Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 9;75(Pt 5):589–592. doi: 10.1107/S2056989019003864

Crystal structure of diethyl 2-amino-5-{4-[bis­(4-methyl­phen­yl)amino]­benzamido}­thio­phene-3,4-di­carboxyl­ate

Yohan Gautier a, Thierry Maris a, W G Skene a,*
PMCID: PMC6505590  PMID: 31110792

The title compound forms a head-to-head centrosymmetric dimer, involving a pair of inter­molecular N—H⋯O hydrogen bonds. It also forms two intra­molecular bonds between its amine and amide and the ester carbonyl groups.

Keywords: crystal structure, intra- and inter­molecular bonding, hydrogen-bonded dimer

Abstract

In the title compound, C31H31N3O5S, the regioselective substitution of the thio­phene is confirmed with the amine and the amide at the 2- and 5-positions, respectively. In the mol­ecule, the thio­phene ring is twisted by 12.82 (3)° with respect to the aromatic ring of the benzamido group. Intra­molecular N—H⋯O hydrogen bonds are present involving the N atoms of the primary amine and the amide groups, forming S(6) ring motifs. In the crystal, centrosymmetrically related mol­ecules are linked by pairs of N—H⋯O hydrogen bonds involving the amide carbonyl O atoms and the primary amine N atoms to form dimers of R 2 2(16) ring motif.

Chemical context  

Azomethines are prepared by the condensation of amines with aldehydes. Using aromatic precursors, the reaction results in the preparation of conjugated azomethines having colors that are readily detectable in the visible spectrum (Dufresne et al., 2007). This is particularly the case with azomethines that are prepared from 2,5-di­amino­thio­phene derivatives (Bolduc et al., 2013). These derivatives can be electrochemically oxidized (Yeh et al., 2016). The collective properties (reversible color change with applied potential) have proven ideal for use as electrochromic materials (Ma et al., 2016). While various azomethines have been studied for understating the impact of structure on the absorption and electrochemical properties (Liu et al., 2018), modifying the terminal amine has remained relatively underexplored. Such modification allows property tuning, including reversible oxidation. This is a key property for electrochromic use. Given the underexplored modification of 2-amino­thio­phenes, we investigated its conversion to a tri­phenyl­amide. The tri­phenyl­amide moiety was targeted because of its electrochemically reversible oxidation. Meanwhile, the amide functional group was chosen because of its robustness that could sustain electrochemical redox cycles. More importantly, it would be inert towards imination reactions for constructing conjugated azomethines having both various terminal groups and cores. Given the challenge of unequivocally identifying the configuration and absolute structural identification of amino­thio­phene derivatives with the concomitant limited number of reported tri­phenyl­amine amides, the X-ray crystal structure analysis of the title compound (I) was evaluated and it is reported on herein.graphic file with name e-75-00589-scheme1.jpg

Structural commentary  

In the mol­ecule of I (Fig. 1), the mean plane through the 2,5-di­amino­tihophene ring (r.m.s. deviation = 0.0116 Å) is inclined to the C1–C6 benzene (ring A) by 12.82 (3)°. The dihedral angles formed by the benzene rings A, B (C18–C23) and C (C25–C30) of the tri­phenyl­amide moiety are: A^B = 65.56 (3)°, A^C = 55.22 (4)°, B^C = 66.80 (4)°. The O1—C7, N2—C7, N2—C8 and N3—C11 bond lengths are 1.2315 (13), 1.3644 (13), 1.3829 (13) and 1.3529 (14) Å, respectively. While the reactivity of the primary amine of I is less than that expected for typical aryl­amines owing to the electron-withdrawing esters, it nonetheless acts as a hydrogen donor. In fact, two N—H⋯O intra­molecular hydrogen bonds occur, one each between the ester carbonyl and its adjacent nitro­gen, forming rings of S(6) graph-set motif (Table 1). The intra­molecular hydrogen bonds observed are consistent with those reported in other 2-amino-3-ester thio­phenes (Dufresne & Skene, 2010a ,b ; Skene et al., 2006; Bourgeaux & Skene, 2007; Bourgeaux et al., 2006; Bolduc et al., 2010; Tshibaka et al., 2011; Furuyama et al., 2014). The crystal structure of I confirms the asymmetric substitution of thio­phene by a primary amine and an amide. Of importance is that the thio­phene substitution with the nitro­gen atoms occurs at the 2,5-positions, rather than the 3,4-positions. The primary amine at the 2-thio­phene position is also confirmed. The 2,5-configuration is desired because extended degrees of conjugation result when the azomethines are formed in these positions with aryl­amines. The presence of ester functionalities at the 3,4-positions is also verified by the crystal structure.

Figure 1.

Figure 1

The mol­ecular structure of I with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. Intra­molecular hydrogen bonds are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.850 (17) 1.958 (17) 2.6501 (12) 137.8 (15)
N3—H3A⋯O1i 0.883 (17) 2.154 (17) 3.0316 (13) 172.5 (14)
N3—H3B⋯O4 0.810 (17) 2.156 (16) 2.7656 (13) 132.2 (14)

Symmetry code: (i) Inline graphic.

Supra­molecular features  

In the crystal structure of I, centrosymmetrically related mol­ecules are linked into head-to-head hydrogen-bonded dimers (Fig. 2) by pairs of N—H⋯O hydrogen bonds (Table 1) involving the N3 amine atom and the O1 carbonyl atom of the amide group, forming rings of Inline graphic(16) graph-set motif. In this arrangement, the sulfur atoms of the two thio­phenes are face-to-face and the two heteoratoms are separated by 3.5419 (4) Å. The crystal packing (Fig. 3) is further stabilized by van der Waals forces.

Figure 2.

Figure 2

Supra­molecular dimer of I showing the inter­molecular hydrogen bonds as dotted lines.

Figure 3.

Figure 3

Crystal packing of I approximately viewed along the a axis.

Database survey  

A survey of the Cambridge Structural Database (CSD, Version 5.39, latest update August 2018; Groom et al., 2016) yielded no hits. In fact, no exact thio­phene derivatives substituted in the 3,4-positions with electron-withdrawing groups were found. Four structurally similarly thio­phenes were identified, three of which were symmetric with amides at the 2,5-positions (refcodes LOFTAD, LOFTEH, LOFTIL; Fabbro et al., 2014). The most closely related structure was the asymmetric 2-amino, 5-phenyl­amido-thio­phene derivative (LOYDIM; Rodinovskaya et al., 2002). No differences greater than 3σ were found for the N2—C7, N2—C8, and O1—C7 bond lengths of I and the nine counterpart bonds for the reported similar structures. The notable difference was the C11—N3 bond length of I, which is 0.025 Å (3σ = 0.004 Å) shorter than the corresponding bond in LOYDIM [1.378 (5) Å]. The dihedral angle between the planes described by the phenyl­amide and the 2,5-di­amino­tihophene rings is also different [5.74 (13)°]. The database survey yielded only four 4-amido-tri­phenyl­amines [GUWNAP, GUWNET (Ghosh et al., 2009), and UZEXAZ (Wang et al., 2011)], with one being complexed with cerium (ZOKSUP; Sun et al., 2014). No differences between the N1—phenyl and C4—C7 bond distances were found. The three phenyl-N-phenyl dihedral angles of I are also consistent with the those of the reported structures.

Synthesis and crystallization  

To a solution of 4-(di-p-tolyl­amino)­benzoic acid (668 mg, 1.7 mmol, 1 eq) in anhydrous di­chloro­methane (15 mL) were added oxalyl chloride (0.21 mL, 2.3 mmol, 1.8 eq) and one drop of anhydrous DMF. The mixture was stirred for 16 h under nitro­gen at room temperature. The solvent was removed under reduced pressure and the resulting 4-(di-p-tolyl­amino)­benzoyl chloride was dissolved in anhydrous THF (20 mL). The mixture was then added dropwise to a solution of diethyl 2,5-di­amino­thio­phene-3,4-di­carboxyl­ate (594 mg, 2.3 mmol, 1.1 eq) and Et3N (2.3 mmol, 0.32 mL, 1.1 eq) in anhydrous THF (5 mL). The reaction mixture was stirred for 6 h under nitro­gen at room temperature. After filtering, the solvent of the filtrate was removed under reduced pressure. The residue was purified by SiO2 column chromatography (hexa­nes/ethyl acetate 2:1 v/v) to afford the title compound as a yellow solid (589 mg, yield 64%). A suitable crystal of the title compound was obtained by slow evaporation of deuterated chloro­form from an NMR tube. 1H NMR (400 MHz, CDCl3): δ = 11.31 (s, 1H), 7.72 (d, 3 J = 8.9 Hz, 2H), 7.13 (d, 3 J = 8.2 Hz, 4H), 7.05 (d, 3 J = 8.2 Hz, 4H), 6.97 (d, 3 J = 8.9 Hz, 2H), 5.67 (s, 2H), 4.29 (m, 4H), 2.34 (s, 6H), 1.34 (t, 3 J = 7.12 Hz, 3H), 1.32 (t, 3 J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ = 166.2, 165.5, 163.4, 154.6, 152.3, 143.9, 136.4, 134.6, 130.4, 128.7, 126.2, 122.5, 119.0, 109.2, 101.8, 61.0, 60.2, 21.0, 14.5, 14.3. MS–HR: (M + H+) exp . m/z = 558.2062, (M + H+) calc. m/z = 558.2057.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The amine H atoms were located in a difference-Fourier map and refined freely. All other H atoms were placed geometrically and refined with C—H = 0.95–0.99 Å, and with U iso(H) = 1.2U eq(C) or 1.5U eq(C) for methyl H atoms. A rotating model was used for the methyl groups.

Table 2. Experimental details.

Crystal data
Chemical formula C31H31N3O5S
M r 557.65
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 7.1314 (2), 13.4650 (3), 15.4586 (4)
α, β, γ (°) 106.533 (1), 97.980 (1), 102.843 (1)
V3) 1354.61 (6)
Z 2
Radiation type Ga Kα, λ = 1.34139 Å
μ (mm−1) 0.94
Crystal size (mm) 0.16 × 0.11 × 0.04
 
Data collection
Diffractometer Bruker Venture Metaljet
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.679, 0.752
No. of measured, independent and observed [I > 2σ(I)] reflections 43601, 6212, 5916
R int 0.024
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.097, 1.05
No. of reflections 6212
No. of parameters 377
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.19

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008), PLATON (Spek, 2009), and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019003864/rz5251sup1.cif

e-75-00589-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003864/rz5251Isup2.hkl

e-75-00589-Isup2.hkl (493.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019003864/rz5251Isup3.cml

CCDC reference: 1904525

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Dr S. Simard is acknowledged for assistance with the crystallographic data collection and preliminary refinement.

supplementary crystallographic information

Crystal data

C31H31N3O5S Z = 2
Mr = 557.65 F(000) = 588
Triclinic, P1 Dx = 1.367 Mg m3
a = 7.1314 (2) Å Ga Kα radiation, λ = 1.34139 Å
b = 13.4650 (3) Å Cell parameters from 9687 reflections
c = 15.4586 (4) Å θ = 2.7–60.6°
α = 106.533 (1)° µ = 0.94 mm1
β = 97.980 (1)° T = 100 K
γ = 102.843 (1)° Block, yellow
V = 1354.61 (6) Å3 0.16 × 0.11 × 0.04 mm

Data collection

Bruker Venture Metaljet diffractometer 6212 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source 5916 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromator Rint = 0.024
Detector resolution: 10.24 pixels mm-1 θmax = 60.7°, θmin = 2.7°
ω and φ scans h = −9→9
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −17→17
Tmin = 0.679, Tmax = 0.752 l = −20→20
43601 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.4554P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
6212 reflections Δρmax = 0.39 e Å3
377 parameters Δρmin = −0.18 e Å3
0 restraints

Special details

Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.27244 (4) 0.06598 (2) 0.58032 (2) 0.02122 (8)
O1 −0.20024 (12) 0.13560 (7) 0.43721 (6) 0.02656 (18)
O2 0.39650 (11) 0.18395 (7) 0.66336 (6) 0.02647 (18)
O3 0.35284 (11) 0.18307 (6) 0.80411 (5) 0.02208 (16)
O4 −0.14268 (12) −0.01088 (7) 0.84823 (6) 0.02709 (18)
O5 0.15438 (11) −0.00953 (7) 0.81408 (5) 0.02333 (17)
N1 0.44925 (14) 0.35825 (8) 0.25046 (6) 0.0242 (2)
N2 0.07397 (14) 0.15202 (8) 0.53922 (6) 0.02104 (19)
H2 0.199 (3) 0.1717 (13) 0.5566 (11) 0.036 (4)*
N3 −0.42204 (14) −0.00968 (8) 0.70555 (7) 0.0234 (2)
H3A −0.532 (2) −0.0409 (13) 0.6625 (11) 0.032 (4)*
H3B −0.405 (2) −0.0292 (13) 0.7503 (12) 0.031 (4)*
C1 0.33806 (16) 0.30899 (9) 0.30286 (7) 0.0214 (2)
C2 0.13314 (16) 0.29229 (9) 0.28679 (7) 0.0226 (2)
H2A 0.069747 0.314057 0.239990 0.027*
C3 0.02269 (16) 0.24461 (9) 0.33822 (7) 0.0224 (2)
H3 −0.115902 0.233884 0.326097 0.027*
C4 0.11076 (16) 0.21182 (9) 0.40778 (7) 0.0203 (2)
C5 0.31471 (16) 0.22772 (9) 0.42355 (7) 0.0218 (2)
H5 0.377465 0.205919 0.470486 0.026*
C6 0.42706 (16) 0.27486 (9) 0.37173 (8) 0.0229 (2)
H6 0.565238 0.284067 0.383002 0.028*
C7 −0.01919 (16) 0.16301 (9) 0.46062 (7) 0.0209 (2)
C8 −0.01785 (15) 0.10919 (9) 0.59882 (7) 0.0200 (2)
C9 0.07750 (15) 0.10201 (9) 0.67966 (7) 0.0196 (2)
C10 −0.06016 (15) 0.05446 (9) 0.72744 (7) 0.0200 (2)
C11 −0.25434 (16) 0.03304 (9) 0.68189 (7) 0.0206 (2)
C12 0.28951 (16) 0.15762 (9) 0.71298 (7) 0.0204 (2)
C13 0.56112 (15) 0.23930 (9) 0.83922 (8) 0.0232 (2)
H13A 0.587955 0.312667 0.834394 0.028*
H13B 0.641392 0.199732 0.802979 0.028*
C14 0.61165 (18) 0.24542 (12) 0.93859 (9) 0.0330 (3)
H14A 0.585366 0.172379 0.942452 0.049*
H14B 0.531150 0.284569 0.973706 0.049*
H14C 0.751398 0.283289 0.964429 0.049*
C15 −0.02184 (16) 0.01050 (9) 0.80248 (7) 0.0214 (2)
C16 0.19659 (17) −0.05354 (10) 0.88794 (8) 0.0274 (2)
H16A 0.086332 −0.116277 0.881920 0.033*
H16B 0.214461 0.001603 0.948819 0.033*
C17 0.38311 (18) −0.08751 (11) 0.87989 (9) 0.0300 (3)
H17A 0.365227 −0.140105 0.818579 0.045*
H17B 0.412994 −0.120184 0.927395 0.045*
H17C 0.492230 −0.024286 0.888468 0.045*
C18 0.35607 (16) 0.35600 (9) 0.16150 (7) 0.0220 (2)
C19 0.24563 (16) 0.25904 (9) 0.09516 (8) 0.0226 (2)
H19 0.231993 0.193559 0.108656 0.027*
C20 0.15469 (16) 0.25789 (9) 0.00862 (8) 0.0236 (2)
H20 0.074974 0.191712 −0.035401 0.028*
C21 0.17916 (16) 0.35251 (10) −0.01418 (8) 0.0240 (2)
C22 0.29234 (17) 0.44882 (10) 0.05301 (8) 0.0256 (2)
H22 0.310723 0.514013 0.038810 0.031*
C23 0.37864 (17) 0.45147 (9) 0.14014 (8) 0.0248 (2)
H23 0.452993 0.518152 0.185205 0.030*
C24 0.09038 (18) 0.35211 (11) −0.10897 (8) 0.0297 (3)
H24A 0.195498 0.380647 −0.137308 0.045*
H24B −0.000735 0.397250 −0.103306 0.045*
H24C 0.018819 0.278181 −0.147755 0.045*
C25 0.64705 (16) 0.42384 (9) 0.28755 (8) 0.0226 (2)
C26 0.71207 (18) 0.48747 (9) 0.38035 (8) 0.0261 (2)
H26 0.624280 0.486611 0.421240 0.031*
C27 0.90540 (19) 0.55223 (10) 0.41312 (9) 0.0288 (2)
H27 0.949225 0.593205 0.476904 0.035*
C28 1.03591 (17) 0.55826 (9) 0.35443 (9) 0.0278 (2)
C29 0.96756 (17) 0.49614 (10) 0.26161 (9) 0.0270 (2)
H29 1.053046 0.500286 0.220010 0.032*
C30 0.77774 (17) 0.42840 (9) 0.22849 (8) 0.0247 (2)
H30 0.736321 0.384840 0.165285 0.030*
C31 1.24615 (19) 0.62789 (12) 0.39042 (11) 0.0387 (3)
H31A 1.332337 0.583463 0.401862 0.058*
H31B 1.255322 0.684753 0.448195 0.058*
H31C 1.287141 0.660616 0.344560 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01620 (13) 0.02771 (14) 0.02086 (13) 0.00373 (10) 0.00225 (9) 0.01223 (10)
O1 0.0190 (4) 0.0387 (5) 0.0239 (4) 0.0051 (3) 0.0031 (3) 0.0160 (3)
O2 0.0181 (4) 0.0384 (5) 0.0246 (4) 0.0030 (3) 0.0041 (3) 0.0168 (3)
O3 0.0168 (4) 0.0276 (4) 0.0197 (4) 0.0006 (3) 0.0013 (3) 0.0100 (3)
O4 0.0216 (4) 0.0368 (5) 0.0266 (4) 0.0049 (3) 0.0062 (3) 0.0181 (4)
O5 0.0199 (4) 0.0296 (4) 0.0241 (4) 0.0045 (3) 0.0033 (3) 0.0166 (3)
N1 0.0211 (4) 0.0305 (5) 0.0209 (4) 0.0009 (4) 0.0023 (4) 0.0141 (4)
N2 0.0169 (4) 0.0280 (5) 0.0196 (4) 0.0034 (4) 0.0031 (3) 0.0123 (4)
N3 0.0175 (4) 0.0292 (5) 0.0241 (5) 0.0018 (4) 0.0031 (4) 0.0140 (4)
C1 0.0228 (5) 0.0229 (5) 0.0198 (5) 0.0042 (4) 0.0051 (4) 0.0101 (4)
C2 0.0234 (5) 0.0277 (5) 0.0204 (5) 0.0088 (4) 0.0043 (4) 0.0123 (4)
C3 0.0203 (5) 0.0284 (5) 0.0203 (5) 0.0076 (4) 0.0039 (4) 0.0105 (4)
C4 0.0207 (5) 0.0230 (5) 0.0175 (5) 0.0044 (4) 0.0037 (4) 0.0084 (4)
C5 0.0207 (5) 0.0257 (5) 0.0196 (5) 0.0042 (4) 0.0018 (4) 0.0112 (4)
C6 0.0193 (5) 0.0277 (5) 0.0228 (5) 0.0042 (4) 0.0032 (4) 0.0120 (4)
C7 0.0207 (5) 0.0240 (5) 0.0188 (5) 0.0055 (4) 0.0036 (4) 0.0089 (4)
C8 0.0177 (5) 0.0224 (5) 0.0209 (5) 0.0038 (4) 0.0041 (4) 0.0095 (4)
C9 0.0174 (5) 0.0221 (5) 0.0197 (5) 0.0033 (4) 0.0031 (4) 0.0095 (4)
C10 0.0180 (5) 0.0220 (5) 0.0202 (5) 0.0030 (4) 0.0036 (4) 0.0093 (4)
C11 0.0201 (5) 0.0216 (5) 0.0207 (5) 0.0042 (4) 0.0041 (4) 0.0092 (4)
C12 0.0192 (5) 0.0226 (5) 0.0211 (5) 0.0047 (4) 0.0031 (4) 0.0109 (4)
C13 0.0167 (5) 0.0259 (5) 0.0235 (5) −0.0004 (4) 0.0006 (4) 0.0094 (4)
C14 0.0231 (6) 0.0460 (7) 0.0269 (6) −0.0005 (5) −0.0011 (5) 0.0182 (5)
C15 0.0191 (5) 0.0225 (5) 0.0207 (5) 0.0012 (4) 0.0016 (4) 0.0091 (4)
C16 0.0234 (5) 0.0373 (6) 0.0267 (6) 0.0055 (5) 0.0040 (4) 0.0214 (5)
C17 0.0259 (6) 0.0401 (7) 0.0298 (6) 0.0092 (5) 0.0035 (5) 0.0212 (5)
C18 0.0198 (5) 0.0288 (5) 0.0206 (5) 0.0057 (4) 0.0054 (4) 0.0133 (4)
C19 0.0215 (5) 0.0256 (5) 0.0242 (5) 0.0053 (4) 0.0071 (4) 0.0132 (4)
C20 0.0207 (5) 0.0282 (5) 0.0217 (5) 0.0046 (4) 0.0046 (4) 0.0097 (4)
C21 0.0205 (5) 0.0330 (6) 0.0228 (5) 0.0085 (4) 0.0061 (4) 0.0141 (4)
C22 0.0266 (6) 0.0283 (6) 0.0274 (6) 0.0079 (4) 0.0069 (4) 0.0164 (5)
C23 0.0246 (5) 0.0253 (5) 0.0245 (5) 0.0042 (4) 0.0038 (4) 0.0109 (4)
C24 0.0283 (6) 0.0398 (7) 0.0248 (6) 0.0093 (5) 0.0040 (5) 0.0172 (5)
C25 0.0212 (5) 0.0237 (5) 0.0242 (5) 0.0038 (4) 0.0031 (4) 0.0127 (4)
C26 0.0276 (6) 0.0261 (5) 0.0245 (5) 0.0048 (4) 0.0069 (4) 0.0097 (4)
C27 0.0312 (6) 0.0238 (5) 0.0270 (6) 0.0035 (5) 0.0012 (5) 0.0071 (4)
C28 0.0234 (5) 0.0244 (5) 0.0355 (6) 0.0035 (4) 0.0018 (5) 0.0142 (5)
C29 0.0239 (5) 0.0307 (6) 0.0324 (6) 0.0080 (5) 0.0082 (5) 0.0182 (5)
C30 0.0251 (5) 0.0282 (5) 0.0230 (5) 0.0071 (4) 0.0045 (4) 0.0121 (4)
C31 0.0258 (6) 0.0355 (7) 0.0477 (8) −0.0015 (5) 0.0004 (6) 0.0142 (6)

Geometric parameters (Å, º)

S1—C8 1.7344 (11) C14—H14A 0.9800
S1—C11 1.7448 (11) C14—H14B 0.9800
O1—C7 1.2315 (13) C14—H14C 0.9800
O2—C12 1.2221 (13) C16—H16A 0.9900
O3—C12 1.3362 (13) C16—H16B 0.9900
O3—C13 1.4548 (12) C16—C17 1.5093 (17)
O4—C15 1.2250 (14) C17—H17A 0.9800
O5—C15 1.3416 (13) C17—H17B 0.9800
O5—C16 1.4541 (12) C17—H17C 0.9800
N1—C1 1.4054 (13) C18—C19 1.3904 (16)
N1—C18 1.4309 (13) C18—C23 1.3970 (15)
N1—C25 1.4254 (14) C19—H19 0.9500
N2—H2 0.850 (17) C19—C20 1.3977 (15)
N2—C7 1.3644 (13) C20—H20 0.9500
N2—C8 1.3829 (13) C20—C21 1.3970 (16)
N3—H3A 0.883 (17) C21—C22 1.3955 (17)
N3—H3B 0.810 (17) C21—C24 1.5114 (15)
N3—C11 1.3529 (14) C22—H22 0.9500
C1—C2 1.4033 (15) C22—C23 1.3881 (16)
C1—C6 1.4029 (15) C23—H23 0.9500
C2—H2A 0.9500 C24—H24A 0.9800
C2—C3 1.3799 (15) C24—H24B 0.9800
C3—H3 0.9500 C24—H24C 0.9800
C3—C4 1.3970 (15) C25—C26 1.3951 (16)
C4—C5 1.3978 (15) C25—C30 1.3959 (16)
C4—C7 1.4843 (14) C26—H26 0.9500
C5—H5 0.9500 C26—C27 1.3921 (17)
C5—C6 1.3885 (15) C27—H27 0.9500
C6—H6 0.9500 C27—C28 1.3923 (18)
C8—C9 1.3767 (14) C28—C29 1.3920 (18)
C9—C10 1.4527 (14) C28—C31 1.5110 (17)
C9—C12 1.4741 (14) C29—H29 0.9500
C10—C11 1.3902 (15) C29—C30 1.3854 (16)
C10—C15 1.4647 (14) C30—H30 0.9500
C13—H13A 0.9900 C31—H31A 0.9800
C13—H13B 0.9900 C31—H31B 0.9800
C13—C14 1.5025 (16) C31—H31C 0.9800
C8—S1—C11 90.70 (5) O5—C15—C10 114.12 (9)
C12—O3—C13 115.11 (8) O5—C16—H16A 110.2
C15—O5—C16 115.43 (8) O5—C16—H16B 110.2
C1—N1—C18 119.80 (9) O5—C16—C17 107.42 (9)
C1—N1—C25 122.19 (9) H16A—C16—H16B 108.5
C25—N1—C18 117.44 (9) C17—C16—H16A 110.2
C7—N2—H2 121.9 (11) C17—C16—H16B 110.2
C7—N2—C8 125.56 (10) C16—C17—H17A 109.5
C8—N2—H2 112.5 (11) C16—C17—H17B 109.5
H3A—N3—H3B 120.2 (15) C16—C17—H17C 109.5
C11—N3—H3A 119.3 (10) H17A—C17—H17B 109.5
C11—N3—H3B 114.4 (11) H17A—C17—H17C 109.5
C2—C1—N1 120.25 (10) H17B—C17—H17C 109.5
C6—C1—N1 121.47 (10) C19—C18—N1 120.52 (10)
C6—C1—C2 118.28 (10) C19—C18—C23 119.47 (10)
C1—C2—H2A 119.6 C23—C18—N1 120.01 (10)
C3—C2—C1 120.74 (10) C18—C19—H19 120.0
C3—C2—H2A 119.6 C18—C19—C20 120.00 (10)
C2—C3—H3 119.4 C20—C19—H19 120.0
C2—C3—C4 121.26 (10) C19—C20—H20 119.5
C4—C3—H3 119.4 C21—C20—C19 121.05 (10)
C3—C4—C5 118.13 (10) C21—C20—H20 119.5
C3—C4—C7 117.52 (10) C20—C21—C24 121.84 (11)
C5—C4—C7 124.35 (10) C22—C21—C20 118.02 (10)
C4—C5—H5 119.5 C22—C21—C24 120.13 (10)
C6—C5—C4 121.08 (10) C21—C22—H22 119.3
C6—C5—H5 119.5 C23—C22—C21 121.46 (10)
C1—C6—H6 119.8 C23—C22—H22 119.3
C5—C6—C1 120.50 (10) C18—C23—H23 120.0
C5—C6—H6 119.8 C22—C23—C18 119.95 (11)
O1—C7—N2 121.07 (10) C22—C23—H23 120.0
O1—C7—C4 123.05 (10) C21—C24—H24A 109.5
N2—C7—C4 115.86 (9) C21—C24—H24B 109.5
N2—C8—S1 121.56 (8) C21—C24—H24C 109.5
C9—C8—S1 113.34 (8) H24A—C24—H24B 109.5
C9—C8—N2 125.00 (10) H24A—C24—H24C 109.5
C8—C9—C10 111.77 (9) H24B—C24—H24C 109.5
C8—C9—C12 118.10 (9) C26—C25—N1 122.05 (10)
C10—C9—C12 129.18 (9) C26—C25—C30 118.80 (10)
C9—C10—C15 129.14 (9) C30—C25—N1 119.09 (10)
C11—C10—C9 111.57 (9) C25—C26—H26 120.0
C11—C10—C15 118.22 (9) C27—C26—C25 120.10 (11)
N3—C11—S1 118.63 (8) C27—C26—H26 120.0
N3—C11—C10 128.82 (10) C26—C27—H27 119.3
C10—C11—S1 112.55 (8) C26—C27—C28 121.43 (11)
O2—C12—O3 122.47 (10) C28—C27—H27 119.3
O2—C12—C9 123.55 (10) C27—C28—C31 121.27 (12)
O3—C12—C9 113.85 (9) C29—C28—C27 117.78 (11)
O3—C13—H13A 110.2 C29—C28—C31 120.94 (12)
O3—C13—H13B 110.2 C28—C29—H29 119.2
O3—C13—C14 107.46 (9) C30—C29—C28 121.52 (11)
H13A—C13—H13B 108.5 C30—C29—H29 119.2
C14—C13—H13A 110.2 C25—C30—H30 119.8
C14—C13—H13B 110.2 C29—C30—C25 120.31 (11)
C13—C14—H14A 109.5 C29—C30—H30 119.8
C13—C14—H14B 109.5 C28—C31—H31A 109.5
C13—C14—H14C 109.5 C28—C31—H31B 109.5
H14A—C14—H14B 109.5 C28—C31—H31C 109.5
H14A—C14—H14C 109.5 H31A—C31—H31B 109.5
H14B—C14—H14C 109.5 H31A—C31—H31C 109.5
O4—C15—O5 122.48 (10) H31B—C31—H31C 109.5
O4—C15—C10 123.32 (10)
S1—C8—C9—C10 2.92 (12) C10—C9—C12—O2 171.40 (11)
S1—C8—C9—C12 −166.93 (8) C10—C9—C12—O3 −12.61 (16)
N1—C1—C2—C3 −179.59 (10) C11—S1—C8—N2 −178.08 (9)
N1—C1—C6—C5 179.10 (10) C11—S1—C8—C9 −1.65 (9)
N1—C18—C19—C20 179.76 (10) C11—C10—C15—O4 −25.80 (17)
N1—C18—C23—C22 178.36 (10) C11—C10—C15—O5 151.08 (10)
N1—C25—C26—C27 −178.50 (10) C12—O3—C13—C14 −171.23 (10)
N1—C25—C30—C29 176.33 (10) C12—C9—C10—C11 165.45 (11)
N2—C8—C9—C10 179.21 (10) C12—C9—C10—C15 −26.80 (19)
N2—C8—C9—C12 9.36 (16) C13—O3—C12—O2 −3.21 (15)
C1—N1—C18—C19 −52.46 (15) C13—O3—C12—C9 −179.25 (9)
C1—N1—C18—C23 128.71 (12) C15—O5—C16—C17 170.77 (10)
C1—N1—C25—C26 −33.06 (16) C15—C10—C11—S1 −167.48 (8)
C1—N1—C25—C30 149.85 (11) C15—C10—C11—N3 11.52 (18)
C1—C2—C3—C4 0.17 (17) C16—O5—C15—O4 −2.93 (15)
C2—C1—C6—C5 −1.21 (17) C16—O5—C15—C10 −179.84 (9)
C2—C3—C4—C5 −0.57 (17) C18—N1—C1—C2 −22.84 (16)
C2—C3—C4—C7 178.97 (10) C18—N1—C1—C6 156.86 (11)
C3—C4—C5—C6 0.07 (17) C18—N1—C25—C26 138.27 (11)
C3—C4—C7—O1 11.30 (17) C18—N1—C25—C30 −38.82 (15)
C3—C4—C7—N2 −167.26 (10) C18—C19—C20—C21 2.63 (17)
C4—C5—C6—C1 0.83 (17) C19—C18—C23—C22 −0.49 (17)
C5—C4—C7—O1 −169.20 (11) C19—C20—C21—C22 −1.89 (17)
C5—C4—C7—N2 12.25 (16) C19—C20—C21—C24 176.92 (10)
C6—C1—C2—C3 0.71 (17) C20—C21—C22—C23 −0.03 (17)
C7—N2—C8—S1 −1.59 (16) C21—C22—C23—C18 1.21 (18)
C7—N2—C8—C9 −177.59 (11) C23—C18—C19—C20 −1.40 (16)
C7—C4—C5—C6 −179.43 (10) C24—C21—C22—C23 −178.86 (11)
C8—S1—C11—N3 −179.24 (9) C25—N1—C1—C2 148.29 (11)
C8—S1—C11—C10 −0.12 (9) C25—N1—C1—C6 −32.02 (16)
C8—N2—C7—O1 1.16 (18) C25—N1—C18—C19 135.99 (11)
C8—N2—C7—C4 179.75 (10) C25—N1—C18—C23 −42.84 (15)
C8—C9—C10—C11 −2.98 (14) C25—C26—C27—C28 2.25 (18)
C8—C9—C10—C15 164.77 (11) C26—C25—C30—C29 −0.85 (17)
C8—C9—C12—O2 −20.79 (16) C26—C27—C28—C29 −0.79 (18)
C8—C9—C12—O3 155.21 (10) C26—C27—C28—C31 −179.45 (11)
C9—C10—C11—S1 1.75 (12) C27—C28—C29—C30 −1.51 (17)
C9—C10—C11—N3 −179.24 (11) C28—C29—C30—C25 2.35 (18)
C9—C10—C15—O4 167.14 (11) C30—C25—C26—C27 −1.40 (17)
C9—C10—C15—O5 −15.98 (16) C31—C28—C29—C30 177.16 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2 0.850 (17) 1.958 (17) 2.6501 (12) 137.8 (15)
N3—H3A···O1i 0.883 (17) 2.154 (17) 3.0316 (13) 172.5 (14)
N3—H3B···O4 0.810 (17) 2.156 (16) 2.7656 (13) 132.2 (14)

Symmetry code: (i) −x−1, −y, −z+1.

Funding Statement

This work was funded by Natural Sciences and Engineering Research Council of Canada grant Discovery Grant to W. G. Skene. Canada Foundation for Innovation grant award.

References

  1. Bolduc, A., Dufresne, S. & Skene, W. G. (2010). J. Mater. Chem. 20, 4820–4826.
  2. Bolduc, A., Mallet, C. & Skene, W. G. (2013). Sci. China Chem. 56, 3–23.
  3. Bourgeaux, M. & Skene, W. G. (2007). J. Org. Chem. 72, 8882–8892. [DOI] [PubMed]
  4. Bourgeaux, M., Vomsheid, S. & Skene, W. G. (2006). Acta Cryst. E62, o5529–o5531.
  5. Bruker (2013). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Dufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1166–1177.
  8. Dufresne, S. & Skene, W. G. (2010a). Acta Cryst. E66, o3027. [DOI] [PMC free article] [PubMed]
  9. Dufresne, S. & Skene, W. G. (2010b). Acta Cryst. E66, o3221. [DOI] [PMC free article] [PubMed]
  10. Fabbro, C., Armani, S., Carloni, L.-E., De Leo, F., Wouters, J. & Bonifazi, D. (2014). Eur. J. Org. Chem. pp. 5487–5500.
  11. Furuyama, T., Noguchi, D., Suzuki, Y. & Kobayashi, N. (2014). Can. J. Chem. 92, 765–770.
  12. Ghosh, K., Masanta, G., Fröhlich, R., Petsalakis, I. D. & Theodorakopoulos, G. (2009). J. Phys. Chem. B, 113, 7800–7809. [DOI] [PubMed]
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  15. Liu, S., Wu, T., Zhu, Q., Pu, J., Chen, G., Zhang, W. & Li, Z. (2018). RSC Adv. 8, 12779–12784. [DOI] [PMC free article] [PubMed]
  16. Ma, X., Wu, Y., Wen, H., Niu, H., Wang, C., Qin, C., Bai, X., Lei, L. & Wang, W. (2016). RSC Adv. 6, 4564–4575.
  17. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  18. Rodinovskaya, L. A., Shestopalov, A. M. & Chunikhin, K. S. (2002). Tetrahedron, 58, 4273–4282.
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Skene, W. G., Dufresne, S., Trefz, T. & Simard, M. (2006). Acta Cryst. E62, o2382–o2384.
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Sun, H., Zhang, Y., Yan, W., Chen, W., Lan, Q., Liu, S., Jiang, L., Chi, Z., Chen, X. & Xu, J. (2014). J. Mater. Chem. C. 2, 5812–5817.
  24. Tshibaka, T., Bishop, S., Roche, I. U., Dufresne, S., Lubell, W. D. & Skene, W. G. (2011). Chem. Eur. J. 17, 10879–10888. [DOI] [PubMed]
  25. Wang, J., He, C., Wu, P., Wang, J. & Duan, C. (2011). J. Am. Chem. Soc. 133, 12402–12405. [DOI] [PubMed]
  26. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  27. Yeh, L.-C., Huang, T.-C., Lai, F.-Y., Lai, G.-H., Lo, A.-Y., Hsu, S.-C., Yang, T.-I. & Yeh, J.-M. (2016). Surf. Coat. Technol. 303, 154–161.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019003864/rz5251sup1.cif

e-75-00589-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003864/rz5251Isup2.hkl

e-75-00589-Isup2.hkl (493.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019003864/rz5251Isup3.cml

CCDC reference: 1904525

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES