Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 25;75(Pt 5):685–689. doi: 10.1107/S2056989019005243

Crystal structure and optical properties of fused-ring chalcone (E)-3-(anthracen-9-yl)-1-(4-nitro­phen­yl)prop-2-en-1-one

Muhamad Fikri Zaini a, Ibrahim Abdul Razak a, Wan Mohd Khairul b, Suhana Arshad a,*
PMCID: PMC6505597  PMID: 31110811

The title chalcone derivative adopts an s-cis conformation with respect to the enone fragment and is non-planar with a dihedral angle of 48.63 (14)° between the anthracene ring system and the nitro­benzene ring. In the crystal, mol­ecules are linked into inversion dimers with an Inline graphic(10) graph-set motif via pairs of inter­molecular C—H⋯O hydrogen bonds.

Keywords: chalcone, crystal structure, DFT, Hirshfeld surface, UV–Vis, HOMO–LUMO

Abstract

The title compound, C23H15NO3, adopts an s-cis conformation with respect to the ethyl­ene C=C and carbonyl C=O double bonds in the enone unit. The mol­ecule is significantly twisted with a dihedral angle of 48.63 (14)° between the anthracene ring system and the benzene ring. In the crystal, mol­ecules are linked into inversion dimers with an R 2 2(10) graph-set motif via pairs of C—H⋯O hydrogen bonds. The inter­molecular inter­actions were analysed and qu­anti­fied by Hirshfeld surface analysis. The mol­ecular structure was optimized and a small HOMO–LUMO energy gap of 2.55 eV was obtained using the DFT method at the B3LYP/6–311 G++(d,p) level of theory. This value is in close agreement with the experimental value of 2.52 eV obtained from the UV–vis analysis. The crystal used was a two-component merohedral twin with a refined ratio of 0.1996 (16):0.8004 (16).

Chemical context  

Conjugated organic mol­ecules with multiple fused aromatic rings have attracted a great deal of inter­est from researchers because of their excellent performance in organic semiconductor devices (Gu et al., 2015). These organic mol­ecules with a delocalized π-system represent attractive targets for applications in light-emitting diodes. In addition, the selection of the organic π-system with an electron donor (D) and an electron acceptor (A) is important because it exhibits an essential role in charge transfer in the mol­ecule, where the aromatic groups may lead to delocalization of electronic charge distribution, imparting higher polarization of the push–pull configuration and generation of a mol­ecular dipole (Bureš, 2014). An organic chalcone derivative with a π-conjugated system provides a large transfer axis with appropriate substituent groups on both terminal aromatic rings. The chalcone π-bridge consists of a α,β-unsaturated carbonyl unit which is responsible for intra­molecular charge transfer. From the previous studies by Xu et al. (2015), the introduction of fused aromatic rings into the push–pull system could lead to enhanced carrier mobility and a lower band gap. In a continuation of our previous work on the effect of a fused-ring substituent, i.e. naphthalene or pyrene, on anthracene chalcones (Zaini et al., 2018), we have synthesized the title compound and report herein on its molecular and crystal structure, and optical properties.graphic file with name e-75-00685-scheme1.jpg

Structural commentary  

The title chalcone compound consists of an anthracene ring system and a para-substituted nitro­benzene unit, representing a donor–π–acceptor (D–π–A) system (Fig. 1 a). The mol­ecular structure was optimized with the Gaussian09W software package (Frisch et al., 2009) using the DFT method at the B3LYP/6-311G++(d,p) level of theory. All geometrical parameters calculated agree well with the experimental values. The compound adopts an s-cis conformation with respect to the C15=C16 [1.326 (5) Å; 1.347 (DFT) Å] and C17=O1 [1.232 (4) Å; 1.223 (DFT) Å] double bonds in the enone unit (C15=C16—C17=O1) and the structure is twisted around the C14—C15 bond with a C1—C14—C15—C16 torsion angle of 51.1 (6)° and slightly deviated around the C17—C18 bond with a C16—C17—C18—C19 torsion angle of −15.6 (5)°. The corresponding values by DFT are 44.8 and 18.5°, respectively (Fig. 1 b). These large twist angles are due to the bulkiness of the strong-electron-donor anthracene ring system (Zainuri et al., 2018) and are also expected from the steric repulsion between the H atoms of the anthracene ring system and the ethyl­ene group. In addition, the enone unit [maximum deviation 0.020 (3) Å at C17] forms dihedral angles of 52.0 (2) and 15.8 (2)°, respectively, with the anthracene ring system [C1–C14, maximum deviation of 0.034 (4) Å at C5] and the nitro­benzene ring [C18–C23, maximum deviation 0.011 (4) Å at C20] (Fig. 1 c). Furthermore, a large dihedral angle of 48.63 (14)° is observed between the anthracene ring system and the nitro­benzene ring (Fig. 1 d); this could diminish the electronic effect between the two ring systems (Jung et al., 2008).

Figure 1.

Figure 1

(a) The mol­ecular structure of the title compound based D–π–A system with displacement ellipsoids drawn at the 50% probability level and the optimized structure, (b) a representation of the twisted structures showing torsion angles, (c) and (d) the twisted structures showing dihedral angles.

Supra­molecular features  

In the crystal, the mol­ecules are linked via pairs of inter­molecular C—H⋯O inter­actions [C23—H23⋯O1i; symmetry code (i): −x + 1, −y + 2, −z + 1; Table 1), forming inversion dimers with an Inline graphic(10) graph-set motif. These dimers are stacked along the b-axis direction (Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O1i 0.93 2.49 3.240 (4) 138

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

Packing diagrams of the title compound, showing C—H⋯O inter­actions (dashed lines).

The Hirshfeld surfaces and the related two dimensional fingerprint plots were generated using Crystal Explorer3.1 (Wolff et al., 2012). The d norm and d e surfaces are presented in Fig. 3 a and Fig. 3 b, respectively. In the d norm surface, the bright-red spots indicate the inter­molecular C—H⋯O inter­actions. These contacts are also confirmed by the pale-orange region marked with arrows in the d e surface. The fingerprint plots (Ternavisk et al., 2014) of the inter­molecular contacts with the corresponding d norm surfaces (Fig. 4) show that the percentage contributions to the total Hirshfeld surface are 23.8, 19.6 and 12.6%, respectively, for the O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts.

Figure 3.

Figure 3

The Hirshfeld surfaces mapped over (a) d norm and (b) d e, displaying the inter­molecular inter­actions.

Figure 4.

Figure 4

The fingerprint plots of the inter­molecular contacts with the corresponding d norm surfaces, listing the percentage contributions to the total Hirshfeld surface.

UV–vis analysis and frontier mol­ecular orbitals  

The measurement of the UV–vis absorption spectrum was carried out in an aceto­nitrile solution (10−5 M) with cut-off wavelength of 190 nm. Two major peaks at 253 and 427 nm were observed (Fig. 5). The strong band of 253 nm was assigned to the n–π* transition. This sharp absorption peak arises due to the presence of carbonyl (C=O) and nitro substituent (NO2) functional groups (Zaini et al., 2018). The energy band gap of 2.52 eV was evaluated from the UV–vis absorption edge (λa.e) at 492.06 nm (Fig. 5). This small band-gap energy is suitable for optoelectronic applications as previously reported for the structure of chalcone (Prabhu et al., 2016), and therefore exhibits a semiconducting nature (Rosencher & Vinter, 2002). The highest occupied mol­ecular orbital (HOMO) and the lowest unoccupied mol­ecular orbital (LUMO), known as frontier orbitals, obtained with the B3LYP/6-311G++(d,p) level calculation are illustrated in Fig. 6. The HOMO is mainly delocalized at the anthracene ring system. After excitation, the charge is localized at the enone and nitro­benzene moieties as depicted in the LUMO. The calculated HOMO–LUMO energy gap is 2.55 eV which is comparable with the UV–vis energy band gap obtained from the UV–vis absorption edge.

Figure 5.

Figure 5

UV–vis spectrum of the title compound. Inset showed the experimental energy band gap obtained from absorption edge wavelength (λa.e).

Figure 6.

Figure 6

The spatial distributions of the HOMO and LUMO calculated for the title compound.

Database survey  

A search of the Cambridge Structural Database (Version 5.40, last update February 2019; Groom et al., 2016) revealed six closely related fused-ring chalcones, namely, trans-3-(9-anthr­yl)-1-(4-meth­oxy­phen­yl)prop-2-en-1-one (refcode EMULIT; Zhang et al., 2016), 3-(anthracen-9-yl)-1-(4-chloro­phen­yl)prop-2-en-1-one (JAHPUG; Yu et al., 2017), (E)-3-(anthracen-9-yl)-1-(4-bromo­phen­yl)prop-2-en-1-one (POP­BAY; Suwunwong et al., 2009), (Z)-3-(anthracen-9-yl)-1-(2-eth­oxy­phen­yl)prop-2-en-1-one (KABHUS; Joothamongkhon et al., 2010), (E)-3-(anthracen-9-yl)-1-(2-hy­droxy­phen­yl)prop-2-en-1-one (UNUDUD; Jasinski et al., 2011; UNUDUD01; Chantrapromma et al., 2011), (E)-3-(anthracen-9-yl)-1-(2-bromo­phen­yl)prop-2-en-1-one (WAFGOB; Fun et al., 2010). Compounds EMULIT, JAHPUG and POPBAY are meth­oxy, chloro and bromo derivatives, respectively, substituted at the para position on the phenyl ring, while compounds KABHUS, UNUDUD (UNUDUD01) and WAFGOB are ortho-substituted eth­oxy, hy­droxy and bromo derivatives, respectively. Dihedral angles between the enone unit and the anthracene ring system and between the enone unit and the benzene ring are 81.6 (3) and 8.2 (4)°, respectively, for EMULIJ, 47.1 (3) and 22.9 (3)° for JAHPUG, 45.79 (10) and 20.88 (11)° for POPBAY, 82.49 (11) and 35.54 (13)° for KABHUS, 61.51 (9) and 14.56 (10)° [62.05 (9) and 11.04 (10)°] for UNUDUD, and 42.62 (16) and 63.00 (17)° for WAFGOB. The large dihedral angle of 82.49 (11)° between the enone unit and the anthracene ring system observed for KABHUS is due to the Z configuration of the mol­ecule. Inter­estingly, EMULIJ with an E configuration also shows a large dihedral angle of 81.6 (3)° between the enone unit and the anthracene ring system, whereas the dihedral angle between the enone unit and the benzene ring is extremely small [8.2 (4)°].

Synthesis and crystallization  

A mixture of 4-nitro­aceto­phenone (0.5 mmol) and 9-anthracencarboxaldehyde (0.5 mmol) was dissolved in methanol (20 ml) and the solution stirred continuously. A catalytic amount of NaOH (5 ml, 20%) was added to the solution dropwise until a precipitate formed and the reaction was stirred continuously for about 5 h at room temperature. After stirring, the solution was poured into 60 ml of ice-cold distilled water. The resultant crude product was filtered and washed several times with with distilled water until the filtrate turned colourless. The dried precipitate was further recrystallized to obtain the corresponding chalcone. Red plate-shaped single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding-model approximation, with U iso(H) = 1.2U eq(C). Four outliers (002), (420), (300) and (Inline graphic52) were omitted in the last cycle of refinement. The crystal used was a two-component merohedral twin (twin law Inline graphic 0 0 0 Inline graphic 0 1 0 1). The refined ratio of the twin components was 0.1996 (16):0.8004 (16).

Table 2. Experimental details.

Crystal data
Chemical formula C23H15NO3
M r 353.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.8204 (10), 3.9364 (3), 40.420 (3)
β (°) 97.651 (3)
V3) 1706.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.26 × 0.17 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.771, 0.970
No. of measured, independent and observed [I > 2σ(I)] reflections 45734, 3608, 2570
R int 0.113
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.074, 0.178, 1.09
No. of reflections 3608
No. of parameters 245
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.21

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 and SHELXTL (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I, mo_MFZ5_w_0m. DOI: 10.1107/S2056989019005243/is5513sup1.cif

e-75-00685-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019005243/is5513Isup2.hkl

e-75-00685-Isup2.hkl (198KB, hkl)

Comparison of bond lengths and angles between experimental and theoretical studies. DOI: 10.1107/S2056989019005243/is5513sup3.docx

Supporting information file. DOI: 10.1107/S2056989019005243/is5513Isup4.cml

CCDC reference: 1905274

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C23H15NO3 F(000) = 736
Mr = 353.36 Dx = 1.375 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.8204 (10) Å Cell parameters from 9886 reflections
b = 3.9364 (3) Å θ = 2.3–30.2°
c = 40.420 (3) Å µ = 0.09 mm1
β = 97.651 (3)° T = 296 K
V = 1706.3 (2) Å3 Plate, red
Z = 4 0.26 × 0.17 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer 2570 reflections with I > 2σ(I)
φ and ω scans Rint = 0.113
Absorption correction: multi-scan (SADABS; Bruker, 2009) θmax = 26.0°, θmin = 1.5°
Tmin = 0.771, Tmax = 0.970 h = −13→13
45734 measured reflections k = −4→4
3608 independent reflections l = −49→49

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074 H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0651P)2 + 1.4385P], where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
3608 reflections Δρmax = 0.20 e Å3
245 parameters Δρmin = −0.21 e Å3

Special details

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71075 3.957 11.583 40.623 82.797 90.074 69.980
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4171 (2) 0.9048 (7) 0.44992 (6) 0.0512 (7)
O2 0.0772 (4) 0.1119 (11) 0.57047 (8) 0.0950 (12)
O3 0.2506 (4) 0.2855 (14) 0.59652 (8) 0.1070 (16)
N1 0.1793 (4) 0.2508 (11) 0.57135 (9) 0.0638 (10)
C1 0.1551 (3) 0.5116 (9) 0.33952 (8) 0.0394 (9)
C2 0.0565 (4) 0.6557 (11) 0.35514 (8) 0.0487 (10)
H2A 0.0749 0.7540 0.3761 0.058*
C3 −0.0635 (4) 0.6530 (12) 0.34009 (9) 0.0572 (11)
H3A −0.1260 0.7449 0.3511 0.069*
C4 −0.0939 (4) 0.5133 (13) 0.30826 (10) 0.0601 (12)
H4A −0.1765 0.5128 0.2983 0.072*
C5 −0.0048 (4) 0.3793 (11) 0.29185 (9) 0.0527 (10)
H5A −0.0269 0.2860 0.2708 0.063*
C6 0.1232 (3) 0.3783 (10) 0.30643 (8) 0.0420 (9)
C7 0.2156 (4) 0.2487 (10) 0.28935 (8) 0.0469 (9)
H7A 0.1936 0.1626 0.2679 0.056*
C8 0.3404 (4) 0.2438 (10) 0.30333 (8) 0.0433 (9)
C9 0.4357 (4) 0.1017 (11) 0.28588 (9) 0.0537 (10)
H9A 0.4140 0.0136 0.2645 0.064*
C10 0.5562 (4) 0.0937 (12) 0.29994 (10) 0.0598 (11)
H10A 0.6172 0.0086 0.2880 0.072*
C11 0.5891 (4) 0.2144 (12) 0.33262 (10) 0.0604 (11)
H11A 0.6717 0.2002 0.3424 0.072*
C12 0.5027 (3) 0.3513 (11) 0.35013 (9) 0.0513 (10)
H12A 0.5275 0.4338 0.3715 0.062*
C13 0.3747 (3) 0.3710 (9) 0.33633 (8) 0.0399 (8)
C14 0.2818 (3) 0.5076 (9) 0.35409 (8) 0.0377 (8)
C15 0.3204 (3) 0.6376 (9) 0.38796 (8) 0.0423 (9)
H15A 0.3855 0.7937 0.3901 0.051*
C16 0.2745 (4) 0.5611 (9) 0.41586 (8) 0.0424 (9)
H16A 0.2055 0.4190 0.4149 0.051*
C17 0.3311 (3) 0.6979 (9) 0.44821 (8) 0.0367 (8)
C18 0.2866 (3) 0.5810 (8) 0.47993 (7) 0.0345 (8)
C19 0.1747 (3) 0.4084 (10) 0.48049 (8) 0.0447 (9)
H19A 0.1239 0.3599 0.4606 0.054*
C20 0.1392 (4) 0.3096 (10) 0.51059 (9) 0.0481 (10)
H20A 0.0636 0.1987 0.5111 0.058*
C21 0.2152 (3) 0.3743 (10) 0.53969 (8) 0.0433 (9)
C22 0.3264 (3) 0.5453 (10) 0.53986 (8) 0.0448 (9)
H22A 0.3775 0.5890 0.5598 0.054*
C23 0.3599 (3) 0.6495 (10) 0.50987 (8) 0.0412 (9)
H23A 0.4338 0.7694 0.5097 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0545 (16) 0.0532 (16) 0.0449 (13) −0.0130 (15) 0.0028 (12) −0.0031 (13)
O2 0.087 (2) 0.121 (3) 0.083 (2) −0.033 (3) 0.0344 (19) 0.006 (2)
O3 0.095 (3) 0.178 (5) 0.0471 (17) −0.025 (3) 0.0076 (18) 0.017 (2)
N1 0.069 (2) 0.073 (3) 0.053 (2) −0.001 (2) 0.0200 (19) 0.0001 (19)
C1 0.051 (2) 0.0347 (19) 0.0338 (17) 0.0008 (17) 0.0093 (16) 0.0037 (15)
C2 0.058 (3) 0.051 (2) 0.0376 (18) 0.007 (2) 0.0070 (18) 0.0028 (18)
C3 0.052 (2) 0.067 (3) 0.053 (2) 0.013 (2) 0.0126 (19) 0.012 (2)
C4 0.050 (2) 0.073 (3) 0.055 (2) 0.002 (2) −0.003 (2) 0.013 (2)
C5 0.062 (3) 0.053 (2) 0.041 (2) −0.007 (2) −0.0009 (19) 0.0046 (19)
C6 0.051 (2) 0.041 (2) 0.0337 (17) −0.0066 (19) 0.0058 (16) 0.0053 (16)
C7 0.069 (3) 0.039 (2) 0.0327 (17) −0.003 (2) 0.0071 (18) −0.0038 (16)
C8 0.058 (2) 0.0345 (19) 0.0385 (18) 0.0002 (19) 0.0109 (18) 0.0030 (16)
C9 0.067 (3) 0.049 (2) 0.047 (2) 0.002 (2) 0.019 (2) −0.0030 (19)
C10 0.062 (3) 0.055 (3) 0.068 (3) 0.009 (2) 0.028 (2) 0.004 (2)
C11 0.050 (2) 0.062 (3) 0.070 (3) 0.002 (2) 0.012 (2) 0.007 (2)
C12 0.051 (2) 0.054 (3) 0.049 (2) 0.001 (2) 0.0065 (19) 0.0017 (19)
C13 0.050 (2) 0.0312 (18) 0.0397 (18) 0.0006 (18) 0.0097 (16) 0.0052 (16)
C14 0.047 (2) 0.0307 (19) 0.0352 (17) −0.0004 (17) 0.0048 (15) 0.0031 (15)
C15 0.048 (2) 0.0350 (19) 0.0425 (18) −0.0003 (18) 0.0015 (16) −0.0009 (16)
C16 0.052 (2) 0.0357 (19) 0.0382 (18) 0.0012 (19) 0.0019 (16) 0.0003 (16)
C17 0.035 (2) 0.0345 (19) 0.0395 (18) 0.0067 (18) 0.0008 (15) −0.0026 (15)
C18 0.0365 (19) 0.0290 (17) 0.0370 (17) 0.0099 (16) 0.0013 (14) −0.0049 (15)
C19 0.040 (2) 0.050 (2) 0.0421 (19) 0.0021 (19) −0.0001 (16) −0.0099 (18)
C20 0.044 (2) 0.047 (2) 0.055 (2) −0.0051 (19) 0.0129 (18) −0.0060 (19)
C21 0.047 (2) 0.045 (2) 0.0392 (18) 0.011 (2) 0.0118 (16) −0.0021 (17)
C22 0.042 (2) 0.054 (2) 0.0371 (18) 0.007 (2) 0.0015 (15) −0.0059 (17)
C23 0.039 (2) 0.044 (2) 0.0396 (18) 0.0033 (18) 0.0036 (15) −0.0052 (17)

Geometric parameters (Å, º)

O1—C17 1.232 (4) C10—H10A 0.9300
O2—N1 1.229 (5) C11—C12 1.358 (5)
O3—N1 1.200 (4) C11—H11A 0.9300
N1—C21 1.468 (5) C12—C13 1.424 (5)
C1—C14 1.418 (5) C12—H12A 0.9300
C1—C2 1.427 (5) C13—C14 1.417 (5)
C1—C6 1.435 (5) C14—C15 1.469 (5)
C2—C3 1.359 (5) C15—C16 1.326 (5)
C2—H2A 0.9300 C15—H15A 0.9300
C3—C4 1.398 (6) C16—C17 1.470 (5)
C3—H3A 0.9300 C16—H16A 0.9300
C4—C5 1.348 (6) C17—C18 1.500 (5)
C4—H4A 0.9300 C18—C23 1.382 (4)
C5—C6 1.431 (5) C18—C19 1.392 (5)
C5—H5A 0.9300 C19—C20 1.379 (5)
C6—C7 1.386 (5) C19—H19A 0.9300
C7—C8 1.393 (5) C20—C21 1.366 (5)
C7—H7A 0.9300 C20—H20A 0.9300
C8—C13 1.427 (5) C21—C22 1.378 (5)
C8—C9 1.438 (5) C22—C23 1.373 (5)
C9—C10 1.352 (6) C22—H22A 0.9300
C9—H9A 0.9300 C23—H23A 0.9300
C10—C11 1.404 (6)
O3—N1—O2 123.3 (4) C11—C12—C13 121.2 (4)
O3—N1—C21 119.1 (4) C11—C12—H12A 119.4
O2—N1—C21 117.6 (4) C13—C12—H12A 119.4
C14—C1—C2 123.9 (3) C14—C13—C12 122.7 (3)
C14—C1—C6 118.8 (3) C14—C13—C8 119.5 (3)
C2—C1—C6 117.2 (3) C12—C13—C8 117.8 (3)
C3—C2—C1 121.6 (3) C13—C14—C1 120.4 (3)
C3—C2—H2A 119.2 C13—C14—C15 118.1 (3)
C1—C2—H2A 119.2 C1—C14—C15 121.5 (3)
C2—C3—C4 120.6 (4) C16—C15—C14 128.4 (4)
C2—C3—H3A 119.7 C16—C15—H15A 115.8
C4—C3—H3A 119.7 C14—C15—H15A 115.8
C5—C4—C3 120.7 (4) C15—C16—C17 121.0 (4)
C5—C4—H4A 119.6 C15—C16—H16A 119.5
C3—C4—H4A 119.6 C17—C16—H16A 119.5
C4—C5—C6 121.0 (4) O1—C17—C16 120.9 (3)
C4—C5—H5A 119.5 O1—C17—C18 118.7 (3)
C6—C5—H5A 119.5 C16—C17—C18 120.3 (3)
C7—C6—C5 121.2 (3) C23—C18—C19 118.7 (3)
C7—C6—C1 119.9 (3) C23—C18—C17 118.5 (3)
C5—C6—C1 118.8 (3) C19—C18—C17 122.8 (3)
C6—C7—C8 121.8 (3) C20—C19—C18 119.8 (3)
C6—C7—H7A 119.1 C20—C19—H19A 120.1
C8—C7—H7A 119.1 C18—C19—H19A 120.1
C7—C8—C13 119.5 (3) C21—C20—C19 120.1 (4)
C7—C8—C9 121.8 (3) C21—C20—H20A 120.0
C13—C8—C9 118.7 (3) C19—C20—H20A 120.0
C10—C9—C8 121.2 (4) C20—C21—C22 121.3 (3)
C10—C9—H9A 119.4 C20—C21—N1 119.3 (4)
C8—C9—H9A 119.4 C22—C21—N1 119.3 (3)
C9—C10—C11 119.8 (4) C23—C22—C21 118.3 (3)
C9—C10—H10A 120.1 C23—C22—H22A 120.9
C11—C10—H10A 120.1 C21—C22—H22A 120.9
C12—C11—C10 121.2 (4) C22—C23—C18 121.8 (4)
C12—C11—H11A 119.4 C22—C23—H23A 119.1
C10—C11—H11A 119.4 C18—C23—H23A 119.1
C14—C1—C2—C3 180.0 (4) C8—C13—C14—C15 −179.7 (3)
C6—C1—C2—C3 3.1 (6) C2—C1—C14—C13 −177.5 (3)
C1—C2—C3—C4 −1.3 (7) C6—C1—C14—C13 −0.6 (5)
C2—C3—C4—C5 −0.1 (7) C2—C1—C14—C15 3.6 (6)
C3—C4—C5—C6 −0.4 (7) C6—C1—C14—C15 −179.5 (3)
C4—C5—C6—C7 −178.4 (4) C13—C14—C15—C16 −127.8 (4)
C4—C5—C6—C1 2.3 (6) C1—C14—C15—C16 51.1 (6)
C14—C1—C6—C7 0.1 (5) C14—C15—C16—C17 175.5 (3)
C2—C1—C6—C7 177.1 (3) C15—C16—C17—O1 5.0 (5)
C14—C1—C6—C5 179.4 (3) C15—C16—C17—C18 −173.6 (3)
C2—C1—C6—C5 −3.5 (5) O1—C17—C18—C23 −13.9 (5)
C5—C6—C7—C8 −179.5 (4) C16—C17—C18—C23 164.7 (3)
C1—C6—C7—C8 −0.2 (6) O1—C17—C18—C19 165.7 (3)
C6—C7—C8—C13 0.9 (6) C16—C17—C18—C19 −15.6 (5)
C6—C7—C8—C9 178.5 (4) C23—C18—C19—C20 −0.1 (5)
C7—C8—C9—C10 −179.0 (4) C17—C18—C19—C20 −179.7 (3)
C13—C8—C9—C10 −1.4 (6) C18—C19—C20—C21 −1.4 (6)
C8—C9—C10—C11 2.4 (7) C19—C20—C21—C22 1.6 (6)
C9—C10—C11—C12 −2.4 (7) C19—C20—C21—N1 −176.7 (4)
C10—C11—C12—C13 1.4 (7) O3—N1—C21—C20 174.4 (4)
C11—C12—C13—C14 179.0 (4) O2—N1—C21—C20 −4.7 (6)
C11—C12—C13—C8 −0.4 (6) O3—N1—C21—C22 −3.9 (6)
C7—C8—C13—C14 −1.5 (5) O2—N1—C21—C22 177.1 (4)
C9—C8—C13—C14 −179.1 (3) C20—C21—C22—C23 −0.2 (6)
C7—C8—C13—C12 178.0 (4) N1—C21—C22—C23 178.1 (3)
C9—C8—C13—C12 0.3 (5) C21—C22—C23—C18 −1.4 (5)
C12—C13—C14—C1 −178.1 (4) C19—C18—C23—C22 1.5 (5)
C8—C13—C14—C1 1.3 (5) C17—C18—C23—C22 −178.8 (3)
C12—C13—C14—C15 0.8 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C23—H23A···O1i 0.93 2.49 3.240 (4) 138

Symmetry code: (i) −x+1, −y+2, −z+1.

Funding Statement

This work was funded by Ministry of Higher Education, Malaysia grants 203.PFIZIK.6711606 and 1001.PFIZIK.8011081.

References

  1. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bureš, F. (2014). RSC Adv. 4, 58826–58851.
  3. Chantrapromma, S., Kobkeatthawin, T., Chanawanno, K., Joothamongkhon, J. & Fun, H.-K. (2011). Acta Cryst. E67, o2554–o2555. [DOI] [PMC free article] [PubMed]
  4. Frisch, M. J., et al. (2009). Gaussian 09. Gaussian, Inc., Wallingford, CT, USA.
  5. Fun, H.-K., Kobkeatthawin, T., Joothamongkhon, J. & Chantrapromma, S. (2010). Acta Cryst. E66, o3312–o3313. [DOI] [PMC free article] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gu, P.-Y., Zhao, Y., He, J.-H., Zhang, J., Wang, C., Xu, Q.-F., Lu, J.-M., Sun, X. W. & Zhang, Q. (2015). J. Org. Chem. 80, 3030–3035. [DOI] [PubMed]
  8. Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o795. [DOI] [PMC free article] [PubMed]
  9. Joothamongkhon, J., Chantrapromma, S., Kobkeatthawin, T. & Fun, H.-K. (2010). Acta Cryst. E66, o2669–o2670. [DOI] [PMC free article] [PubMed]
  10. Jung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861–867.
  11. Prabhu, A. N., Upadhyaya, V., Jayarama, A. & Bhat, K. S. (2016). Mol. Cryst. Liq. Cryst. 637, 76–86.
  12. Rosencher, E. & Vinter, B. (2002). Optoelectronics. Cambridge University Press.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Suwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420–o421. [DOI] [PMC free article] [PubMed]
  16. Ternavisk, R. R., Camargo, A. J., Machado, F. B., Rocco, J. A., Aquino, G. L., Silva, V. H. & Napolitano, H. B. (2014). J. Mol. Model. 20, 2526–2536. [DOI] [PubMed]
  17. Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). CrystalExplorer. The University of Western Australia Perth, Australia.
  18. Xu, L., Zhao, Y., Long, G., Wang, Y., Zhao, J., Li, D., Li, J., Ganguly, R., Li, Y., Sun, H., Sun, X. W. & Zhang, Q. (2015). RSC Adv. 5, 63080–63086.
  19. Yu, F., Wang, M., Sun, H., Shan, Y., Du, M., Khan, A., Usman, R., Zhang, W., Shan, H. & Xu, C. (2017). RSC Adv. 7, 8491–8503.
  20. Zaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2018). Acta Cryst. E74, 1589–1594. [DOI] [PMC free article] [PubMed]
  21. Zainuri, D. A., Razak, I. A. & Arshad, S. (2018). Acta Cryst. E74, 650–655. [DOI] [PMC free article] [PubMed]
  22. Zhang, R., Wang, M., Sun, H., Khan, A., Usman, R., Wang, S., Gu, X., Wang, J. & Xu, C. (2016). New J. Chem. 40, 6441–6450.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, mo_MFZ5_w_0m. DOI: 10.1107/S2056989019005243/is5513sup1.cif

e-75-00685-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019005243/is5513Isup2.hkl

e-75-00685-Isup2.hkl (198KB, hkl)

Comparison of bond lengths and angles between experimental and theoretical studies. DOI: 10.1107/S2056989019005243/is5513sup3.docx

Supporting information file. DOI: 10.1107/S2056989019005243/is5513Isup4.cml

CCDC reference: 1905274

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES