7) | O3⋯H10B | 2.61 (2) |
| Cl2⋯C12ii | 3.470 (2) | O3⋯H5ii | 2.78 (2) |
| Cl2⋯C3iii | 3.557 (2) | O3⋯H11B ii | 2.80 (2) |
| Cl2⋯O2ii | 3.3371 (13) | O3⋯H9A v | 2.73 (2) |
| Cl1⋯H3iv | 3.01 (3) | O3⋯H9B v | 2.90 (2) |
| Cl1⋯H16i | 2.97 (3) | O3⋯H11A vi | 2.82 (2) |
| Cl2⋯H14 | 2.51 (2) | N2⋯O3vi | 3.165 (2) |
| Cl2⋯H4iii | 3.12 (2) | N2⋯C13vi | 3.190 (2) |
| Cl2⋯H12A ii | 3.15 (2) | N2⋯H9B v | 2.91 (2) |
| Cl2⋯H3iii | 2.97 (3) | C5⋯C10 | 3.422 (3) |
| S1⋯N1 | 3.1231 (14) | C7⋯C12v | 3.580 (3) |
| S1⋯C16 | 3.136 (2) | C9⋯C13v | 3.287 (2) |
| S1⋯H16 | 2.45 (2) | C10⋯C13vi | 3.369 (2) |
| O1⋯C10 | 3.187 (2) | C13⋯C13vi | 3.320 (2) |
| O1⋯C12ii | 3.038 (2) | C5⋯H10A | 2.97 (2) |
| O1⋯C12v | 3.304 (3) | C5⋯H9A | 2.53 (2) |
| O2⋯C10vi | 3.255 (2) | C7⋯H10B | 2.99 (2) |
| O2⋯C7v | 3.143 (2) | C8⋯H16 | 2.99 (2) |
| O3⋯N2vi | 3.165 (2) | C9⋯H5 | 2.52 (2) |
| O3⋯C11vi | 3.328 (3) | C9⋯H9B v | 2.92 (2) |
| O3⋯C11ii | 3.375 (2) | C10⋯H5 | 2.92 (2) |
| O3⋯C9v | 3.196 (2) | C13⋯H9B v | 2.70 (2) |
| O1⋯H12B ii | 2.75 (2) | C14⋯H12B v | 2.98 (2) |
| O1⋯H9B | 2.23 (2) | H5⋯H9A | 2.06 (3) |
| O1⋯H10B | 2.73 (2) | H5⋯H10A | 2.49 (3) |
| O1⋯H12A ii | 2.74 (2) | H9A⋯H11B | 2.58 (3) |
| O1⋯H12B v | 2.79 (2) | H9B⋯H9B v | 2.26 (3) |
| O1⋯H14 | 2.23 (2) | H10A⋯H11A | 2.58 (3) |
| O2⋯H10B vi | 2.75 (2) | H10B⋯H12A vi | 2.45 (3) |
| O2⋯H4ii | 2.62 (2) | H12A⋯H10B vi | 2.45 (3) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
; (vi)
.
The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C and H⋯S/S⋯H interactions in Fig. 9 ▸ a–f, respectively.
Figure 9.
The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯Cl/Cl⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) C⋯C and (f) H⋯S/S⋯H interactions.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015 ▸).
DFT calculations
The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993 ▸) as implemented in GAUSSIAN 09 (Frisch et al., 2009 ▸). The theoretical and experimental results were in good agreement. The highest-occupied molecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied molecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 10 ▸. The HOMO and LUMO are localized in the plane extending from the whole (2Z)-2-[(2,4-dichlorophenyl)methylidene]-4-[2-(2-oxo-1,3-oxazolidin-3-yl)ethyl]3,4-dihydro-2H-1,4- benzothiazin-3-one ring. The energy band gap [ΔE = E LUMO − E HOMO] of the molecule is about 3.42 eV, and the frontier molecular orbital energies, E HOMO and E LUMO are −5.44 and −2.02 eV, respectively.
Figure 10.
The energy-band gap of the title compound.
Database survey
A search of the Cambridge Crystallographic Database (Groom et al., 2016 ▸; updated to Nov. 2018) using the fragment II (R 1 = Ph, R 2 = C; Fig. 11 ▸) gave 14 hits with R 1 = Ph and R 2 = CH2COOH (Sebbar et al., 2016c ▸), n-octadecyl (Sebbar et al., 2017a ▸), CH2C≡CH (Sebbar et al., 2014a ▸), IIa (Sebbar et al., 2016a ▸), CH2COOEt (Zerzouf et al., 2001 ▸), IIb (Ellouz et al., 2015a ▸), n-Bu (Sebbar et al., 2014b ▸), IIc (Sebbar et al., 2016d ▸), Me (Ellouz et al., 2015b ▸) and IId (Sebbar et al., 2015 ▸). In addition, there are structures with R 1 = 4-ClC6H4 and R 2 = CH2Ph2 (Ellouz et al., 2016c ▸), n-Bu (Ellouz et al., 2017a ▸), IIa (Ellouz et al., 2017c ▸) and R 1 = 2-ClC6H4, R 2 = CH2C≡CH (Sebbar et al., 2017b ▸). In the majority of these, the heterocyclic ring is quite non-planar with the dihedral angle between the plane defined by the benzene ring plus the nitrogen and sulfur atoms and that defined by nitrogen and sulfur and the other two carbon atoms separating them ranging from ca 29° in CH2C≡CH (Sebbar et al., 2014a ▸), to 36° in IId (Sebbar et al., 2015 ▸), which includes the value of ca 30° for 2H-1,4-benzothiazin-3(4H)-one (WAKLUQ 01; Merola, 2013 ▸). The other three (IIa, IIc and R 1 = 4-ClC6H4 and R 2 = CH2Ph2; Ellouz et al., 2016c ▸) have the benzothiazine unit nearly planar with a corresponding dihedral angle of ca 3–4°. In the case of IIa, the displacement ellipsoid for the sulfur atom shows a considerable elongation perpendicular to the mean plane of the heterocyclic ring, suggesting disorder, and a greater degree of non-planarity, but for the other two, there is no obvious source for the near planarity.
Figure 11.
Related structures.
Synthesis and crystallization
Tetra-n-butylammonium bromide (0.1 mmol), 2.20 equiv. of bis(2-chloroethyl)amine hydrochloride and 2.00 equiv. of potassium carbonate were added to a solution of (Z)-2-(2,4-dichlorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one (1.5 mmol) in DMF (25 ml). The mixture was stirred at 353 K for 6 h. After removal of salts by filtration, the solution was evaporated under reduced pressure and the residue obtained was dissolved in dichloromethane. The remaining salts were extracted with distilled water. The residue obtained was chromatographed on a silica gel column (eluent: ethyl acetate/hexane: 3/2). The isolated solid was recrystallized from ethanol solution to afford colourless crystals [light yellow in CIF?] (yield: 67%).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. Hydrogen atoms were located in a difference-Fourier map, and freely refined.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C20H16Cl2N2O3S |
| M r | 435.31 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 150 |
| a, b, c (Å) | 18.4615 (8), 12.8567 (5), 7.9251 (4) |
| β (°) | 96.926 (2) |
| V (Å3) | 1867.33 (14) |
| Z | 4 |
| Radiation type | Cu Kα |
| μ (mm−1) | 4.40 |
| Crystal size (mm) | 0.21 × 0.12 × 0.05 |
| Data collection | |
| Diffractometer | Bruker D8 VENTURE PHOTON 100 CMOS |
| Absorption correction | Numerical (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.51, 0.80 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 14033, 3678, 3252 |
| R int | 0.032 |
| (sin θ/λ)max (Å−1) | 0.619 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.035, 0.093, 1.05 |
| No. of reflections | 3678 |
| No. of parameters | 317 |
| H-atom treatment | All H-atom parameters refined |
| Δρmax, Δρmin (e Å−3) | 0.37, −0.38 |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019004250/lh5895sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004250/lh5895Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019004250/lh5895Isup3.cdx
Supporting information file. DOI: 10.1107/S2056989019004250/lh5895Isup4.cml
CCDC reference: 1906476
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C20H16Cl2N2O3S | F(000) = 896 |
| Mr = 435.31 | Dx = 1.548 Mg m−3 |
| Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
| a = 18.4615 (8) Å | Cell parameters from 9952 reflections |
| b = 12.8567 (5) Å | θ = 3.5–72.5° |
| c = 7.9251 (4) Å | µ = 4.39 mm−1 |
| β = 96.926 (2)° | T = 150 K |
| V = 1867.33 (14) Å3 | Column, light yellow |
| Z = 4 | 0.21 × 0.12 × 0.05 mm |
Data collection
| Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3678 independent reflections |
| Radiation source: INCOATEC IµS micro–focus source | 3252 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.032 |
| Detector resolution: 10.4167 pixels mm-1 | θmax = 72.5°, θmin = 2.4° |
| ω scans | h = −22→21 |
| Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −14→15 |
| Tmin = 0.51, Tmax = 0.80 | l = −9→9 |
| 14033 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: difference Fourier map |
| wR(F2) = 0.093 | All H-atom parameters refined |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.0467P)2 + 0.9972P] where P = (Fo2 + 2Fc2)/3 |
| 3678 reflections | (Δ/σ)max = 0.001 |
| 317 parameters | Δρmax = 0.37 e Å−3 |
| 0 restraints | Δρmin = −0.38 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | −0.02396 (3) | 0.92135 (4) | 0.75404 (8) | 0.05021 (17) | |
| Cl2 | 0.23463 (3) | 0.91630 (3) | 0.51698 (8) | 0.04067 (15) | |
| S1 | 0.17782 (2) | 0.48226 (3) | 0.53284 (7) | 0.03232 (14) | |
| O1 | 0.35726 (7) | 0.62658 (10) | 0.44041 (18) | 0.0330 (3) | |
| O2 | 0.61496 (6) | 0.46053 (10) | 0.16700 (16) | 0.0267 (3) | |
| O3 | 0.54282 (7) | 0.59880 (10) | 0.19909 (16) | 0.0299 (3) | |
| N1 | 0.33467 (7) | 0.45458 (11) | 0.42952 (18) | 0.0227 (3) | |
| N2 | 0.49920 (8) | 0.43048 (11) | 0.19710 (19) | 0.0240 (3) | |
| C1 | 0.21852 (9) | 0.36941 (13) | 0.4668 (2) | 0.0237 (3) | |
| C2 | 0.17612 (10) | 0.27967 (14) | 0.4671 (3) | 0.0298 (4) | |
| H2 | 0.1287 (13) | 0.2873 (18) | 0.496 (3) | 0.036 (6)* | |
| C3 | 0.20375 (10) | 0.18467 (15) | 0.4260 (3) | 0.0328 (4) | |
| H3 | 0.1739 (14) | 0.125 (2) | 0.424 (3) | 0.043 (6)* | |
| C4 | 0.27384 (10) | 0.17928 (14) | 0.3800 (2) | 0.0299 (4) | |
| H4 | 0.2935 (12) | 0.1146 (19) | 0.352 (3) | 0.037 (6)* | |
| C5 | 0.31603 (10) | 0.26806 (14) | 0.3770 (2) | 0.0255 (4) | |
| H5 | 0.3619 (13) | 0.2616 (18) | 0.342 (3) | 0.035 (6)* | |
| C6 | 0.28970 (9) | 0.36498 (13) | 0.4241 (2) | 0.0221 (3) | |
| C7 | 0.31385 (9) | 0.55557 (13) | 0.4532 (2) | 0.0238 (3) | |
| C8 | 0.23937 (9) | 0.57999 (13) | 0.5014 (2) | 0.0233 (3) | |
| C9 | 0.41197 (9) | 0.44207 (14) | 0.4043 (2) | 0.0235 (3) | |
| H9A | 0.4306 (11) | 0.3741 (17) | 0.457 (3) | 0.029 (5)* | |
| H9B | 0.4388 (11) | 0.4975 (17) | 0.468 (3) | 0.028 (5)* | |
| C10 | 0.42367 (9) | 0.45187 (15) | 0.2187 (2) | 0.0264 (4) | |
| H10A | 0.3897 (12) | 0.4031 (17) | 0.146 (3) | 0.031 (5)* | |
| H10B | 0.4108 (12) | 0.5235 (18) | 0.181 (3) | 0.033 (6)* | |
| C11 | 0.52850 (10) | 0.32643 (14) | 0.1876 (3) | 0.0285 (4) | |
| H11A | 0.4991 (13) | 0.2859 (18) | 0.099 (3) | 0.038 (6)* | |
| H11B | 0.5292 (13) | 0.2906 (19) | 0.295 (3) | 0.043 (6)* | |
| C12 | 0.60490 (10) | 0.34916 (14) | 0.1433 (2) | 0.0272 (4) | |
| H12A | 0.6082 (12) | 0.3331 (18) | 0.024 (3) | 0.037 (6)* | |
| H12B | 0.6420 (13) | 0.3167 (19) | 0.219 (3) | 0.039 (6)* | |
| C13 | 0.54980 (9) | 0.50543 (13) | 0.1887 (2) | 0.0227 (3) | |
| C14 | 0.22602 (9) | 0.68205 (14) | 0.5250 (2) | 0.0246 (4) | |
| H14 | 0.2654 (11) | 0.7266 (17) | 0.504 (3) | 0.027 (5)* | |
| C15 | 0.16331 (9) | 0.73590 (13) | 0.5785 (2) | 0.0241 (4) | |
| C16 | 0.10234 (10) | 0.68752 (15) | 0.6352 (3) | 0.0311 (4) | |
| H16 | 0.0973 (13) | 0.612 (2) | 0.640 (3) | 0.044 (7)* | |
| C17 | 0.04455 (10) | 0.74288 (16) | 0.6871 (3) | 0.0344 (4) | |
| H17 | 0.0037 (15) | 0.710 (2) | 0.725 (3) | 0.050 (7)* | |
| C18 | 0.04662 (10) | 0.84994 (16) | 0.6841 (3) | 0.0330 (4) | |
| C19 | 0.10510 (10) | 0.90291 (15) | 0.6301 (3) | 0.0325 (4) | |
| H19 | 0.1073 (11) | 0.9771 (19) | 0.626 (3) | 0.032 (6)* | |
| C20 | 0.16222 (10) | 0.84560 (14) | 0.5794 (2) | 0.0271 (4) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0335 (3) | 0.0432 (3) | 0.0774 (4) | 0.0150 (2) | 0.0207 (3) | −0.0079 (3) |
| Cl2 | 0.0354 (3) | 0.0187 (2) | 0.0718 (4) | −0.00040 (17) | 0.0224 (2) | 0.0036 (2) |
| S1 | 0.0250 (2) | 0.0169 (2) | 0.0593 (3) | −0.00047 (16) | 0.0225 (2) | −0.00057 (19) |
| O1 | 0.0279 (6) | 0.0224 (7) | 0.0522 (8) | −0.0045 (5) | 0.0198 (6) | −0.0021 (6) |
| O2 | 0.0227 (6) | 0.0208 (6) | 0.0390 (7) | −0.0020 (5) | 0.0131 (5) | −0.0006 (5) |
| O3 | 0.0380 (7) | 0.0183 (6) | 0.0349 (7) | 0.0008 (5) | 0.0106 (5) | 0.0001 (5) |
| N1 | 0.0187 (7) | 0.0201 (7) | 0.0308 (7) | 0.0006 (5) | 0.0097 (5) | −0.0007 (6) |
| N2 | 0.0224 (7) | 0.0182 (7) | 0.0338 (8) | −0.0002 (5) | 0.0131 (6) | −0.0008 (6) |
| C1 | 0.0231 (8) | 0.0175 (8) | 0.0316 (9) | 0.0011 (6) | 0.0080 (7) | 0.0013 (6) |
| C2 | 0.0232 (8) | 0.0219 (9) | 0.0454 (11) | −0.0026 (7) | 0.0097 (7) | 0.0003 (8) |
| C3 | 0.0306 (9) | 0.0192 (9) | 0.0493 (12) | −0.0039 (7) | 0.0079 (8) | −0.0017 (8) |
| C4 | 0.0323 (9) | 0.0187 (9) | 0.0395 (10) | 0.0027 (7) | 0.0070 (8) | −0.0039 (7) |
| C5 | 0.0252 (8) | 0.0221 (9) | 0.0304 (9) | 0.0036 (7) | 0.0083 (7) | −0.0007 (7) |
| C6 | 0.0220 (8) | 0.0183 (8) | 0.0268 (8) | −0.0015 (6) | 0.0060 (6) | 0.0008 (6) |
| C7 | 0.0225 (8) | 0.0186 (8) | 0.0320 (9) | −0.0007 (6) | 0.0105 (7) | 0.0000 (7) |
| C8 | 0.0212 (8) | 0.0187 (8) | 0.0319 (9) | −0.0005 (6) | 0.0103 (6) | 0.0012 (6) |
| C9 | 0.0167 (7) | 0.0272 (9) | 0.0274 (8) | 0.0014 (7) | 0.0063 (6) | −0.0011 (7) |
| C10 | 0.0219 (8) | 0.0298 (10) | 0.0287 (9) | 0.0022 (7) | 0.0079 (7) | 0.0010 (7) |
| C11 | 0.0294 (9) | 0.0171 (8) | 0.0412 (10) | −0.0003 (7) | 0.0137 (8) | 0.0007 (7) |
| C12 | 0.0280 (9) | 0.0189 (8) | 0.0365 (10) | 0.0015 (7) | 0.0116 (8) | −0.0030 (7) |
| C13 | 0.0257 (8) | 0.0212 (8) | 0.0224 (8) | −0.0008 (7) | 0.0085 (6) | 0.0008 (6) |
| C14 | 0.0217 (8) | 0.0193 (8) | 0.0346 (9) | −0.0008 (7) | 0.0109 (7) | 0.0007 (7) |
| C15 | 0.0229 (8) | 0.0206 (8) | 0.0299 (9) | 0.0021 (6) | 0.0075 (7) | 0.0005 (7) |
| C16 | 0.0265 (9) | 0.0236 (9) | 0.0456 (11) | −0.0001 (7) | 0.0143 (8) | −0.0021 (8) |
| C17 | 0.0255 (9) | 0.0330 (10) | 0.0475 (12) | 0.0011 (8) | 0.0155 (8) | −0.0029 (8) |
| C18 | 0.0255 (9) | 0.0328 (10) | 0.0416 (10) | 0.0085 (8) | 0.0087 (8) | −0.0040 (8) |
| C19 | 0.0311 (10) | 0.0226 (9) | 0.0445 (11) | 0.0062 (7) | 0.0070 (8) | −0.0002 (8) |
| C20 | 0.0250 (8) | 0.0219 (9) | 0.0353 (9) | 0.0019 (7) | 0.0070 (7) | 0.0010 (7) |
Geometric parameters (Å, º)
| Cl1—C18 | 1.7385 (19) | C7—C8 | 1.504 (2) |
| Cl2—C20 | 1.7373 (18) | C8—C14 | 1.352 (2) |
| S1—C8 | 1.7321 (17) | C9—C10 | 1.518 (2) |
| S1—C1 | 1.7430 (17) | C9—H9A | 1.01 (2) |
| O1—C7 | 1.227 (2) | C9—H9B | 0.97 (2) |
| O2—C13 | 1.364 (2) | C10—H10A | 1.01 (2) |
| O2—C12 | 1.453 (2) | C10—H10B | 0.99 (2) |
| O3—C13 | 1.211 (2) | C11—C12 | 1.522 (2) |
| N1—C7 | 1.374 (2) | C11—H11A | 0.98 (2) |
| N1—C6 | 1.418 (2) | C11—H11B | 0.97 (3) |
| N1—C9 | 1.473 (2) | C12—H12A | 0.97 (2) |
| N2—C13 | 1.349 (2) | C12—H12B | 0.95 (2) |
| N2—C11 | 1.448 (2) | C14—C15 | 1.455 (2) |
| N2—C10 | 1.451 (2) | C14—H14 | 0.96 (2) |
| C1—C2 | 1.394 (2) | C15—C16 | 1.406 (2) |
| C1—C6 | 1.397 (2) | C15—C20 | 1.411 (2) |
| C2—C3 | 1.378 (3) | C16—C17 | 1.386 (3) |
| C2—H2 | 0.94 (2) | C16—H16 | 0.97 (3) |
| C3—C4 | 1.388 (3) | C17—C18 | 1.377 (3) |
| C3—H3 | 0.94 (3) | C17—H17 | 0.95 (3) |
| C4—C5 | 1.384 (3) | C18—C19 | 1.387 (3) |
| C4—H4 | 0.94 (2) | C19—C20 | 1.385 (3) |
| C5—C6 | 1.404 (2) | C19—H19 | 0.96 (2) |
| C5—H5 | 0.93 (2) | ||
| Cl1···S1i | 3.5625 (7) | O3···H10B | 2.61 (2) |
| Cl2···C12ii | 3.470 (2) | O3···H5ii | 2.78 (2) |
| Cl2···C3iii | 3.557 (2) | O3···H11Bii | 2.80 (2) |
| Cl2···O2ii | 3.3371 (13) | O3···H9Av | 2.73 (2) |
| Cl1···H3iv | 3.01 (3) | O3···H9Bv | 2.90 (2) |
| Cl1···H16i | 2.97 (3) | O3···H11Avi | 2.82 (2) |
| Cl2···H14 | 2.51 (2) | N2···O3vi | 3.165 (2) |
| Cl2···H4iii | 3.12 (2) | N2···C13vi | 3.190 (2) |
| Cl2···H12Aii | 3.15 (2) | N2···H9Bv | 2.91 (2) |
| Cl2···H3iii | 2.97 (3) | C5···C10 | 3.422 (3) |
| S1···N1 | 3.1231 (14) | C7···C12v | 3.580 (3) |
| S1···C16 | 3.136 (2) | C9···C13v | 3.287 (2) |
| S1···H16 | 2.45 (2) | C10···C13vi | 3.369 (2) |
| O1···C10 | 3.187 (2) | C13···C13vi | 3.320 (2) |
| O1···C12ii | 3.038 (2) | C5···H10A | 2.97 (2) |
| O1···C12v | 3.304 (3) | C5···H9A | 2.53 (2) |
| O2···C10vi | 3.255 (2) | C7···H10B | 2.99 (2) |
| O2···C7v | 3.143 (2) | C8···H16 | 2.99 (2) |
| O3···N2vi | 3.165 (2) | C9···H5 | 2.52 (2) |
| O3···C11vi | 3.328 (3) | C9···H9Bv | 2.92 (2) |
| O3···C11ii | 3.375 (2) | C10···H5 | 2.92 (2) |
| O3···C9v | 3.196 (2) | C13···H9Bv | 2.70 (2) |
| O1···H12Bii | 2.75 (2) | C14···H12Bv | 2.98 (2) |
| O1···H9B | 2.23 (2) | H5···H9A | 2.06 (3) |
| O1···H10B | 2.73 (2) | H5···H10A | 2.49 (3) |
| O1···H12Aii | 2.74 (2) | H9A···H11B | 2.58 (3) |
| O1···H12Bv | 2.79 (2) | H9B···H9Bv | 2.26 (3) |
| O1···H14 | 2.23 (2) | H10A···H11A | 2.58 (3) |
| O2···H10Bvi | 2.75 (2) | H10B···H12Avi | 2.45 (3) |
| O2···H4ii | 2.62 (2) | H12A···H10Bvi | 2.45 (3) |
| C8—S1—C1 | 104.29 (8) | C9—C10—H10A | 110.3 (12) |
| C13—O2—C12 | 109.43 (13) | N2—C10—H10B | 109.8 (13) |
| C7—N1—C6 | 126.86 (14) | C9—C10—H10B | 108.4 (13) |
| C7—N1—C9 | 114.42 (14) | H10A—C10—H10B | 107.1 (17) |
| C6—N1—C9 | 118.72 (14) | N2—C11—C12 | 101.36 (14) |
| C13—N2—C11 | 113.07 (14) | N2—C11—H11A | 110.5 (13) |
| C13—N2—C10 | 123.45 (15) | C12—C11—H11A | 112.7 (14) |
| C11—N2—C10 | 123.45 (14) | N2—C11—H11B | 111.1 (14) |
| C2—C1—C6 | 120.75 (16) | C12—C11—H11B | 112.3 (14) |
| C2—C1—S1 | 115.20 (13) | H11A—C11—H11B | 108.8 (19) |
| C6—C1—S1 | 123.97 (13) | O2—C12—C11 | 105.47 (13) |
| C3—C2—C1 | 120.61 (17) | O2—C12—H12A | 108.2 (14) |
| C3—C2—H2 | 122.4 (14) | C11—C12—H12A | 110.6 (13) |
| C1—C2—H2 | 117.0 (14) | O2—C12—H12B | 106.3 (14) |
| C2—C3—C4 | 119.33 (17) | C11—C12—H12B | 112.9 (14) |
| C2—C3—H3 | 119.4 (15) | H12A—C12—H12B | 113.0 (19) |
| C4—C3—H3 | 121.2 (15) | O3—C13—N2 | 128.64 (16) |
| C5—C4—C3 | 120.53 (17) | O3—C13—O2 | 122.07 (15) |
| C5—C4—H4 | 119.3 (14) | N2—C13—O2 | 109.30 (14) |
| C3—C4—H4 | 120.1 (14) | C8—C14—C15 | 131.80 (16) |
| C4—C5—C6 | 120.93 (16) | C8—C14—H14 | 113.7 (13) |
| C4—C5—H5 | 117.9 (14) | C15—C14—H14 | 114.5 (13) |
| C6—C5—H5 | 121.2 (14) | C16—C15—C20 | 115.34 (16) |
| C1—C6—C5 | 117.79 (15) | C16—C15—C14 | 125.33 (16) |
| C1—C6—N1 | 121.60 (15) | C20—C15—C14 | 119.31 (16) |
| C5—C6—N1 | 120.60 (15) | C17—C16—C15 | 122.84 (18) |
| O1—C7—N1 | 119.71 (15) | C17—C16—H16 | 114.8 (15) |
| O1—C7—C8 | 119.48 (15) | C15—C16—H16 | 122.4 (15) |
| N1—C7—C8 | 120.77 (14) | C18—C17—C16 | 118.95 (18) |
| C14—C8—C7 | 115.16 (15) | C18—C17—H17 | 118.7 (16) |
| C14—C8—S1 | 123.40 (13) | C16—C17—H17 | 122.4 (16) |
| C7—C8—S1 | 121.39 (12) | C17—C18—C19 | 121.36 (17) |
| N1—C9—C10 | 112.06 (14) | C17—C18—Cl1 | 119.91 (15) |
| N1—C9—H9A | 109.0 (12) | C19—C18—Cl1 | 118.70 (15) |
| C10—C9—H9A | 113.1 (12) | C20—C19—C18 | 118.45 (18) |
| N1—C9—H9B | 106.8 (12) | C20—C19—H19 | 118.9 (13) |
| C10—C9—H9B | 108.7 (12) | C18—C19—H19 | 122.7 (13) |
| H9A—C9—H9B | 106.9 (16) | C19—C20—C15 | 123.05 (17) |
| N2—C10—C9 | 110.45 (14) | C19—C20—Cl2 | 116.31 (14) |
| N2—C10—H10A | 110.7 (12) | C15—C20—Cl2 | 120.64 (13) |
| C8—S1—C1—C2 | −175.06 (14) | C11—N2—C10—C9 | 81.1 (2) |
| C8—S1—C1—C6 | 8.14 (18) | N1—C9—C10—N2 | −175.21 (14) |
| C6—C1—C2—C3 | 0.3 (3) | C13—N2—C11—C12 | −8.6 (2) |
| S1—C1—C2—C3 | −176.63 (16) | C10—N2—C11—C12 | 173.17 (16) |
| C1—C2—C3—C4 | −1.5 (3) | C13—O2—C12—C11 | −10.95 (19) |
| C2—C3—C4—C5 | 0.6 (3) | N2—C11—C12—O2 | 11.27 (19) |
| C3—C4—C5—C6 | 1.5 (3) | C11—N2—C13—O3 | −177.18 (18) |
| C2—C1—C6—C5 | 1.8 (3) | C10—N2—C13—O3 | 1.1 (3) |
| S1—C1—C6—C5 | 178.44 (13) | C11—N2—C13—O2 | 2.2 (2) |
| C2—C1—C6—N1 | −177.45 (16) | C10—N2—C13—O2 | −179.56 (15) |
| S1—C1—C6—N1 | −0.8 (2) | C12—O2—C13—O3 | −174.76 (16) |
| C4—C5—C6—C1 | −2.7 (3) | C12—O2—C13—N2 | 5.81 (18) |
| C4—C5—C6—N1 | 176.56 (16) | C7—C8—C14—C15 | −176.93 (18) |
| C7—N1—C6—C1 | −9.1 (3) | S1—C8—C14—C15 | 0.3 (3) |
| C9—N1—C6—C1 | 172.24 (16) | C8—C14—C15—C16 | 6.6 (3) |
| C7—N1—C6—C5 | 171.68 (17) | C8—C14—C15—C20 | −175.08 (19) |
| C9—N1—C6—C5 | −7.0 (2) | C20—C15—C16—C17 | 0.6 (3) |
| C6—N1—C7—O1 | −173.69 (16) | C14—C15—C16—C17 | 179.02 (19) |
| C9—N1—C7—O1 | 5.0 (2) | C15—C16—C17—C18 | −0.3 (3) |
| C6—N1—C7—C8 | 8.7 (3) | C16—C17—C18—C19 | 0.1 (3) |
| C9—N1—C7—C8 | −172.58 (15) | C16—C17—C18—Cl1 | −178.22 (16) |
| O1—C7—C8—C14 | 0.9 (3) | C17—C18—C19—C20 | −0.3 (3) |
| N1—C7—C8—C14 | 178.52 (16) | Cl1—C18—C19—C20 | 178.04 (15) |
| O1—C7—C8—S1 | −176.37 (14) | C18—C19—C20—C15 | 0.7 (3) |
| N1—C7—C8—S1 | 1.2 (2) | C18—C19—C20—Cl2 | −178.85 (15) |
| C1—S1—C8—C14 | 174.78 (16) | C16—C15—C20—C19 | −0.8 (3) |
| C1—S1—C8—C7 | −8.17 (17) | C14—C15—C20—C19 | −179.34 (18) |
| C7—N1—C9—C10 | −88.22 (19) | C16—C15—C20—Cl2 | 178.68 (14) |
| C6—N1—C9—C10 | 90.61 (19) | C14—C15—C20—Cl2 | 0.2 (2) |
| C13—N2—C10—C9 | −97.0 (2) |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x, y+1, z; (iv) −x, −y+1, −z+1; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y+1, −z.
Funding Statement
This work was funded by Tulane University grant . National Science Foundation grant 1228232. Hacettepe Üniversitesi grant 013 D04 602 004 to T. Hökelek.
References
- Aotsuka, T., Hosono, H., Kurihara, T., Nakamura, Y., Matsui, T. & Kobayashi, F. (1994). Chem. Pharm. Bull. 42, 1264–1271. [DOI] [PubMed]
- Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. 50, 1178–1188.
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
- Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497.
- Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.
- Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819.
- Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o1022–o1023. [DOI] [PMC free article] [PubMed]
- Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.
- Ellouz, M., Sebbar, N. K., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o862–o863. [DOI] [PMC free article] [PubMed]
- Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097.
- Ellouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017c). IUCrData, 2, x170870.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
- Fujimura, K., Ota, A. & Kawashima, Y. (1996). Chem. Pharm. Bull. 44, 542–546. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gupta, R. R. & Kumar, R. (1986). J. Fluor. Chem. 31, 19–24.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
- Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
- Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019). Acta Cryst. E75, 372–377. [DOI] [PMC free article] [PubMed]
- Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. [DOI] [PubMed]
- Merola, J. S. (2013). Private Communication (refcode 977080). CCDC, Cambridge, England.
- Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682. [DOI] [PubMed]
- Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330. [DOI] [PubMed]
- Sebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o686. [DOI] [PMC free article] [PubMed]
- Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016d). IUCrData, 1, x161823.
- Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423–o424. [DOI] [PMC free article] [PubMed]
- Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). IUCrData, 1, x161012.
- Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. & Mague, J. T. (2017a). IUCrData, 2, x170695.
- Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.
- Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCr Data 2, x170889.
- Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845–6862.
- Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst. Eng. Comm, 10, 377–388.
- Takemoto, I., Yamasaki, K. & Kaminaka, H. (1994). Biosci. Biotechnol. Biochem. 58, 788–789.
- Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245. [DOI] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
- Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591–593.
- Wammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596–601. [DOI] [PubMed]
- Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415.
- Zerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498–o499.
- Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019004250/lh5895sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004250/lh5895Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019004250/lh5895Isup3.cdx
Supporting information file. DOI: 10.1107/S2056989019004250/lh5895Isup4.cml
CCDC reference: 1906476
Additional supporting information: crystallographic information; 3D view; checkCIF report











