Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 18;75(Pt 5):642–645. doi: 10.1107/S205698901900495X

Crystal structure of N,N′-[(ethane-1,2-di­yl)bis­(aza­nediylcarbono­thio­yl)]bis­(benzamide)

Issa Samb a, Nango Gaye b, Rokhaya Sylla-Gueye b, Elhadj Ibrahima Thiam b,*, Mohamed Gaye b, Pascal Retailleau c
PMCID: PMC6505593  PMID: 31110803

A new symmetrical thio­carbonohydrazone derivative with two similar benzoyl­thio­ureido functional groups has been prepared and characterized.

Keywords: crystal structure, thio­urea, ethyl­enedi­amine, benzoyl­thio­ureido

Abstract

The reaction of benzoyl chloride and ethyl­endi­amine in the presence of potassium thio­cyanate yielded a white solid, C18H18N4O2S2, which consists of two benzoyl­thio­ureido moieties connected by an ethyl­ene chain. The asymmetric unit consists of one half of the mol­ecule, the complete mol­ecule being generated by crystallographic inversion symmetry. Both thio­urea moieties are in a trans conformation. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, C—H⋯S and C—H⋯O hydrogen bonds link the molecules, forming layers parallel to the ac plane.

Chemical context  

Thio­urea derivatives have been successfully used in the extraction of some transition metals (i.e. CuII, NiII and CoII) from acidic media. Thio­urea derivatives have also been shown to possess anti­bacterial, anti­fungal, anti­tubercular, anti­thyroid and insecticidal properties (Arslan et al., 2004; Cunha et al., 2007). The structures of several types of thio­urea derivatives and its metal complexes have been determined in recent decades. These compounds possess two arms which can act as a tetra­dentate ligand coordinating through the S atom and the benzoyl O atom of each arm. Urea and thio­urea derivatives can behave as catalysts through double inter­action by hydrogen bonding with the substrate (Sigman & Jacobsen, 1998; Cortes-Clerget et al., 2016). Thio­urea derivatives with alkyl bridges can adopt diverse conformations (Thiam et al., 2008; Pansuriya et al., 2011). We have recently begun to examine the coordination behaviour of a series of substituted benzoyl­thio­urea derivatives that possess a number of inter­esting properties and reported a thio­ureido ligand in which the two thio­ureido moieties are bridged by a 1,2-phenylene ring (Thiam et al., 2008). In this paper, we report the synthesis and the characterization of a mol­ecule where the two thio­ureidos are bridged by an ethane-1,2-diyl group.graphic file with name e-75-00642-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound is a half-mol­ecule with the other half being generated by an inversion centre located at the mid-point of the C1—C1a bond [Fig. 1; symmetry code: (a) −x + 2, −y + 1, −z + 1]. The benzoyl groups of each thio­urea subunit are trans with respect to the thiono S atoms across the respective C2—N2 bonds. The 1-benzoyl-3-ethyl­thio­urea fragments adopt a cis conformation with respect to the thiono S atom across the respective C2—N1 bonds. The S1—C2 [1.6626 (15) Å] and O1—C3 [1.2209 (16) Å] distances indicate that these correspond to double bonds and are comparable to those observed for 1,2-bis­(N-benzoyl­thio­ureido)benzene [1.6574 (18) Å for S—C and 1.222 (2) Å for O7—C16] (Thiam et al., 2008). The C—N bond lengths [1.3744 (17)–1.3971 (17) Å] are in the normal range observed for a single C—N bond. The thio­urea fragments S1/N1/N2/C1/C2 are planar, with a maximum deviation from the least-squares plane of 0.015 (1) Å for the N1 atom. The dihedral angle between this plane and that of the benzene ring (r.m.s. deviation = 0.006 Å) is 26.97 (5)° versus ca 34° when the benzene ring is chlorinated (Abusaadiya et al., 2016). As regularly noticed with carbonyl­urea derivatives, the mol­ecule also forms intra­molecular N1—H1 hydrogen bonds between the carbonyl O and thio­amide H atoms producing S(6) rings (N1—H1⋯O1, Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom-numbering scheme and intra­molecular contacts. Displacement ellipsoids are plotted at the 50% probability level. [Symmetry code: (a) −x + 2, −y + 1, −z + 1]

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O1 0.86 (2) 1.95 (2) 2.6528 (16) 138 (2)
C5—H5⋯O1i 0.93 2.58 3.478 (16) 162
C9—H9⋯O1ii 0.93 2.52 3.311 (16) 143
C1—H1A⋯S1iii 0.97 2.97 3.8375 (16) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, the mol­ecules, which feature an overall Z-form, have both halves roughly parallel to the ac plane, whereas the mid-point of the C1—C1a bond lies orthogonally parallel to the (100) plane. Mol­ecular layers running almost parallel to the ac plane are formed by inter­molecular C—H⋯O and C—H⋯S inter­actions (Table 1 and Fig. 2). These layers stack along the b direction. Despite the presence of phenyl rings, no π–π inter­actions are observed in the crystal packing. However, the carbonyl function C3=O1 stacks on phenyl group C4–C9 of a neighbouring layer [O1⋯Cg1iv = 3.5543 (14) Å; Cg1 is the centroid of ring C4–C9; symmetry code: (iv) −x + 1, y + Inline graphic, −z + Inline graphic].

Figure 2.

Figure 2

Partial crystal packing of the title compound, showing C—H⋯O (red dashed lines) and C—H⋯S (yellow dashed lines) inter­actions (see Table 1 for details).

Database survey  

Reflecting the inter­est in compounds similar to the title compound, no less than 35 associated structures are included in the Cambridge Structural Database (Version 5.38; Groom et al., 2016). The match APALEK (Abusaadiya et al., 2016) is the most similar structure to the title compound, the only difference being the substitution of the phenyl ring on the C3 position by a Cl atom. In both cases, the benzoyl functions of each thio­urea subunit are trans with respect to the thiono S atom across the C—N bond. The 1-benzoyl-3-ethyl­thio­urea fragment adopts a cis conformation with respect to the thiono S atom across the respective C—N bond. Six structures in which the spacer is different from the spacer in the symmetrical bis­(thio­ureido) mol­ecule studied here appear in the literature. The angles between the phenyl rings are: 63.1° for DAVHOZ (Aydın et al., 2012), 10.2° for EGUYAH (Sow et al., 2009), 35.4° for NEWJIL (Light, 2018), 0.0° for QIXQUK (Ding et al., 2008), 3.2° for TIFQAD (Oyeka et al., 2018) and 0.0° for XIQPAP (Dong et al., 2007). In addition, 23 structures which contain only one arm with a thio­ureido moiety similar to the studied mol­ecules are reported, while the other arm consists of diverse moieties: CIGDAZ (Karipcin et al., 2013), DELMUD (Ngah et al., 2006), EYACIQ (Shutalev et al., 2004), GIHMIV (Haynes et al., 2014), GIHMOB (Haynes et al., 2014), IFUZOZ (Hassan et al., 2008a ,b ), NIQROV (Yamin & Malik, 2007), NIQROV01 (Nguyen & Abram, 2008), POFKIG (Ngah et al., 2014), QEWHUY (Rakhshani et al., 2018), RUGKOU (Hassan et al., 2009), SAFPAT (Wei, 2016), SITKUC (Yamin et al., 2008), TADSIB (Zhang et al., 2003), TADTEY (Yusof & Yamin, 2003), TIBLEW (Khawar Rauf et al., 2007). TIHJAW (Yusof et al., 2007), UNUBAH (Hassan et al., 2011), WOGTUI (Hassan et al., 2008a ,b ), XEBQOM (Adan et al., 2012), YICDEU (Othman et al., 2007), YUPYEO (Zheng et al., 2010) and YUPYEO01 (Khan et al., 2018).

Synthesis and crystallization  

All purchased chemicals and solvents were of reagent grade and were used without further purification. Melting points were determined with a Büchi 570 melting-point apparatus and were uncorrected. To a mixture of 7.02 g (72 mmol) of potassium thio­cyanate and 100 ml of acetone was added dropwise a solution of 10.116 g (72 mmol) of benzoyl chloride in 50 ml of acetone. The resulting mixture was stirred under reflux for 1 h and cooled to room temperature. A solution of 2.2 g (36.6 mmol) of 1,2-ethyl­enedi­amine in 20 ml of acetone was added. The yellow solution obtained was stirred at room temperature during 2 h. Hydro­chloric acid (0.1 N, 300 ml) was added and a white solid appeared after a few minutes. The compound was filtered off, washed with 3 × 50 ml of water and dried under vacuum. The solid product was washed with water and purified by recrystallization from an ethanol/di­chloro­methane mixture (1:1 v/v). 12.3 g of the title compound were obtained (yield 88.5%). A small qu­antity of powder was recrystallized from 5 ml of DMF. Colourless single crystals suitable to XRD grew within six days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Aromatic H atoms were first located by HFIX and other H atoms were located in the difference Fourier map, positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 (CarH) or 0.97 Å (CH2). The NH H atoms were located in a difference Fourier map and freely refined.

Table 2. Experimental details.

Crystal data
Chemical formula C18H18N4O2S2
M r 386.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.2250 (6), 7.2547 (5), 11.1397 (6)
β (°) 100.978 (5)
V3) 890.55 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.32
Crystal size (mm) 0.36 × 0.14 × 0.11
 
Data collection
Diffractometer XtaLAB AFC12 (RINC): Kappa single
Absorption correction Multi-scan CrysAlis PRO (Rigaku OD, 2018)
T min, T max 0.513, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7264, 2328, 1942
R int 0.040
(sin θ/λ)max−1) 0.704
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.121, 1.05
No. of reflections 2325
No. of parameters 124
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.31

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT2014 (Sheldrick, 2015a ) and SHELXL2018 (Sheldrick, 2015b ).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901900495X/vm2216sup1.cif

e-75-00642-sup1.cif (237.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901900495X/vm2216Isup2.hkl

e-75-00642-Isup2.hkl (186.4KB, hkl)

Supporting information file. DOI: 10.1107/S205698901900495X/vm2216Isup3.cml

CCDC reference: 1909438

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Sonatel Foundation for financial support.

supplementary crystallographic information

Crystal data

C18H18N4O2S2 F(000) = 404
Mr = 386.48 Dx = 1.441 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.2250 (6) Å Cell parameters from 3377 reflections
b = 7.2547 (5) Å θ = 4.7–30.2°
c = 11.1397 (6) Å µ = 0.32 mm1
β = 100.978 (5)° T = 293 K
V = 890.55 (9) Å3 Prism, colourless
Z = 2 0.36 × 0.14 × 0.11 mm

Data collection

XtaLAB AFC12 (RINC): Kappa single diffractometer 2328 independent reflections
Radiation source: micro-focus sealed X-ray tube, Rigaku (Mo)mm03 X-ray Source 1942 reflections with I > 2σ(I)
Rigaku MaxFlux mirror monochromator Rint = 0.040
ω scans θmax = 30.0°, θmin = 3.7°
Absorption correction: multi-scan CrysAlis PRO (Rigaku OD, 2018) h = −15→14
Tmin = 0.513, Tmax = 1.000 k = −10→9
7264 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: mixed
wR(F2) = 0.121 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.1222P] where P = (Fo2 + 2Fc2)/3
2325 reflections (Δ/σ)max < 0.001
124 parameters Δρmax = 0.36 e Å3
2 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.85736 (10) 0.61198 (19) 0.41958 (11) 0.0399 (3)
HN1 0.8022 (15) 0.636 (3) 0.4606 (15) 0.048*
O1 0.62565 (9) 0.65743 (17) 0.43252 (9) 0.0452 (3)
C1 0.98347 (12) 0.5989 (2) 0.48195 (13) 0.0398 (3)
H1A 0.996007 0.675814 0.554503 0.048*
H1AB 1.035920 0.643780 0.428470 0.048*
S1 0.90847 (3) 0.53047 (7) 0.20190 (4) 0.05100 (17)
N2 0.69512 (10) 0.59494 (18) 0.25797 (10) 0.0372 (3)
HN2 0.6711 (17) 0.573 (2) 0.1826 (14) 0.045*
C2 0.82013 (12) 0.58234 (19) 0.30120 (12) 0.0351 (3)
C3 0.60474 (11) 0.62787 (19) 0.32261 (12) 0.0332 (3)
C4 0.47845 (11) 0.61990 (18) 0.25055 (12) 0.0323 (3)
C5 0.44876 (13) 0.6519 (2) 0.12543 (12) 0.0380 (3)
H5 0.508903 0.681492 0.081672 0.046*
C6 0.32849 (14) 0.6391 (2) 0.06642 (14) 0.0446 (3)
H6 0.308060 0.662390 −0.017073 0.054*
C7 0.23884 (13) 0.5923 (2) 0.13013 (16) 0.0466 (4)
H7 0.158787 0.581443 0.089304 0.056*
C8 0.26809 (14) 0.5617 (2) 0.25436 (16) 0.0469 (4)
H8 0.207621 0.530909 0.297439 0.056*
C9 0.38722 (13) 0.5766 (2) 0.31507 (13) 0.0396 (3)
H9 0.406519 0.557780 0.399116 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0294 (6) 0.0525 (7) 0.0365 (6) 0.0051 (5) 0.0025 (4) −0.0034 (5)
O1 0.0362 (5) 0.0667 (7) 0.0327 (5) 0.0038 (5) 0.0061 (4) −0.0008 (5)
C1 0.0288 (6) 0.0468 (8) 0.0405 (7) −0.0030 (5) −0.0013 (5) −0.0052 (6)
S1 0.0316 (2) 0.0798 (3) 0.0436 (2) −0.00179 (16) 0.01212 (16) −0.00785 (18)
N2 0.0274 (5) 0.0518 (7) 0.0316 (5) 0.0025 (5) 0.0039 (4) −0.0014 (5)
C2 0.0282 (6) 0.0395 (7) 0.0371 (6) −0.0016 (5) 0.0049 (5) 0.0012 (5)
C3 0.0291 (6) 0.0373 (7) 0.0333 (6) 0.0012 (5) 0.0063 (5) 0.0036 (5)
C4 0.0283 (6) 0.0338 (6) 0.0347 (6) 0.0024 (5) 0.0058 (5) 0.0027 (5)
C5 0.0348 (6) 0.0427 (7) 0.0362 (6) −0.0003 (5) 0.0063 (5) 0.0053 (5)
C6 0.0410 (7) 0.0497 (8) 0.0390 (7) 0.0026 (6) −0.0030 (6) 0.0041 (6)
C7 0.0285 (6) 0.0490 (9) 0.0586 (9) 0.0040 (6) −0.0009 (6) 0.0005 (7)
C8 0.0313 (7) 0.0552 (9) 0.0571 (9) 0.0028 (6) 0.0155 (6) 0.0040 (7)
C9 0.0331 (7) 0.0486 (8) 0.0387 (7) 0.0034 (6) 0.0108 (5) 0.0048 (6)

Geometric parameters (Å, º)

N1—C2 1.3228 (17) C4—C5 1.3894 (17)
N1—C1 1.4564 (17) C4—C9 1.3944 (18)
N1—HN1 0.854 (14) C5—C6 1.388 (2)
O1—C3 1.2209 (16) C5—H5 0.9300
C1—C1i 1.518 (3) C6—C7 1.380 (2)
C1—H1A 0.9700 C6—H6 0.9300
C1—H1AB 0.9700 C7—C8 1.378 (2)
S1—C2 1.6633 (14) C7—H7 0.9300
N2—C3 1.3723 (17) C8—C9 1.383 (2)
N2—C2 1.3971 (16) C8—H8 0.9300
N2—HN2 0.846 (14) C9—H9 0.9300
C3—C4 1.4913 (17)
C2—N1—C1 123.98 (12) C5—C4—C9 119.69 (12)
C2—N1—HN1 116.3 (12) C5—C4—C3 123.74 (12)
C1—N1—HN1 119.7 (12) C9—C4—C3 116.58 (12)
N1—C1—C1i 110.75 (14) C6—C5—C4 119.34 (13)
N1—C1—H1A 109.5 C6—C5—H5 120.3
C1i—C1—H1A 109.5 C4—C5—H5 120.3
N1—C1—H1AB 109.5 C7—C6—C5 120.78 (14)
C1i—C1—H1AB 109.5 C7—C6—H6 119.6
H1A—C1—H1AB 108.1 C5—C6—H6 119.6
C3—N2—C2 128.67 (11) C8—C7—C6 119.91 (13)
C3—N2—HN2 115.1 (13) C8—C7—H7 120.0
C2—N2—HN2 116.1 (13) C6—C7—H7 120.0
N1—C2—N2 116.03 (12) C7—C8—C9 120.11 (14)
N1—C2—S1 125.77 (10) C7—C8—H8 119.9
N2—C2—S1 118.19 (10) C9—C8—H8 119.9
O1—C3—N2 122.46 (12) C8—C9—C4 120.15 (14)
O1—C3—C4 121.88 (12) C8—C9—H9 119.9
N2—C3—C4 115.64 (11) C4—C9—H9 119.9
C2—N1—C1—C1i −84.6 (2) N2—C3—C4—C9 154.33 (13)
C1—N1—C2—N2 177.90 (13) C9—C4—C5—C6 −0.4 (2)
C1—N1—C2—S1 −1.5 (2) C3—C4—C5—C6 179.28 (13)
C3—N2—C2—N1 −2.5 (2) C4—C5—C6—C7 −1.1 (2)
C3—N2—C2—S1 177.01 (12) C5—C6—C7—C8 1.5 (3)
C2—N2—C3—O1 2.4 (2) C6—C7—C8—C9 −0.4 (3)
C2—N2—C3—C4 −175.85 (13) C7—C8—C9—C4 −1.0 (2)
O1—C3—C4—C5 156.36 (14) C5—C4—C9—C8 1.4 (2)
N2—C3—C4—C5 −25.33 (19) C3—C4—C9—C8 −178.28 (14)
O1—C3—C4—C9 −23.98 (19)

Symmetry code: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—HN1···O1 0.86 (2) 1.95 (2) 2.6528 (16) 138 (2)
C5—H5···O1ii 0.93 2.58 3.478 (16) 162
C9—H9···O1iii 0.93 2.52 3.311 (16) 143
C1—H1A···S1iv 0.97 2.97 3.8375 (16) 150

Symmetry codes: (ii) x, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z+1; (iv) x, −y+3/2, z+1/2.

References

  1. Abusaadiya, S. M., Yamin, B. M., Ngatiman, F. & Hasbullah, S. A. (2016). IUCrData, 1, x160927.
  2. Adan, D., Sapari, S., Halim, S. N. & Yamin, B. M. (2012). Acta Cryst. E68, o2226. [DOI] [PMC free article] [PubMed]
  3. Arslan, H., Ulrich, F. & Külcü, N. (2004). Acta Chim. Slov. 51, 787–792.
  4. Aydın, F., Aykaç, D., Ünver, H. & İskeleli, N. O. (2012). J. Chem. Crystallogr. 42, 381–387.
  5. Cortes-Clerget, M., Gager, O., Monteil, M., Pirat, J.-L., Migianu-Griffoni, E., Deschamp, J. & Lecouvey, M. (2016). Adv. Synth. Catal. 358, 34–40.
  6. Cunha, S., Macedo, F. C. Jr, Costa, G. A. N., Rodrigues, M. T. Jr, Verde, R. B. V., de Souza Neta, L. C., Vencato, I., Lariucci, C. & Sá, F. P. (2007). Monatsh. Chem. 138, 511–516.
  7. Ding, Y.-J., Chang, X.-B., Yang, X.-Q. & Dong, W.-K. (2008). Acta Cryst. E64, o658. [DOI] [PMC free article] [PubMed]
  8. Dong, W.-K., Yang, X.-Q., Xu, L., Wang, L., Liu, G.-L. & Feng, J.-H. (2007). Z. Kristallogr. New Cryst. Struct. 222, 279–280.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o2083. [DOI] [PMC free article] [PubMed]
  11. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2167. [DOI] [PMC free article] [PubMed]
  12. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078. [DOI] [PMC free article] [PubMed]
  13. Hassan, I. N., Yi, C. Y. & Kassim, M. B. (2011). Acta Cryst. E67, o780. [DOI] [PMC free article] [PubMed]
  14. Haynes, C. J. E., Busschaert, N., Kirby, I. L., Herniman, J., Light, M. E., Wells, N. J., Marques, I., Félix, V. & Gale, P. A. (2014). Org. Biomol. Chem. 12, 62–72. [DOI] [PubMed]
  15. Karipcin, F., Atis, M., Sariboga, B., Celik, H. & Tas, M. (2013). J. Mol. Struct. 1048, 69–77.
  16. Khan, M. R., Zaib, S., Rauf, M. K., Ebihara, M., Badshah, A., Zahid, M., Nadeem, M. A. & Iqbal, J. (2018). J. Mol. Struct. 1164, 354–362.
  17. Khawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o1679–o1680.
  18. Light, M. E. (2018). CSD Communication, https://doi:10.5517/ccdc.csd.cc1zr8bb.
  19. Ngah, N., Darman, N. & Yamin, B. M. (2006). Acta Cryst. E62, o3369–o3371.
  20. Ngah, N., Mohamed, N. A., Yamin, B. M. & Mohd Zaki, H. (2014). Acta Cryst. E70, o705. [DOI] [PMC free article] [PubMed]
  21. Nguyen, H. H. & Abram, U. (2008). Inorg. Chem. Commun. 11, 1478–1480.
  22. Othman, E. A., Arif, M. A. M. & Yamin, B. M. (2007). Acta Cryst. E63, o2436–o2437.
  23. Oyeka, E. E., Asegbeloyin, J. N., Babahan, I., Eboma, B., Okpareke, O., Lane, J., Ibezim, A., Bıyık, H. H., Törün, B. & Izuogu, D. C. (2018). J. Mol. Struct. 1168, 153–164.
  24. Pansuriya, P., Naidu, H., Friedrich, H. B. & Maguire, G. E. M. (2011). Acta Cryst. E67, o2552. [DOI] [PMC free article] [PubMed]
  25. Rakhshani, S., Rezvani, A. R., Dušek, M. & Eigner, V. (2018). Appl. Organomet. Chem. 32, e4342.
  26. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  27. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  28. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  29. Shutalev, A. D., Zhukhlistova, N. E. & Gurskaya, G. V. (2004). Mendeleev Commun. 14, 31–33.
  30. Sigman, M. S. & Jacobsen, E. N. (1998). J. Am. Chem. Soc. 120, 4901–4902.
  31. Sow, M. M., Diouf, O., Barry, A. H., Gaye, M. & Sall, A. S. (2009). Acta Cryst. E65, o569. [DOI] [PMC free article] [PubMed]
  32. Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776. [DOI] [PMC free article] [PubMed]
  33. Wei, H. (2016). CSD Communication, https://doi:10.5517/cc1khnrg.
  34. Yamin, B. M., Deris, H., Malik, Z. M. & Yousuf, S. (2008). Acta Cryst. E64, o360. [DOI] [PMC free article] [PubMed]
  35. Yamin, B. M. & Malik, Z. M. (2007). Acta Cryst. E63, o4842.
  36. Yusof, M. S. M., Roslan, R., Kadir, M. A. & Yamin, B. M. (2007). Acta Cryst. E63, o3591.
  37. Yusof, M. S. M. & Yamin, B. M. (2003). Acta Cryst. E59, o828–o829.
  38. Zhang, Y.-M., Xian, L., Wei, T.-B. & Cai, L.-X. (2003). Acta Cryst. E59, o817–o819. [DOI] [PubMed]
  39. Zheng, X., Li, B., Wang, Q. & Guo, L. (2010). Acta Cryst. E66, o1774. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901900495X/vm2216sup1.cif

e-75-00642-sup1.cif (237.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901900495X/vm2216Isup2.hkl

e-75-00642-Isup2.hkl (186.4KB, hkl)

Supporting information file. DOI: 10.1107/S205698901900495X/vm2216Isup3.cml

CCDC reference: 1909438

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES