Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 25;75(Pt 5):707–710. doi: 10.1107/S2056989019005073

Crystal structure and Hirshfeld surface analysis of rac-2-[2-(4-chloro­phen­yl)-3,4-di­hydro-2H-1-benzo­pyran-4-yl­idene]hydrazine-1-carbo­thio­amide

Ruokuosenuo Zatsu a, Prabhakar Maddela a,*, M Indira Devi a, Ranjit Singh b, Chullikkattil P Pradeep b
PMCID: PMC6505591  PMID: 31110816

The title compound, is a Schiff base derivative of a thio­semicarbazide with a flavanone. In the crystal, mol­ecules are linked by two pairs of N—H⋯S hydrogen bonds, forming inversion dimers enclosing Inline graphic(8) ring motifs, which are linked to form ribbons propagating along the b-axis direction.

Keywords: crystal structure, flavanone, chromane, thio­semicarbazide, Schiff base, N—H⋯S hydrogen bonds, supra­molecular chemistry, Hirshfeld surface analysis

Abstract

In the title compound, C16H14N3OSCl, a Schiff base derivative of a thio­semicarbazide with a flavanone, the 4-chlorophenyl ring is inclined to the benzene ring of the chromane ring system by 30.72 (12)°. The pyran ring has an envelope conformation with the methine C atom as the flap. The mean plane of the thio­urea unit is twisted with respect to the benzene ring of the chromanone ring system, subtending a dihedral angle of 19.78 (19)°. In the crystal, mol­ecules are linked by two pairs of N—H⋯S hydrogen bonds, forming inversion dimers enclosing R 2 2(8) ring motifs, which are linked to form ribbons propagating along the b-axis direction. The inter­molecular contacts in the crystal have been analysed using Hirshfeld surface analysis.

Chemical context  

Flavanones, a subclass of flavonoids, are widely recognized for their nutraceutical values (Testai & Calderone, 2017). Flavanones are also known for their potential bioactivities against cancer (Bauvois et al., 2003). Thio­semicarbazides are a class of versatile ligands exhibiting important physicochemical properties due to their π-delocalization and flexibility of coordination modes. Therefore, a combination of flavanones and thio­semicarbazides may lead to compounds having synergistic properties of both classes of compounds. Schiff base derivatives of thio­semicarbazides have been studied for their biological and pharmacological properties (Bai et al., 2017). However, Schiff base derivatives of flavanones with thio­semicarbazides have not been explored extensively (Brodowska et al., 2016; Bargujar et al., 2018). In particular, structurally characterized flavanone–thio­semicarbazone Schiff bases are rare in the literature. The presence of NH and S moieties in such compounds opens up the possibility of studying the role of the comparatively less explored class of N—H⋯S inter­actions in building supra­molecular architectures. This is of inter­est as hydrogen bonding to sulfur is known to play an important role in biological systems (Andersen et al., 2014; Walters et al., 2005). Considering the above, we have synthesized the title compound through a Schiff base condensation reaction, and report herein on its crystal structure and the Hirshfeld surface analysis.graphic file with name e-75-00707-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The 4-chloro­phenyl ring (C11–C16) is inclined to the benzene ring (C5–C10) of the chromanone ring system by 30.72 (12)°. The pyran ring (O1/C2–C5/C10) has an envelope conformation with atom C2 as the flap, being displaced by 0.655 (2) Å from the mean plane through the other five atoms of the ring. The mean plane of the thio­urea unit (N2/C17/S1/N3) is twisted with respect to benzene ring (C5-C10) of the chromane ring system, forming a dihedral angle of 19.78 (19)°.

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The orientation of the fiigure means that one of the two H atoms on C3 is not shown.

Supra­molecular features  

A strong hydrogen bond often involves highly electronegative second row elements such as N, O and F. However, the less electronegative third row elements (P, S and Cl) are also known to take part in hydrogen-bonding inter­actions. In the crystal of the title compound, mol­ecules are linked by two pairs of N—H⋯S hydrogen bonds, forming inversion dimers enclosing R 2 2(8) ring motifs, which are linked to form ribbons propagating along the b-axis direction (Table 1 and Fig. 2). In the crystal, there are no other significant short inter­molecular inter­actions present.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯S1i 0.85 (3) 2.65 (3) 3.480 (2) 167 (2)
N3—H3BN⋯S1ii 0.88 (3) 2.52 (3) 3.392 (2) 171 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view normal to plane (101) of the crystal packing of the title compound. The N—H⋯S hydrogen bonds are shown as dashed lines (Table 1). For clarity, C-bound H atoms have been omitted.

Hirshfeld surface analysis and two-dimensional fingerprint plots for the title compound  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). A recent article by Tiekink and collaborators (Tan et al., 2019) ‘outlines the various procedures and what can be learned by using CrystalExplorer’.

The Hirshfeld surface of the title compound mapped over d norm is given in Fig. 3 a. The red spots indicate specific points of contact in the crystal. The Hirshfeld surface mapped over the shape-index is given in Fig. 3 b, showing red spots and blue regions indicative of possible C⋯H/H⋯C (i.e. C—H⋯π) contacts. The Hirshfeld surface mapped over the curvedness is given in Fig. 3 c. Here the region around the chromane ring system is fairly flat, indicative of possible π–π inter­actions. However, these inter­actions must be extremely weak as analysis of the structure using PLATON (Spek, 2009) did not indicate the presence of any significant C—H⋯π or offset π–π inter­actions in the crystal.

Figure 3.

Figure 3

The Hirshfeld surface of the title compound mapped over (a) d norm, −0.3525 to 1.4929 arbitrary units, (b) shape-index and (c) curvedness.

The full two-dimensional fingerprint plot for the title compound is given in Fig. 4 a. The principal inter­molecular inter­actions (Fig. 4 b–4f) are delineated into H⋯H (38.9%), C⋯H/H⋯C (20.3%), S⋯H/H⋯S (13.1%), Cl⋯H/H⋯Cl (12.0%) and N⋯H/H⋯N (3.0%) contacts. Note that only for the H⋯H, C⋯H/H⋯C and S⋯H/H⋯S contacts is d e + d i (where d e and d i are the distances from a given point on the surface to the nearest atom outside and inside, respectively), less than the sum of the van der Waals radii of the individual atoms.

Figure 4.

Figure 4

(a) The full two-dimensional fingerprint plot for the title compound and fingerprint plots delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) S⋯H/H⋯S, (e) Cl⋯H/H⋯Cl and (f) N⋯H/H⋯N contacts.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, update February 2019; Groom et al., 2016) for a similar structure gave one hit, the compound 2′[(2-(4-fluoro­phen­yl)chroman-4-yl­idene]isonicotinohydrazide (CSD refcode TEJQUV; Nie et al., 2006). Here, the pyran ring has an envelope conformation and the 4-fluoro­phenyl ring is inclined to the benzene ring of the chromane ring system by 66.57 (11)°. In the title compound, the pyran ring also has an envelope conformation and the 4-chloro­pheny ring is inclined to the benzene ring of the chromane ring system by only 30.72 (12)°.

A search for the 2-(tetra­hydro-4H-pyran-4-yl­idene)hydrazine-1-carbo­thio­amide skeleton gave one hit, viz. (E)-2-[2,6-bis­(4-chloro­phen­yl)-3,5-di­methyl­tetra­hydro-4H-pyran-4-yl­idene]hydrazinecarbo­thio­amide (UQAWAL; Umamatheswari et al., 2011). Here, the pyran ring has a chair conformation and the bond lengths and angles of the hydrazinecarbo­thio­amide unit are similar to those in the title compound.

Synthesis and crystallization  

The synthesis of the title compound was achieved by following a reported procedure with some modifications (Bargale et al., 1988). Conc. H2SO4 (10 mol %) in ethanol (5 ml) was added to a stirred solution of 2-(4-chloro­phen­yl)-chroman-4-one (0.258 g, 1 mmol) (Zheng et al., 2013) and thio­semicarbazide (0.091 g, 1 mmol). The mixture was refluxed for 96 h with continuous stirring. After completion of the reaction, as monitored by TLC, the solvent was removed under reduce pressure and then ice-cold water was added. The resulting solid product was collected by filtration, washed with water (3–4 times) and finally with hexane and then dried at room temperature. Pale-yellow plate-like crystals of the title compound were obtained by slow evaporation at room temperature of a solution in aceto­nitrile (yield 90%, m.p. 483-486 K). IR (KBr, cm−1): 3417, 3245, 3152, 2984, 2888, 2790, 1598, 1512, 1454, 1298, 1250, 1089, 1077, 883, 766, 507, 498. 1H NMR (400 MHz, DMSO-d6), δ ppm: 10.47 (s, 1H, NH), 8.32 (d, 2H, J = 6.50 Hz, NH2); 8.13 (s, 1H, Ar-H); 7.54 (dd, 4H, J = 8.41 Hz, Ar-H); 7.35–7.31 (m, 1H, Ar-H); 7.02–6.97 (m, 2H, Ar-H); 5.25 (dd, 1H, J = 2.36, 2.40 Hz, CH); 2.79 (dd, 1H, J = 12.10, 12.0 Hz, CH2); 2.51 (s, 1H, CH2).13C NMR (300 MHz, DMSO-d6), δ ppm: 178.84; 156.71; 141.71; 138.79; 132.76; 131.24; 128.44; 128.27; 125.49; 121.48; 120.10; 117.47; 75.41; 31.83. Analysis calculated for C16H14N3OSCl: C, 57.91; H, 4.25; N, 12.66; S, 9.66. Found: C, 57.85; H, 4.28; N, 12.61; S, 9.59.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH and NH2 H atoms were located in a difference-Fourier map and refined freely. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C16H14ClN3OS
M r 331.81
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 7.8218 (7), 8.4207 (6), 12.3402 (11)
α, β, γ (°) 99.838 (7), 95.771 (7), 96.515 (7)
V3) 789.66 (12)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.41
Crystal size (mm) 0.50 × 0.17 × 0.10
 
Data collection
Diffractometer Rigaku OD, SuperNova, Dual, Cu at zero, Eos
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.464, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4478, 2766, 2346
R int 0.019
(sin θ/λ)max−1) 0.596
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.121, 1.05
No. of reflections 2766
No. of parameters 211
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.41

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a ), SHELXL2018/03 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008), SHELXL2018/03 (Sheldrick, 2015b ), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019005073/zp2036sup1.cif

e-75-00707-sup1.cif (168.4KB, cif)

Supporting information file. DOI: 10.1107/S2056989019005073/zp2036Isup3.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019005073/zp2036Isup4.hkl

e-75-00707-Isup4.hkl (221.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019005073/zp2036Isup4.cml

CCDC reference: 1893434

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Nagaland University, AMRC– IIT Mandi and the University of Hyderabad for the research facilities.

supplementary crystallographic information

Crystal data

C16H14ClN3OS Z = 2
Mr = 331.81 F(000) = 344
Triclinic, P1 Dx = 1.395 Mg m3
a = 7.8218 (7) Å Cu Kα radiation, λ = 1.54184 Å
b = 8.4207 (6) Å Cell parameters from 2014 reflections
c = 12.3402 (11) Å θ = 3.7–66.5°
α = 99.838 (7)° µ = 3.41 mm1
β = 95.771 (7)° T = 293 K
γ = 96.515 (7)° Plate, yellow
V = 789.66 (12) Å3 0.50 × 0.17 × 0.10 mm

Data collection

Rigaku OD, SuperNova, Dual, Cu at zero, Eos diffractometer 2346 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.019
ω scans θmax = 66.7°, θmin = 3.7°
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2015) h = −9→9
Tmin = 0.464, Tmax = 1.000 k = −10→7
4478 measured reflections l = −14→14
2766 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: mixed
wR(F2) = 0.121 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.1825P] where P = (Fo2 + 2Fc2)/3
2766 reflections (Δ/σ)max = 0.001
211 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.03040 (9) 0.27189 (6) 1.04983 (4) 0.0560 (2)
Cl1 0.63580 (11) 1.37767 (8) 0.85742 (7) 0.0909 (3)
O1 0.2996 (2) 0.65276 (19) 0.57103 (12) 0.0597 (4)
N1 0.1205 (2) 0.3125 (2) 0.75055 (14) 0.0492 (4)
N2 0.1066 (3) 0.3537 (2) 0.86177 (14) 0.0492 (4)
H2N 0.089 (3) 0.448 (3) 0.892 (2) 0.061 (7)*
N3 0.0872 (4) 0.0835 (2) 0.86608 (18) 0.0689 (6)
H3AN 0.115 (4) 0.073 (3) 0.800 (3) 0.076 (9)*
H3BN 0.062 (3) −0.002 (3) 0.896 (2) 0.074 (8)*
C2 0.3685 (3) 0.6714 (3) 0.68520 (18) 0.0499 (5)
H2 0.467722 0.610398 0.689533 0.060*
C3 0.2332 (3) 0.6009 (3) 0.74971 (17) 0.0493 (5)
H3A 0.281782 0.610110 0.826354 0.059*
H3B 0.134816 0.661355 0.748204 0.059*
C4 0.1747 (3) 0.4250 (2) 0.69944 (17) 0.0450 (4)
C5 0.1826 (3) 0.3784 (3) 0.58006 (16) 0.0474 (5)
C6 0.1305 (3) 0.2204 (3) 0.52088 (19) 0.0606 (6)
H6 0.091678 0.139229 0.558488 0.073*
C7 0.1353 (3) 0.1822 (3) 0.4087 (2) 0.0681 (7)
H7 0.104231 0.075412 0.371456 0.082*
C8 0.1866 (3) 0.3031 (4) 0.35112 (19) 0.0650 (7)
H8 0.186752 0.278143 0.274751 0.078*
C9 0.2373 (3) 0.4599 (3) 0.40644 (19) 0.0607 (6)
H9 0.269457 0.541354 0.367367 0.073*
C10 0.2406 (3) 0.4967 (3) 0.52061 (17) 0.0500 (5)
C11 0.4330 (3) 0.8494 (3) 0.72737 (18) 0.0506 (5)
C12 0.4111 (3) 0.9656 (3) 0.6620 (2) 0.0604 (6)
H12 0.352887 0.934776 0.590588 0.073*
C13 0.4752 (3) 1.1273 (3) 0.7020 (2) 0.0668 (7)
H13 0.460876 1.204685 0.657535 0.080*
C14 0.5595 (3) 1.1727 (3) 0.8070 (2) 0.0624 (6)
C15 0.5862 (4) 1.0597 (3) 0.8729 (2) 0.0719 (7)
H15 0.645873 1.091518 0.943806 0.086*
C16 0.5233 (4) 0.8983 (3) 0.8325 (2) 0.0682 (7)
H16 0.541890 0.821123 0.876540 0.082*
C17 0.0759 (3) 0.2312 (2) 0.91799 (17) 0.0470 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0973 (4) 0.0372 (3) 0.0360 (3) 0.0047 (3) 0.0169 (3) 0.0114 (2)
Cl1 0.1088 (6) 0.0550 (4) 0.1009 (6) −0.0103 (4) −0.0092 (4) 0.0184 (4)
O1 0.0846 (11) 0.0556 (9) 0.0446 (8) 0.0059 (8) 0.0172 (7) 0.0219 (7)
N1 0.0673 (11) 0.0448 (9) 0.0385 (9) 0.0057 (8) 0.0134 (8) 0.0132 (7)
N2 0.0761 (12) 0.0362 (9) 0.0386 (9) 0.0049 (8) 0.0174 (8) 0.0121 (7)
N3 0.127 (2) 0.0374 (10) 0.0482 (12) 0.0088 (11) 0.0328 (12) 0.0121 (9)
C2 0.0547 (11) 0.0521 (12) 0.0491 (12) 0.0100 (9) 0.0147 (9) 0.0200 (9)
C3 0.0593 (12) 0.0485 (11) 0.0438 (11) 0.0050 (9) 0.0130 (9) 0.0163 (9)
C4 0.0498 (11) 0.0480 (11) 0.0406 (10) 0.0083 (8) 0.0092 (8) 0.0143 (8)
C5 0.0500 (11) 0.0577 (12) 0.0380 (10) 0.0090 (9) 0.0085 (8) 0.0154 (9)
C6 0.0730 (15) 0.0630 (14) 0.0427 (12) −0.0017 (11) 0.0043 (10) 0.0101 (10)
C7 0.0738 (16) 0.0771 (17) 0.0467 (13) 0.0005 (13) 0.0025 (11) 0.0017 (12)
C8 0.0578 (13) 0.101 (2) 0.0356 (11) 0.0103 (13) 0.0068 (9) 0.0095 (12)
C9 0.0627 (13) 0.0833 (17) 0.0434 (12) 0.0128 (12) 0.0161 (10) 0.0244 (11)
C10 0.0519 (11) 0.0594 (13) 0.0440 (11) 0.0128 (9) 0.0121 (9) 0.0173 (9)
C11 0.0518 (11) 0.0508 (12) 0.0546 (12) 0.0066 (9) 0.0154 (9) 0.0198 (10)
C12 0.0671 (14) 0.0556 (13) 0.0624 (14) 0.0069 (10) 0.0047 (11) 0.0241 (11)
C13 0.0729 (15) 0.0549 (14) 0.0773 (17) 0.0061 (11) 0.0021 (13) 0.0305 (12)
C14 0.0617 (13) 0.0518 (13) 0.0755 (16) 0.0005 (10) 0.0090 (12) 0.0208 (11)
C15 0.0828 (17) 0.0661 (16) 0.0636 (15) −0.0061 (13) −0.0029 (13) 0.0199 (12)
C16 0.0828 (17) 0.0581 (14) 0.0663 (16) 0.0004 (12) 0.0026 (13) 0.0283 (12)
C17 0.0642 (12) 0.0382 (10) 0.0407 (10) 0.0027 (9) 0.0109 (9) 0.0129 (8)

Geometric parameters (Å, º)

S1—C17 1.687 (2) C5—C6 1.398 (3)
Cl1—C14 1.746 (2) C6—C7 1.372 (3)
O1—C10 1.361 (3) C6—H6 0.9300
O1—C2 1.433 (3) C7—C8 1.383 (4)
N1—C4 1.281 (3) C7—H7 0.9300
N1—N2 1.375 (2) C8—C9 1.373 (4)
N2—C17 1.351 (3) C8—H8 0.9300
N2—H2N 0.85 (3) C9—C10 1.387 (3)
N3—C17 1.315 (3) C9—H9 0.9300
N3—H3AN 0.85 (3) C11—C16 1.385 (3)
N3—H3BN 0.88 (3) C11—C12 1.385 (3)
C2—C11 1.511 (3) C12—C13 1.383 (3)
C2—C3 1.514 (3) C12—H12 0.9300
C2—H2 0.9800 C13—C14 1.364 (4)
C3—C4 1.505 (3) C13—H13 0.9300
C3—H3A 0.9700 C14—C15 1.374 (4)
C3—H3B 0.9700 C15—C16 1.381 (4)
C4—C5 1.468 (3) C15—H15 0.9300
C5—C10 1.396 (3) C16—H16 0.9300
C10—O1—C2 114.56 (16) C8—C7—H7 120.1
C4—N1—N2 118.41 (17) C9—C8—C7 120.2 (2)
C17—N2—N1 117.54 (17) C9—C8—H8 119.9
C17—N2—H2N 117.8 (17) C7—C8—H8 119.9
N1—N2—H2N 122.4 (17) C8—C9—C10 120.0 (2)
C17—N3—H3AN 117 (2) C8—C9—H9 120.0
C17—N3—H3BN 121.9 (18) C10—C9—H9 120.0
H3AN—N3—H3BN 121 (3) O1—C10—C9 117.1 (2)
O1—C2—C11 107.89 (17) O1—C10—C5 121.98 (19)
O1—C2—C3 110.01 (18) C9—C10—C5 120.9 (2)
C11—C2—C3 114.02 (18) C16—C11—C12 118.5 (2)
O1—C2—H2 108.3 C16—C11—C2 119.6 (2)
C11—C2—H2 108.3 C12—C11—C2 121.8 (2)
C3—C2—H2 108.3 C13—C12—C11 120.5 (2)
C4—C3—C2 109.75 (17) C13—C12—H12 119.7
C4—C3—H3A 109.7 C11—C12—H12 119.7
C2—C3—H3A 109.7 C14—C13—C12 119.7 (2)
C4—C3—H3B 109.7 C14—C13—H13 120.1
C2—C3—H3B 109.7 C12—C13—H13 120.1
H3A—C3—H3B 108.2 C13—C14—C15 121.0 (2)
N1—C4—C5 117.19 (19) C13—C14—Cl1 119.26 (19)
N1—C4—C3 126.53 (19) C15—C14—Cl1 119.7 (2)
C5—C4—C3 116.28 (17) C14—C15—C16 119.1 (3)
C10—C5—C6 117.4 (2) C14—C15—H15 120.4
C10—C5—C4 119.36 (19) C16—C15—H15 120.4
C6—C5—C4 123.21 (19) C15—C16—C11 121.0 (2)
C7—C6—C5 121.6 (2) C15—C16—H16 119.5
C7—C6—H6 119.2 C11—C16—H16 119.5
C5—C6—H6 119.2 N3—C17—N2 117.00 (19)
C6—C7—C8 119.7 (2) N3—C17—S1 122.99 (17)
C6—C7—H7 120.1 N2—C17—S1 120.00 (16)
C4—N1—N2—C17 −169.8 (2) C8—C9—C10—C5 −4.0 (3)
C10—O1—C2—C11 178.22 (17) C6—C5—C10—O1 −177.7 (2)
C10—O1—C2—C3 −56.8 (2) C4—C5—C10—O1 3.8 (3)
O1—C2—C3—C4 57.2 (2) C6—C5—C10—C9 3.4 (3)
C11—C2—C3—C4 178.59 (17) C4—C5—C10—C9 −175.0 (2)
N2—N1—C4—C5 −178.00 (17) O1—C2—C11—C16 −173.0 (2)
N2—N1—C4—C3 2.7 (3) C3—C2—C11—C16 64.5 (3)
C2—C3—C4—N1 150.2 (2) O1—C2—C11—C12 4.2 (3)
C2—C3—C4—C5 −29.1 (2) C3—C2—C11—C12 −118.3 (2)
N1—C4—C5—C10 179.93 (19) C16—C11—C12—C13 −1.3 (4)
C3—C4—C5—C10 −0.7 (3) C2—C11—C12—C13 −178.5 (2)
N1—C4—C5—C6 1.6 (3) C11—C12—C13—C14 −0.5 (4)
C3—C4—C5—C6 −179.1 (2) C12—C13—C14—C15 1.8 (4)
C10—C5—C6—C7 −0.2 (4) C12—C13—C14—Cl1 −178.7 (2)
C4—C5—C6—C7 178.2 (2) C13—C14—C15—C16 −1.3 (4)
C5—C6—C7—C8 −2.4 (4) Cl1—C14—C15—C16 179.2 (2)
C6—C7—C8—C9 1.9 (4) C14—C15—C16—C11 −0.5 (4)
C7—C8—C9—C10 1.3 (4) C12—C11—C16—C15 1.8 (4)
C2—O1—C10—C9 −155.12 (19) C2—C11—C16—C15 179.1 (2)
C2—O1—C10—C5 26.0 (3) N1—N2—C17—N3 9.8 (3)
C8—C9—C10—O1 177.1 (2) N1—N2—C17—S1 −171.68 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N···S1i 0.85 (3) 2.65 (3) 3.480 (2) 167 (2)
N3—H3BN···S1ii 0.88 (3) 2.52 (3) 3.392 (2) 171 (2)

Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x, −y, −z+2.

Funding Statement

This work was funded by Science and Engineering Research Board grant SB/EMEQ-030/2014 to P. Maddela.

References

  1. Andersen, C. L., Jensen, C. S., Mackeprang, K., Du, L., Jørgensen, S. & Kjaergaard, H. G. (2014). J. Phys. Chem. A, 118, 11074–11082. [DOI] [PubMed]
  2. Bai, J., Wang, R.-H., Qiao, Y., Wang, A. & Fang, C.-J. (2017). Drug Des. Dev. Ther. 11, 2227–2237. [DOI] [PMC free article] [PubMed]
  3. Bargale, S. & Shastry, V. R. (1988). Orient. J. Chem. 4, 53–57.
  4. Bargujar, S., Chandra, S., Chauhan, R., Rajor, H. K. & Bhardwaj, J. (2018). Appl. Organomet. Chem. 32, e4149–e4162.
  5. Bauvois, B., Puiffe, M.-L., Bongui, J.-B., Paillat, S., Monneret, C. & Dauzonne, D. (2003). J. Med. Chem. 46, 3900–3913. [DOI] [PubMed]
  6. Brodowska, K., Sykuła, A., Garribba, E., Łodyga-Chruścińska, E. & Sójka, M. (2016). Transition Met. Chem. 41, 179–189.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  11. Nie, A., Ghosh, S. & Huang, Z. (2006). Acta Cryst. E62, o1824–o1825.
  12. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  18. Testai, L. & Calderone, V. (2017). Nutrients 9, 502-514. [DOI] [PMC free article] [PubMed]
  19. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  20. Umamatheswari, S., Pratha, J. J. & Kabilan, S. (2011). J. Mol. Struct. 989, 1–9.
  21. Walters, M. A., Roche, C. L., Rheingold, A. L. & Kassel, S. W. (2005). Inorg. Chem. 44, 3777–3779. [DOI] [PubMed]
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  23. Zheng, X., Jiang, H., Xie, J., Yin, Z. & Zhang, H. (2013). Synth. Commun. 43, 1023–1029.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019005073/zp2036sup1.cif

e-75-00707-sup1.cif (168.4KB, cif)

Supporting information file. DOI: 10.1107/S2056989019005073/zp2036Isup3.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019005073/zp2036Isup4.hkl

e-75-00707-Isup4.hkl (221.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019005073/zp2036Isup4.cml

CCDC reference: 1893434

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES