Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 12;75(Pt 5):620–623. doi: 10.1107/S2056989019004766

Crystal structure of bis­{μ-2-meth­oxy-6-[(methyl­imino)­meth­yl]phenolato}bis­({2-meth­oxy-6-[(methyl­imino)­meth­yl]phenolato}nickel(II)) involving different coordination modes of the same Schiff base ligand

Olga Yu Vassilyeva a,*, Vladimir N Kokozay a, Brian W Skelton b
PMCID: PMC6505594  PMID: 31110799

Different coordination modes of the same Schiff base ligand enable formation of the dimeric NiII complex. The phenolato-bridged metal centres are further apart in the Ni dimer compared to the isomorphous Cu compound.

Keywords: crystal structure, NiII dimer, Schiff base ligand, o-vanillin, methyl­amine

Abstract

The structure of the title compound, [Ni2(C9H10NO2)4], is built up by discrete centrosymmetric dimers. Two nitro­gen and three oxygen atoms of two Schiff base ligands singly deprotonated at the phenolate site form a square-pyramidal environment for each metal atom. The ligands are bonded differently to the metal centre: one of the phenolic O atoms is bound to one nickel atom, whereas another bridges the two metal atoms to form the dimer. The Ni—N/O distances fall in the range 1.8965 (13)–1.9926 (15) Å, with the Ni—N bonds being slightly longer; the fifth contact of the metal to the bridging phenolate oxygen atom is substanti­ally elongated [2.533 (1) Å]. A similar coordination geometry was observed in the isomorphous Cu analogue previously reported by us [Sydoruk et al. (2013). Acta Cryst. E69, m551–m552]. In the crystal, the [Ni2 L 4] mol­ecules form sheets parallel to the ab plane with the polar meth­oxy groups protruding into the inter­sheet space and keeping the sheets apart. Within a sheet, the mol­ecules are stacked relative to each other in such a way that the Ni2O2 planes of neighbouring mol­ecules are orthogonal.

Chemical context  

The title compound, [Ni2(C9H10NO2)4], 1, has been synthesized as part of our long-term research on Schiff base metal complexes aimed at the preparation of mono- and heterometallic compounds of various compositions and structures, and the investigation of their potential applications. In these studies, we use direct synthesis of coordination compounds based on a spontaneous self-assembly in solution, in which the metal (or one of the metals in the case of heterometallic complexes) is introduced as a fine powder (zerovalent state) and oxidized by aerial di­oxy­gen during the synthesis (Buvaylo et al., 2005, 2012; Kokozay et al., 2018).

The multidentate ligand 2-meth­oxy-6-[(methyl­imino)­meth­yl]phenol, HL, derived from 2-hy­droxy-3-meth­oxy-benzaldehyde (o-vanillin) and methyl­amine shows various connectivity fashions and can generate mono- and polymetallic complexes. The meth­oxy group plays an essential role in the coordination abilities of the Schiff base (Andruh, 2015). The singly deprotonated HL ligand has been shown to act as a multidentate linker between seven metal centres affording [M 7] assemblies, where M is a divalent Ni, Zn, Co or Mn ion (Meally et al., 2010, 2012; Zhang et al., 2010). The octa­hedral metal atoms in the hepta­nuclear cores are additionally supported by μ3-bridging OH or MeO groups that link the central metal atom to the six peripheral ones. Of heterometallic examples with HL, only four 1s–3d structures of Na/M (M = Fe, Ni) complexes have been reported (Meally et al., 2013).graphic file with name e-75-00620-scheme1.jpg

Our research efforts in the field have yielded novel heterometallic dinuclear CoIII/Cd and CoIII/Zn complexes bearing HL along with the ‘parent’ mononuclear complex CoL 3·DMF (DMF = N,N-di­methyl­formamide; Nesterova et al., 2018, 2019; Vassilyeva et al., 2018). Their catalytic activity in stereospecific alkanes oxidation with m-chloro­perbenzoic acid as an oxidant has been studied in detail. A comparison of the catalytic behaviours of the hetero- and monometallic analogues provided further insight into the origin of stereoselectivity of the oxidation of C—H bonds. In the syntheses, the condensation reaction between o-vanillin and CH3NH2·HCl was utilized without isolation of the resulting Schiff base. In the present work, the title compound was isolated in an attempt to prepare a heterometallic Ni/Sn complex with HL in the reaction of nickel powder and SnCl2·2H2O, with the Schiff base formed in situ in a methanol/DMF mixture in a 1:1:2 molar ratio. Similarly to the synthesis of CoL 3·DMF (Nesterova et al., 2018), HL does not enable the formation of a heterometallic Sn-containing species, in contrast to its compartmental analogues 3-R-salicyl­aldehyde-ethyl­enedi­amine (R = meth­oxy-, eth­oxy-), HL′, that afford heterometallic, diphenoxido-bridged, dinuclear CuIISnII cations [CuL′SnCl]+ (Hazra et al., 2016).

Structural commentary  

The mol­ecular structure of 1 exists as a centrosymmetric dimer [Ni2 L 4] (Fig. 1). The nickel atom is five-coordinate with two nitro­gen and three oxygen atoms of two, singly deprotonated at the phenolate site Schiff base ligands. The ligands are bonded differently to the metal atoms: the phenolic oxygen atom O21 is bound to one nickel atom, whereas O11 bridges the two metal centres and forms the dimer.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom-numbering scheme for the asymmetric unit. Non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level.

The Ni—N bonds are somewhat longer than the shortest Ni—O distances (Table 1) while the fifth contact of the metal to the bridging oxygen atom is substanti­ally elongated. The cis angles at the nickel atom are in the range 87.57 (6)–91.09 (6)°, with the two trans angles being 170.92 (6) and 175.66 (6)° (Table 1). The angular structural index parameter, τ = (β – α)/60, evaluated from the two largest angles (α < β) in the five-coordinate geometry is 0.08 compared with ideal values of 1 for an equilateral bipyramid and 0 for a square pyramid. Hence, the nickel coordination polyhedron in 1 is a square pyramid with minimal distortion. The apical position of the coordination sphere is occupied by the bridging phenolate oxygen O11(1 − x, 1 − y, 1 − z) with a bridging angle of 101.44 (2)°.

Table 1. Selected geometric parameters (Å, °).

Ni1—O21 1.8965 (13) Ni1—N17 1.9926 (15)
Ni1—O11 1.9135 (14) Ni1—O11i 2.5326 (14)
Ni1—N27 1.9783 (15)    
       
O21—Ni1—O11 175.66 (6) O11—Ni1—N17 90.70 (6)
O21—Ni1—N27 91.09 (6) N27—Ni1—N17 170.92 (6)
O11—Ni1—N27 90.00 (6) Ni1—O11—Ni1i 101.44 (2)
O21—Ni1—N17 87.57 (6)    

Symmetry code: (i) Inline graphic.

We reported a similar coordination geometry for the isomorphous Cu analogue [Cu2 L 4; Sydoruk et al., 2013]. The main difference between the two structures is the proximity of the metal centres in the dimers, which are further apart in the Ni complex compared to the Cu compound. The Ni⋯Ni distance is 3.4638 (4) compared to the Cu⋯Cu separation of 3.3737 (2) Å. In addition, the Cu—O11(1 − x, 1 − y, 1 − z) contact in [Cu2 L 4] is shorter [2.4329 (7) Å].

Supra­molecular features  

There are no significant inter­molecular inter­actions between the dimers in the crystal lattice. Classical hydrogen-bonding inter­actions are absent in 1. The mol­ecules form sheets parallel to the ab plane with the non-coordinating polar meth­oxy groups protruding into the inter­sheet space and keeping the sheets apart (Fig. 2). Within a sheet, the mol­ecules pack relative to each other in such a way that neighbouring Ni2O2 planes are orthogonal (Fig. 3). The minimum Ni⋯Ni separations inside a sheet and between adjacent sheets are about 7.099 and 11.374 Å, respectively. The C—H⋯O inter­action between C28—H28A and O22(x + Inline graphic, −y + Inline graphic, −z + 1) [C28—H28A = 0.98 Å, H28A⋯O22 = 2.57 Å, C28⋯O22 = 3.449 (2) Å and C28—H28A⋯O22 = 150°] is very weak.

Figure 2.

Figure 2

Crystal packing of 1 showing sheets of [Ni2 L 4] mol­ecules parallel to the ab plane. H atoms are not shown.

Figure 3.

Figure 3

Fragment of the sheet of [Ni2 L 4] mol­ecules viewed down the c axis showing the orthogonal packing of neighboring dimers. H atoms are not shown.

Database survey  

A search in the Cambridge Structural Database (CSD; Groom et al., 2016) for HL and its complexes via the WebCSD inter­face in March 2019 reveals that 39 original crystal structures, including the structure of the ligand itself, have been reported. Polynuclear complexes constitute the majority of the structures with 17 examples of [M II 7] (M = Mn, Co, Ni, Zn) assemblies featuring planar hexa­gonal disc-like cores and three examples of dimeric (Cu2) and tetra­meric complexes with the cubane- (Mn4) or open-cubane type cores (Co4). The singly deprotonated HL ligand evidently encourages the formation of polynuclear metal complexes only with assistance from other bridging ligands. The integrity of the hepta- [M II 7 L 6] and tetra­nuclear [Mn4 L 3], [Co4 L 2] polymetallics is secured by μ3-bridging OH/MeO groups and other ligands, respectively. A higher metal-to-ligand ratio (1:2 and 1:3) in the absence of bridging ligands stimulates the formation of mononuclear complexes, as evidenced by the 10 structures with mol­ecular (Mn, Co and Pt) or polymeric (Mn) arrangements in the crystal lattice. The four heterometallic examples with HL published by others are limited to Na/M (M = Fe, Ni) complexes whose formation was induced by the use of sodium salts and/or NaOH in the synthesis. The 3d–3d/4d heterometallics recently reported by our group are based on the neutral CoIII L 3 species with the metal centre in a mer configuration that acts as a metalloligand to Zn2+/Cd2+ ions, generating [CoML 3Cl2]·Solv (Solv = H2O, CH3OH) complexes.

Synthesis and crystallization  

o-Vanillin (0.3 g, 2.0 mmol) in 10 mL of methanol was stirred with CH3NH2·HCl (0.14 g, 2.0 mmol) in the presence of di­methyl­amino­ethanol (0.1 mL) in a 50 mL conical flask at 333 K for half an hour. SnCl2·2H2O (0.23 g, 1.0 mmol) dissolved in 10 mL of DMF and Ni powder (0.06 g, 1.0 mmol) were added to the resulting yellow solution of the preformed Schiff base. The mixture gradually turned brown while it was magnetically stirred at 333 K to achieve dissolution of the nickel (2 h; adhesion of a small fraction of the metal particles to the stirring bar precluded complete dissolution of the metal powder). The resultant brown solution was filtered and left to stand at room temperature. Dark-brown, almost black, prisms of 1 formed in two weeks. They were filtered off, washed with dry PriOH and dried in air. Yield (based on Ni): 31%. Analysis calculated for C36H40N4Ni2O8 (774.14): C 55.86, H 5.21, N 7.24%. Found: C 55.62, H 5.33, N 7.11%.

A broad band centered at about 3440 cm−1 in the IR spectrum of 1 may be due to adsorbed water mol­ecules (Fig. 4). Several bands arising above and below 3000 cm−1 are assigned to aromatic =CH and alkyl –CH stretching, respectively. The characteristic ν(C=N) absorption of the Schiff base which appears at 1634 cm−1 as a strong intense band in the IR spectrum of HL (Nesterova et al., 2018) is detected at 1630 cm−1 in the spectrum of 1. A number of sharp and intense bands are observed in the aromatic ring stretching (1600–1400 cm−1) and C—H out-of-plane bending regions (800–700 cm−1).

Figure 4.

Figure 4

IR spectrum of 1 in a KBr pellet.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed at idealized positions and refined using a riding model: C—H = 0.95 Å with U iso(H) = 1.2U eq(C) for CH, 0.98 Å and 1.5U eq(C) for CH3.

Table 2. Experimental details.

Crystal data
Chemical formula [Ni2(C9H10NO2)4]
M r 774.14
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 100
a, b, c (Å) 10.2301 (2), 15.2456 (3), 21.5426 (5)
V3) 3359.87 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.18
Crystal size (mm) 0.37 × 0.27 × 0.23
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.816, 0.87
No. of measured, independent and observed [I > 2σ(I)] reflections 20556, 5548, 4332
R int 0.041
(sin θ/λ)max−1) 0.747
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.088, 1.03
No. of reflections 5548
No. of parameters 230
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −0.61

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2006) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019004766/lh5898sup1.cif

e-75-00620-sup1.cif (731.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004766/lh5898Isup2.hkl

e-75-00620-Isup2.hkl (441.7KB, hkl)

CCDC reference: 1908788

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Ni2(C9H10NO2)4] F(000) = 1616
Mr = 774.14 Dx = 1.53 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 6602 reflections
a = 10.2301 (2) Å θ = 2.6–31.7°
b = 15.2456 (3) Å µ = 1.18 mm1
c = 21.5426 (5) Å T = 100 K
V = 3359.87 (12) Å3 Prism, black
Z = 4 0.37 × 0.27 × 0.23 mm

Data collection

Oxford Diffraction Xcalibur diffractometer 5548 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 4332 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
Detector resolution: 16.0009 pixels mm-1 θmax = 32.1°, θmin = 2.6°
ω scans h = −15→12
Absorption correction: analytical (CrysAlis PRO; Rigaku OD, 2015) k = −22→22
Tmin = 0.816, Tmax = 0.87 l = −29→32
20556 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0253P)2 + 2.4148P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.002
5548 reflections Δρmax = 0.89 e Å3
230 parameters Δρmin = −0.61 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Three low theta reflections, considered to be partly hidden by the beam stop were omitted from the refnement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.40070 (2) 0.58979 (2) 0.51420 (2) 0.01932 (7)
C11 0.32402 (17) 0.46376 (12) 0.42138 (9) 0.0242 (4)
O11 0.41820 (12) 0.50907 (10) 0.44669 (6) 0.0315 (3)
C12 0.33944 (18) 0.43535 (12) 0.35897 (9) 0.0250 (4)
O12 0.45143 (13) 0.46517 (10) 0.33106 (6) 0.0330 (3)
C121 0.4805 (2) 0.43159 (15) 0.27123 (9) 0.0363 (5)
H12A 0.4893 0.3677 0.2735 0.054*
H12B 0.5626 0.4572 0.2563 0.054*
H12C 0.4097 0.4467 0.2425 0.054*
C13 0.2460 (2) 0.38443 (12) 0.33055 (9) 0.0292 (4)
H13 0.2578 0.3661 0.2888 0.035*
C14 0.1331 (2) 0.35947 (13) 0.36323 (10) 0.0331 (4)
H14 0.0691 0.3238 0.3436 0.04*
C15 0.11502 (19) 0.38630 (13) 0.42312 (10) 0.0295 (4)
H15 0.0384 0.3692 0.4449 0.035*
C16 0.20898 (17) 0.43913 (12) 0.45289 (9) 0.0243 (4)
C17 0.18436 (17) 0.46528 (12) 0.51630 (9) 0.0253 (4)
H17 0.1124 0.4384 0.5366 0.03*
N17 0.25052 (14) 0.52145 (10) 0.54782 (7) 0.0252 (3)
C18 0.21030 (18) 0.53585 (14) 0.61258 (9) 0.0292 (4)
H18A 0.1355 0.4981 0.6223 0.044*
H18B 0.1854 0.5974 0.6182 0.044*
H18C 0.2832 0.5216 0.6404 0.044*
C21 0.44702 (17) 0.73584 (11) 0.59655 (9) 0.0231 (3)
O21 0.37097 (12) 0.67232 (8) 0.57853 (6) 0.0262 (3)
C22 0.41501 (17) 0.78091 (12) 0.65278 (9) 0.0247 (4)
O22 0.30458 (13) 0.75045 (9) 0.68192 (6) 0.0277 (3)
C221 0.2536 (2) 0.80316 (14) 0.73071 (10) 0.0360 (5)
H22A 0.3158 0.8041 0.7653 0.054*
H22B 0.1703 0.7786 0.7449 0.054*
H22C 0.2398 0.8631 0.7156 0.054*
C23 0.49076 (19) 0.84910 (12) 0.67430 (9) 0.0296 (4)
H23 0.4677 0.878 0.7118 0.036*
C24 0.6015 (2) 0.87618 (14) 0.64127 (10) 0.0337 (4)
H24 0.6537 0.9231 0.6564 0.04*
C25 0.63413 (19) 0.83488 (13) 0.58706 (10) 0.0311 (4)
H25 0.7094 0.8534 0.5648 0.037*
C26 0.55760 (17) 0.76490 (12) 0.56357 (9) 0.0246 (4)
C27 0.58830 (17) 0.73171 (12) 0.50282 (9) 0.0257 (4)
H27 0.6594 0.7585 0.4817 0.031*
N27 0.52852 (14) 0.66906 (10) 0.47419 (7) 0.0249 (3)
C28 0.5641 (2) 0.65577 (14) 0.40857 (9) 0.0334 (4)
H28A 0.6369 0.6946 0.3977 0.05*
H28B 0.4887 0.6692 0.3822 0.05*
H28C 0.5903 0.5946 0.4022 0.05*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01748 (10) 0.02415 (12) 0.01631 (11) −0.00316 (8) 0.00124 (8) 0.00016 (9)
C11 0.0218 (8) 0.0283 (9) 0.0225 (9) 0.0008 (7) −0.0043 (7) 0.0013 (7)
O11 0.0250 (6) 0.0462 (8) 0.0233 (7) −0.0070 (6) 0.0005 (5) −0.0058 (6)
C12 0.0260 (8) 0.0253 (8) 0.0235 (9) 0.0055 (7) −0.0028 (7) 0.0005 (7)
O12 0.0292 (7) 0.0466 (9) 0.0232 (7) 0.0010 (6) 0.0023 (6) −0.0065 (6)
C121 0.0437 (12) 0.0427 (12) 0.0225 (9) 0.0090 (9) 0.0033 (9) −0.0015 (9)
C13 0.0371 (10) 0.0243 (9) 0.0263 (10) 0.0040 (7) −0.0050 (8) −0.0022 (8)
C14 0.0391 (11) 0.0263 (9) 0.0340 (11) −0.0055 (8) −0.0094 (9) −0.0005 (8)
C15 0.0298 (9) 0.0275 (9) 0.0311 (10) −0.0062 (7) −0.0043 (8) 0.0032 (8)
C16 0.0254 (8) 0.0239 (8) 0.0235 (9) −0.0002 (7) −0.0036 (7) 0.0021 (7)
C17 0.0222 (8) 0.0292 (9) 0.0246 (9) −0.0029 (7) −0.0016 (7) 0.0057 (8)
N17 0.0221 (7) 0.0320 (8) 0.0215 (7) −0.0002 (6) 0.0008 (6) 0.0027 (7)
C18 0.0282 (9) 0.0369 (10) 0.0226 (9) −0.0044 (8) 0.0052 (8) 0.0008 (8)
C21 0.0227 (8) 0.0196 (8) 0.0270 (9) 0.0020 (6) −0.0019 (7) 0.0053 (7)
O21 0.0263 (6) 0.0241 (6) 0.0283 (7) −0.0038 (5) 0.0065 (5) −0.0033 (6)
C22 0.0272 (9) 0.0218 (8) 0.0252 (9) 0.0022 (7) −0.0024 (7) 0.0041 (7)
O22 0.0313 (7) 0.0264 (6) 0.0254 (7) 0.0015 (5) 0.0054 (6) −0.0020 (6)
C221 0.0481 (12) 0.0317 (10) 0.0282 (10) 0.0063 (9) 0.0075 (10) −0.0017 (9)
C23 0.0392 (10) 0.0225 (9) 0.0272 (10) 0.0011 (8) −0.0074 (8) 0.0022 (8)
C24 0.0386 (11) 0.0272 (9) 0.0353 (11) −0.0077 (8) −0.0101 (9) 0.0045 (9)
C25 0.0279 (9) 0.0288 (9) 0.0367 (11) −0.0065 (7) −0.0041 (8) 0.0099 (9)
C26 0.0236 (8) 0.0211 (8) 0.0293 (9) 0.0004 (6) −0.0025 (7) 0.0065 (7)
C27 0.0209 (8) 0.0231 (8) 0.0331 (10) 0.0026 (6) 0.0033 (7) 0.0060 (8)
N27 0.0245 (7) 0.0233 (7) 0.0270 (8) 0.0044 (6) 0.0039 (6) 0.0055 (6)
C28 0.0402 (11) 0.0292 (10) 0.0307 (10) 0.0035 (8) 0.0129 (9) 0.0047 (8)

Geometric parameters (Å, º)

Ni1—O21 1.8965 (13) C18—H18B 0.98
Ni1—O11 1.9135 (14) C18—H18C 0.98
Ni1—N27 1.9783 (15) C21—O21 1.302 (2)
Ni1—N17 1.9926 (15) C21—C26 1.407 (2)
Ni1—O11i 2.5326 (14) C21—C22 1.431 (3)
C11—O11 1.305 (2) C22—O22 1.373 (2)
C11—C16 1.410 (3) C22—C23 1.377 (3)
C11—C12 1.421 (3) O22—C221 1.422 (2)
C12—O12 1.371 (2) C221—H22A 0.98
C12—C13 1.375 (3) C221—H22B 0.98
O12—C121 1.418 (2) C221—H22C 0.98
C121—H12A 0.98 C23—C24 1.400 (3)
C121—H12B 0.98 C23—H23 0.95
C121—H12C 0.98 C24—C25 1.368 (3)
C13—C14 1.405 (3) C24—H24 0.95
C13—H13 0.95 C25—C26 1.417 (3)
C14—C15 1.366 (3) C25—H25 0.95
C14—H14 0.95 C26—C27 1.438 (3)
C15—C16 1.409 (3) C27—N27 1.291 (2)
C15—H15 0.95 C27—H27 0.95
C16—C17 1.445 (3) N27—C28 1.474 (2)
C17—N17 1.286 (2) C28—H28A 0.98
C17—H17 0.95 C28—H28B 0.98
N17—C18 1.471 (2) C28—H28C 0.98
C18—H18A 0.98
O21—Ni1—O11 175.66 (6) N17—C18—H18C 109.5
O21—Ni1—N27 91.09 (6) H18A—C18—H18C 109.5
O11—Ni1—N27 90.00 (6) H18B—C18—H18C 109.5
O21—Ni1—N17 87.57 (6) O21—C21—C26 124.35 (17)
O11—Ni1—N17 90.70 (6) O21—C21—C22 118.23 (16)
N27—Ni1—N17 170.92 (6) C26—C21—C22 117.40 (17)
Ni1—O11—Ni1i 101.44 (2) C21—O21—Ni1 128.01 (12)
O11—C11—C16 123.79 (17) O22—C22—C23 124.36 (18)
O11—C11—C12 118.34 (16) O22—C22—C21 114.39 (16)
C16—C11—C12 117.84 (17) C23—C22—C21 121.25 (17)
C11—O11—Ni1 126.08 (12) C22—O22—C221 116.62 (15)
O12—C12—C13 124.95 (18) O22—C221—H22A 109.5
O12—C12—C11 113.97 (16) O22—C221—H22B 109.5
C13—C12—C11 121.06 (18) H22A—C221—H22B 109.5
C12—O12—C121 116.98 (16) O22—C221—H22C 109.5
O12—C121—H12A 109.5 H22A—C221—H22C 109.5
O12—C121—H12B 109.5 H22B—C221—H22C 109.5
H12A—C121—H12B 109.5 C22—C23—C24 120.45 (19)
O12—C121—H12C 109.5 C22—C23—H23 119.8
H12A—C121—H12C 109.5 C24—C23—H23 119.8
H12B—C121—H12C 109.5 C25—C24—C23 119.73 (19)
C12—C13—C14 120.08 (18) C25—C24—H24 120.1
C12—C13—H13 120 C23—C24—H24 120.1
C14—C13—H13 120 C24—C25—C26 121.09 (19)
C15—C14—C13 120.23 (18) C24—C25—H25 119.5
C15—C14—H14 119.9 C26—C25—H25 119.5
C13—C14—H14 119.9 C21—C26—C25 120.06 (18)
C14—C15—C16 120.59 (19) C21—C26—C27 121.62 (17)
C14—C15—H15 119.7 C25—C26—C27 118.00 (17)
C16—C15—H15 119.7 N27—C27—C26 126.29 (17)
C15—C16—C11 120.18 (18) N27—C27—H27 116.9
C15—C16—C17 117.99 (17) C26—C27—H27 116.9
C11—C16—C17 121.82 (16) C27—N27—C28 116.31 (16)
N17—C17—C16 126.25 (17) C27—N27—Ni1 123.84 (13)
N17—C17—H17 116.9 C28—N27—Ni1 119.81 (13)
C16—C17—H17 116.9 N27—C28—H28A 109.5
C17—N17—C18 116.94 (16) N27—C28—H28B 109.5
C17—N17—Ni1 124.21 (13) H28A—C28—H28B 109.5
C18—N17—Ni1 118.85 (12) N27—C28—H28C 109.5
N17—C18—H18A 109.5 H28A—C28—H28C 109.5
N17—C18—H18B 109.5 H28B—C28—H28C 109.5
H18A—C18—H18B 109.5

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C28—H28A···O22ii 0.98 2.57 3.449 (2) 150
C28—H28A···O22ii 0.98 2.57 3.449 (2) 150
C28—H28C···N17i 0.98 2.63 3.432 (3) 139

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+3/2, −z+1.

Funding Statement

This work was funded by Ministry of Education and Science of Ukraine grant 19BF037-05.

References

  1. Andruh, M. (2015). Dalton Trans. 44, 16633–16653. [DOI] [PubMed]
  2. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978. [DOI] [PubMed]
  4. Buvaylo, E. A., Nesterova, O. V., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Boča, R. & Nesterov, D. S. (2012). Cryst. Growth Des. 12, 3200–3208.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hazra, S., Chakraborty, P. & Mohanta, S. (2016). Cryst. Growth Des. 16, 3777–3790.
  8. Kokozay, V. N., Vassilyeva, O. Y. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. Kharisov, pp. 183–237. Amsterdam: Elsevier.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Meally, S. T., McDonald, C., Karotsis, G., Papaefstathiou, G. S., Brechin, E. K., Dunne, P. W., McArdle, P., Power, N. P. & Jones, L. F. (2010). Dalton Trans. 39, 4809–4816. [DOI] [PubMed]
  11. Meally, S. T., McDonald, C., Kealy, P., Taylor, S. M., Brechin, E. K. & Jones, L. F. (2012). Dalton Trans. 41, 5610–5616. [DOI] [PubMed]
  12. Meally, S. T., Taylor, S. M., Brechin, E. K., Piligkos, S. & Jones, L. F. (2013). Dalton Trans. 42, 10315–10325. [DOI] [PubMed]
  13. Nesterova, O. V., Kasyanova, K. V., Buvaylo, E. A., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. (2019). Catalysts, 9, 209.
  14. Nesterova, O. V., Kasyanova, K. V., Makhankova, V. G., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2018). Appl. Catal. A Gen. 560, 171–184.
  15. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Sydoruk, T. V., Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2013). Acta Cryst. E69, m551–m552. [DOI] [PMC free article] [PubMed]
  18. Vassilyeva, O. Y., Kasyanova, K. V., Kokozay, V. N. & Skelton, B. W. (2018). Acta Cryst. E74, 1532–1535. [DOI] [PMC free article] [PubMed]
  19. Zhang, S.-H. & Feng, C. (2010). J. Mol. Struct. 977, 62–66.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019004766/lh5898sup1.cif

e-75-00620-sup1.cif (731.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004766/lh5898Isup2.hkl

e-75-00620-Isup2.hkl (441.7KB, hkl)

CCDC reference: 1908788

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES