Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 18;75(Pt 5):662–666. doi: 10.1107/S2056989019004973

Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide

Ali N Khalilov a,b, Zeliha Atioğlu c, Mehmet Akkurt d, Gulnara Sh Duruskari a, Flavien A A Toze e,*, Afet T Huseynova a
PMCID: PMC6505598  PMID: 31110807

In the crystal of the title salt, cations and anions are linked by N–H⋯Br hydrogen bonds forming inversion-related dimers. The dimers are connected by weak C–H⋯Br hydrogen bonds into chains.

Keywords: crystal structure, charge assisted hydrogen bonding, thia­zolidine ring, disorder, Hirshfeld surface analysis.

Abstract

In the cation of the title salt, C16H15FN3S+·Br, the phenyl ring is disordered over two sets of sites with a refined occupancy ratio of 0.503 (4):0.497 (4). The mean plane of the thia­zolidine ring makes dihedral angles of 13.51 (14), 48.6 (3) and 76.5 (3)° with the fluoro­phenyl ring and the major- and minor-disorder components of the phenyl ring, respectively. The central thia­zolidine ring adopts an envelope conformation. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br hydrogen bonds into chains parallel to [110]. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (44.3%), Br⋯H/H⋯Br (16.8%), C⋯H/H⋯C (13.9%), F⋯H/H⋯F (10.3%) and S⋯H/H⋯S (3.8%) inter­actions.

Chemical context  

Noncovalent inter­actions, both inter­molecular and intra­molecular, occur in virtually every substance and play an important role in the synthesis, catalysis, design of materials and biological processes (Akbari et al., 2017; Gurbanov et al., 2018; Kopylovich et al., 2011; Maharramov et al., 2010; Mahmoudi et al., 2018a ,b ,c ; Mahmudov et al., 2011, 2013, 2014a ,b , 2015, 2017a ,b , 2019; Shixaliyev et al., 2013, 2018). On the other hand, Schiff bases and related hydrazone ligands and their complexes have attracted attention over the past decades due to their potential biological, pharmacological and analytical applications (Kopylovich et al., 2011; Mahmoudi et al., 2018a ,b ,c ; Mahmudov et al., 2013). Hetercyclic amines are also widely used in the synthesis of Schiff bases, which provide different kinds of noncovalent inter­actions. As a further study in this field, we report herein the crystal structure and Hirshfeld surface analysis of the title compound.graphic file with name e-75-00662-scheme1.jpg

Structural commentary  

The thia­zolidine ring (S1/N2/C1–C3) in the cation of the title salt (Fig. 1) adopts an envelope conformation, with puckering parameters of Q(2) = 0.321 (3) Å and φ(2) = 43.3 (5)°. The mean plane of the thia­zolidine ring makes dihedral angles of 13.51 (14), 48.6 (3) and 76.5 (3)° with the fluoro­phenyl ring (C5–C10) and the major- and minor-disorder components (C11–C16 and C11′–C16′) of the phenyl ring, respectively. The N2—N1—C4—C5 bridge that links the thia­zolidine and 4-fluoro­phenyl rings has a torsion angle of −177.36 (19)°.

Figure 1.

Figure 1

The mol­ecular structure of the title salt. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius. The minor-disorder component has been omitted for clarity

Supra­molecular features and Hirshfeld surface analysis  

In the crystal, centrosymmetrically related cations and anions are linked via pairs of N—H⋯Br hydrogen bonds (Table 1) into dimeric units forming rings of Inline graphic(8) graph-set motif (Fig. 2). The dimers are further connected by weak C—H⋯Br inter­actions to form chains running parallel to [110].

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1 0.90 2.36 3.2557 (18) 172
N3—H3B⋯Br1i 0.90 2.55 3.3552 (18) 150
C4—H4A⋯Br1ii 0.93 2.99 3.726 (2) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view of the inter­molecular N—H⋯Br hydrogen bonds of the title salt in the unit cell. The minor-disorder component has been omitted for clarity

Hirshfeld surface analysis was used to investigate the presence of hydrogen bonds and inter­molecular inter­actions in the crystal structure. The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) of the title salt was generated by CrystalExplorer3.1 (Wolff et al., 2012), and comprised d norm surface plots and 2D fingerprint plots (Spackman & McKinnon, 2002). The plots of the Hirshfeld surface mapped over d norm using a standard surface resolution with a fixed colour scale of −1.4747 (red) to 1.2166 a.u. (blue) is shown in Fig. 3. This plot was generated to qu­antify and visualize the inter­molecular inter­actions and to explain the observed crystal packing.

Figure 3.

Figure 3

Hirshfeld surface of the title salt mapped with d norm.

The shape index of the Hirshfeld surface is a tool to visualize π–π stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 4 clearly suggest that there are no π–π inter­actions present in the title salt.

Figure 4.

Figure 4

Hirshfeld surface of the title salt mapped with shape index.

Fig. 5(a) shows the 2D fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. These represent both the overall 2D fingerprint plots and those that represent H⋯H (44.3%), Br⋯H/H⋯Br (16.8%), C⋯H/H⋯C (13.9%), F⋯H/H⋯F (10.3%) and S⋯H/H⋯S (3.8%) contacts, respectively (Figs. 5 bf). The most significant inter­molecular inter­actions are the H⋯H inter­actions (44.3%) (Fig. 6b). All the contributions to the Hirshfeld surface are given in Table 2.

Figure 5.

Figure 5

The 2D fingerprint plots of the title salt, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Br⋯H/H⋯Br, (d) C⋯H/H⋯C, (e) F⋯H/H⋯F and (f) S⋯H/H⋯S inter­actions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

Table 2. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt.

Contact Percentage contribution
H⋯H 44.3
Br⋯H/H⋯Br 16.8
C⋯H/H⋯C 13.9
F⋯H/H⋯F 10.3
S⋯H/H⋯S 3.8
N⋯C/C⋯N 3.6
S⋯C/C⋯S 2.7
N⋯H/H⋯N 1.8
C⋯C 1.5
N⋯N 0.7
Br⋯C/C⋯Br 0.3
S⋯N/N⋯S 0.3
F⋯C/C⋯F 0.2

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016) for 2-thia­zolidiniminium compounds gave seven hits, viz. UDELUN (Akkurt et al., 2018), WILBIC (Marthi et al., 1994), WILBOI (Marthi et al., 1994), WILBOI01 (Marthi et al., 1994), YITCEJ (Martem’yanova et al., 1993a ), YITCAF (Martem’yanova et al., 1993b ) and YOPLUK (Marthi et al., 1995).

In the crystal of UDELUN (Akkurt et al., 2018), C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π inter­actions, which only involve the minor-disorder component of the ring, also contribute to the mol­ecular packing. In addition, there are also inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts.

In the remaining structures, the 3-N atom carries a C-substituent instead of an N-substituent, as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994) of 3-(2′-chloro-2′-phenyl­eth­yl)-2-thia­zolidiniminium p-tolu­ene­sulfonate. In all three structures, the most disordered fragment of these mol­ecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enanti­omers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem’yanova et al., 1993a ) is a product of the inter­action of 2-amino-5-methyl­thia­zoline with methyl iodide, with alkyl­ation at the endocylic N atom, while YITCAF (Martem’yanova et al., 1993b ) is a product of the reaction of 3-nitro-5-meth­oxy-, 3-nitro-5-chloro- and 3-bromo-5-nitro­salicyl­aldehyde with the heterocyclic base to form the salt-like complexes.

Synthesis and crystallization  

To a solution of 3-amino-5-phenyl­thia­zolidin-2-iminium bro­mide (1 mmol) in ethanol (20 ml) was added 4-fluoro­benz­aldehyde (1 mmol). The mixture was refluxed for 2 h and then cooled. The reaction product precipitated from the reaction mixture as colourless single crystals, was collected by filtration and washed with cold acetone (yield 64%; m.p. 544–545 K). Analysis calculated (%) for C16H15BrFN3S: C 50.53, H 3.98, N 11.05; found: C 50.47, H 3.93, N 11.00. 1H NMR (300 MHz, DMSO-d 6) : 4.56 (k, 1H, CH2, 3 J H-H = 6.6 Hz), 4,87 (t, 1H, CH2, 3 J H-H = 7.8 Hz), 5.60 (t, 1H, CH-Ar, 3J H-H = 7.8 Hz), 7.32–8.16 (m, 9H, 9Ar-H), 8.45 (s, 1H, CH=), 10.37 (s, 2H, NH2). 13C NMR (75 MHz, DMSO-d 6): 45.39, 55.97, 116.05, 127.81, 128.91, 129.13, 129.60, 131.05, 131.17, 137.55, 150.00, 167.89. MS (ESI), m/z: 300.36 [C16H15FN3S]+ and 79.88 Br.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.90 Å and C—H = 0.93–0.98 Å, and with U iso(H) = 1.2U eq(C,N). The phenyl ring in the cation is disordered over two sets of sites with an occupancy ratio of 0.503 (4):0.497 (4). Seven outliers (001; Inline graphic05; Inline graphic43; 010; Inline graphic75; Inline graphic,Inline graphic,12; and 7Inline graphic3) were omitted in the final cycles of refinement.

Table 3. Experimental details.

Crystal data
Chemical formula C16H15FN3S+·Br
M r 380.28
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 8.0599 (3), 8.6086 (4), 12.7608 (5)
α, β, γ (°) 96.548 (2), 92.518 (2), 111.065 (2)
V3) 817.39 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.65
Crystal size (mm) 0.16 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.664, 0.782
No. of measured, independent and observed [I > 2σ(I)] reflections 12009, 3321, 2672
R int 0.025
(sin θ/λ)max−1) 0.627
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.029, 0.077, 1.04
No. of reflections 3321
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.48

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004973/rz5254sup1.cif

e-75-00662-sup1.cif (368.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004973/rz5254Isup2.hkl

e-75-00662-Isup2.hkl (265.1KB, hkl)

CCDC reference: 1909594

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Ali Khalilov is grateful to Baku State University for the ‘50+50’ individual grant in support of this work.

supplementary crystallographic information

Crystal data

C16H15FN3S+·Br Z = 2
Mr = 380.28 F(000) = 384
Triclinic, P1 Dx = 1.545 Mg m3
a = 8.0599 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.6086 (4) Å Cell parameters from 5655 reflections
c = 12.7608 (5) Å θ = 2.6–26.3°
α = 96.548 (2)° µ = 2.65 mm1
β = 92.518 (2)° T = 296 K
γ = 111.065 (2)° Plate, colorless
V = 817.39 (6) Å3 0.16 × 0.12 × 0.09 mm

Data collection

Bruker APEXII CCD diffractometer 2672 reflections with I > 2σ(I)
φ and ω scans Rint = 0.025
Absorption correction: multi-scan (SADABS; Bruker, 2003) θmax = 26.5°, θmin = 2.7°
Tmin = 0.664, Tmax = 0.782 h = −10→7
12009 measured reflections k = −10→10
3321 independent reflections l = −14→15

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029 H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.2228P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3321 reflections Δρmax = 0.37 e Å3
254 parameters Δρmin = −0.48 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.28837 (4) −0.06846 (3) 0.65093 (2) 0.07274 (12)
S1 0.50535 (9) 0.40641 (8) 0.72511 (4) 0.06317 (17)
F1 1.1652 (2) 0.6889 (3) 0.07197 (13) 0.0994 (6)
N1 0.7677 (2) 0.5288 (2) 0.48291 (13) 0.0510 (4)
C1 0.7491 (4) 0.6768 (3) 0.66453 (19) 0.0676 (7)
H1A 0.765957 0.780305 0.635640 0.081*
H1B 0.859205 0.688530 0.704392 0.081*
N2 0.6981 (3) 0.5342 (2) 0.57951 (13) 0.0540 (4)
C2 0.5974 (5) 0.6381 (4) 0.73431 (19) 0.0803 (9)
H2A 0.506784 0.680819 0.710523 0.096*
N3 0.5389 (3) 0.2468 (2) 0.54077 (14) 0.0564 (5)
H3A 0.472588 0.153018 0.566419 0.068*
H3B 0.598218 0.240158 0.483319 0.068*
C3 0.5851 (3) 0.3881 (3) 0.60334 (16) 0.0489 (5)
C4 0.8962 (3) 0.6588 (3) 0.46468 (18) 0.0583 (6)
H4A 0.943400 0.751707 0.516854 0.070*
C5 0.9692 (3) 0.6619 (3) 0.36204 (18) 0.0532 (5)
C6 1.0980 (3) 0.8092 (3) 0.3405 (2) 0.0691 (7)
H6A 1.139096 0.902914 0.392330 0.083*
C7 1.1660 (4) 0.8188 (4) 0.2431 (2) 0.0767 (8)
H7A 1.254083 0.916970 0.229104 0.092*
C8 1.1011 (3) 0.6810 (4) 0.1683 (2) 0.0665 (7)
C9 0.9756 (3) 0.5314 (3) 0.1862 (2) 0.0659 (6)
H9A 0.935350 0.438646 0.133610 0.079*
C10 0.9115 (3) 0.5229 (3) 0.28380 (19) 0.0592 (6)
H10A 0.827792 0.422230 0.298028 0.071*
C11 0.6893 (9) 0.7289 (7) 0.8505 (5) 0.0447 (13) 0.503 (4)
C12 0.5575 (7) 0.6983 (7) 0.9197 (5) 0.0691 (15) 0.503 (4)
H12A 0.439229 0.635805 0.894732 0.083* 0.503 (4)
C13 0.6019 (12) 0.7611 (13) 1.0269 (6) 0.074 (2) 0.503 (4)
H13A 0.513251 0.739287 1.073481 0.089* 0.503 (4)
C14 0.7747 (12) 0.8546 (10) 1.0639 (5) 0.0740 (16) 0.503 (4)
H14A 0.804349 0.898834 1.135130 0.089* 0.503 (4)
C15 0.9041 (8) 0.8822 (8) 0.9946 (4) 0.0811 (17) 0.503 (4)
H15A 1.022734 0.943608 1.019215 0.097* 0.503 (4)
C16 0.8600 (7) 0.8201 (7) 0.8893 (4) 0.0660 (14) 0.503 (4)
H16A 0.949586 0.841027 0.843322 0.079* 0.503 (4)
C11' 0.5982 (9) 0.7008 (8) 0.8494 (5) 0.0489 (14) 0.497 (4)
C12' 0.5168 (7) 0.8137 (6) 0.8805 (4) 0.0631 (13) 0.497 (4)
H12B 0.447047 0.841350 0.831371 0.076* 0.497 (4)
C13' 0.5408 (8) 0.8852 (7) 0.9865 (5) 0.0759 (18) 0.497 (4)
H13B 0.488252 0.962201 1.007970 0.091* 0.497 (4)
C14' 0.6390 (15) 0.8437 (12) 1.0570 (7) 0.079 (3) 0.497 (4)
H14B 0.655646 0.893516 1.127240 0.094* 0.497 (4)
C15' 0.7133 (14) 0.7321 (12) 1.0286 (5) 0.0843 (19) 0.497 (4)
H15B 0.779040 0.702274 1.078940 0.101* 0.497 (4)
C16' 0.6923 (8) 0.6598 (8) 0.9226 (5) 0.0793 (17) 0.497 (4)
H16B 0.744737 0.582013 0.902974 0.095* 0.497 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0842 (2) 0.05494 (16) 0.05450 (16) −0.00131 (12) 0.02403 (12) −0.00748 (11)
S1 0.0911 (4) 0.0681 (4) 0.0419 (3) 0.0401 (3) 0.0203 (3) 0.0126 (3)
F1 0.1003 (12) 0.1287 (15) 0.0746 (10) 0.0375 (11) 0.0439 (9) 0.0375 (10)
N1 0.0588 (10) 0.0484 (10) 0.0428 (9) 0.0154 (9) 0.0093 (8) 0.0067 (8)
C1 0.1015 (19) 0.0518 (13) 0.0448 (12) 0.0257 (13) −0.0005 (12) −0.0010 (10)
N2 0.0706 (12) 0.0494 (10) 0.0385 (9) 0.0183 (9) 0.0088 (8) 0.0032 (8)
C2 0.145 (3) 0.0759 (18) 0.0422 (13) 0.0652 (19) 0.0157 (15) 0.0117 (12)
N3 0.0696 (11) 0.0478 (10) 0.0492 (10) 0.0162 (9) 0.0199 (9) 0.0087 (8)
C3 0.0593 (12) 0.0513 (12) 0.0400 (10) 0.0240 (10) 0.0079 (9) 0.0079 (9)
C4 0.0643 (14) 0.0516 (13) 0.0492 (12) 0.0108 (11) 0.0016 (10) 0.0044 (10)
C5 0.0504 (12) 0.0514 (12) 0.0535 (12) 0.0119 (10) 0.0028 (10) 0.0139 (10)
C6 0.0733 (16) 0.0558 (14) 0.0663 (15) 0.0074 (12) 0.0053 (13) 0.0159 (12)
C7 0.0708 (16) 0.0692 (17) 0.0845 (19) 0.0101 (13) 0.0177 (14) 0.0362 (16)
C8 0.0585 (14) 0.0891 (19) 0.0617 (15) 0.0311 (14) 0.0196 (12) 0.0303 (14)
C9 0.0575 (14) 0.0732 (16) 0.0636 (15) 0.0204 (12) 0.0141 (11) 0.0049 (12)
C10 0.0515 (12) 0.0560 (13) 0.0627 (14) 0.0092 (10) 0.0148 (11) 0.0103 (11)
C11 0.052 (3) 0.043 (3) 0.043 (3) 0.018 (3) 0.015 (3) 0.012 (2)
C12 0.060 (3) 0.084 (4) 0.059 (4) 0.021 (3) 0.014 (3) 0.005 (3)
C13 0.084 (6) 0.101 (6) 0.045 (4) 0.042 (5) 0.018 (4) 0.009 (4)
C14 0.100 (5) 0.083 (5) 0.042 (3) 0.038 (4) 0.006 (3) 0.001 (3)
C15 0.085 (4) 0.096 (4) 0.055 (3) 0.029 (3) 0.003 (3) 0.001 (3)
C16 0.066 (3) 0.077 (3) 0.049 (3) 0.020 (3) 0.011 (2) 0.003 (2)
C11' 0.051 (4) 0.053 (3) 0.036 (3) 0.009 (3) 0.016 (3) 0.007 (2)
C12' 0.066 (3) 0.058 (3) 0.065 (3) 0.019 (2) 0.009 (2) 0.020 (2)
C13' 0.092 (4) 0.057 (3) 0.083 (4) 0.031 (3) 0.041 (3) 0.006 (3)
C14' 0.095 (7) 0.073 (5) 0.042 (4) 0.002 (5) 0.013 (4) −0.004 (3)
C15' 0.087 (5) 0.111 (7) 0.055 (4) 0.037 (5) −0.011 (3) 0.012 (4)
C16' 0.084 (4) 0.096 (4) 0.072 (4) 0.053 (4) 0.008 (3) 0.002 (3)

Geometric parameters (Å, º)

S1—C3 1.720 (2) C9—C10 1.369 (3)
S1—C2 1.848 (3) C9—H9A 0.9300
F1—C8 1.353 (3) C10—H10A 0.9300
N1—C4 1.276 (3) C11—C16 1.353 (8)
N1—N2 1.380 (2) C11—C12 1.383 (7)
C1—N2 1.465 (3) C12—C13 1.393 (10)
C1—C2 1.506 (4) C12—H12A 0.9300
C1—H1A 0.9700 C13—C14 1.364 (14)
C1—H1B 0.9700 C13—H13A 0.9300
N2—C3 1.339 (3) C14—C15 1.370 (9)
C2—C11' 1.505 (6) C14—H14A 0.9300
C2—C11 1.607 (7) C15—C16 1.370 (7)
C2—H2A 0.9800 C15—H15A 0.9300
N3—C3 1.297 (3) C16—H16A 0.9300
N3—H3A 0.9001 C11'—C16' 1.333 (9)
N3—H3B 0.9000 C11'—C12' 1.389 (8)
C4—C5 1.458 (3) C12'—C13' 1.394 (8)
C4—H4A 0.9300 C12'—H12B 0.9300
C5—C6 1.386 (3) C13'—C14' 1.334 (12)
C5—C10 1.390 (3) C13'—H13B 0.9300
C6—C7 1.379 (4) C14'—C15' 1.329 (15)
C6—H6A 0.9300 C14'—H14B 0.9300
C7—C8 1.358 (4) C15'—C16' 1.399 (9)
C7—H7A 0.9300 C15'—H15B 0.9300
C8—C9 1.373 (4) C16'—H16B 0.9300
C3—S1—C2 90.65 (11) C10—C9—H9A 121.0
C4—N1—N2 117.98 (19) C8—C9—H9A 121.0
N2—C1—C2 105.8 (2) C9—C10—C5 121.2 (2)
N2—C1—H1A 110.6 C9—C10—H10A 119.4
C2—C1—H1A 110.6 C5—C10—H10A 119.4
N2—C1—H1B 110.6 C16—C11—C12 118.7 (5)
C2—C1—H1B 110.6 C16—C11—C2 133.2 (5)
H1A—C1—H1B 108.7 C12—C11—C2 108.2 (5)
C3—N2—N1 116.37 (17) C11—C12—C13 120.0 (6)
C3—N2—C1 115.67 (18) C11—C12—H12A 120.0
N1—N2—C1 127.52 (19) C13—C12—H12A 120.0
C11'—C2—C1 129.4 (4) C14—C13—C12 120.3 (7)
C1—C2—C11 104.7 (3) C14—C13—H13A 119.8
C11'—C2—S1 104.9 (3) C12—C13—H13A 119.8
C1—C2—S1 105.04 (17) C13—C14—C15 119.0 (6)
C11—C2—S1 112.7 (2) C13—C14—H14A 120.5
C1—C2—H2A 111.4 C15—C14—H14A 120.5
C11—C2—H2A 111.4 C16—C15—C14 120.5 (6)
S1—C2—H2A 111.4 C16—C15—H15A 119.7
C3—N3—H3A 117.3 C14—C15—H15A 119.7
C3—N3—H3B 119.6 C11—C16—C15 121.5 (5)
H3A—N3—H3B 120.5 C11—C16—H16A 119.2
N3—C3—N2 123.59 (19) C15—C16—H16A 119.2
N3—C3—S1 123.18 (17) C16'—C11'—C12' 118.8 (6)
N2—C3—S1 113.23 (16) C16'—C11'—C2 119.7 (5)
N1—C4—C5 120.0 (2) C12'—C11'—C2 121.2 (5)
N1—C4—H4A 120.0 C11'—C12'—C13' 119.1 (5)
C5—C4—H4A 120.0 C11'—C12'—H12B 120.4
C6—C5—C10 118.6 (2) C13'—C12'—H12B 120.4
C6—C5—C4 119.1 (2) C14'—C13'—C12' 120.3 (6)
C10—C5—C4 122.3 (2) C14'—C13'—H13B 119.9
C7—C6—C5 120.8 (3) C12'—C13'—H13B 119.9
C7—C6—H6A 119.6 C15'—C14'—C13' 121.0 (8)
C5—C6—H6A 119.6 C15'—C14'—H14B 119.5
C8—C7—C6 118.3 (2) C13'—C14'—H14B 119.5
C8—C7—H7A 120.9 C14'—C15'—C16' 119.7 (8)
C6—C7—H7A 120.9 C14'—C15'—H15B 120.1
F1—C8—C7 119.0 (2) C16'—C15'—H15B 120.1
F1—C8—C9 117.9 (3) C11'—C16'—C15' 121.0 (6)
C7—C8—C9 123.1 (2) C11'—C16'—H16B 119.5
C10—C9—C8 118.0 (3) C15'—C16'—H16B 119.5
C4—N1—N2—C3 −169.1 (2) C6—C5—C10—C9 −2.0 (4)
C4—N1—N2—C1 3.0 (3) C4—C5—C10—C9 176.7 (2)
C2—C1—N2—C3 −26.1 (3) C1—C2—C11—C16 −1.1 (7)
C2—C1—N2—N1 161.8 (2) S1—C2—C11—C16 112.5 (6)
N2—C1—C2—C11' 155.8 (4) C1—C2—C11—C12 −179.8 (4)
N2—C1—C2—C11 150.2 (3) S1—C2—C11—C12 −66.2 (5)
N2—C1—C2—S1 31.4 (2) C16—C11—C12—C13 0.1 (10)
C3—S1—C2—C11' −163.6 (3) C2—C11—C12—C13 178.9 (6)
C3—S1—C2—C1 −24.92 (19) C11—C12—C13—C14 0.8 (14)
C3—S1—C2—C11 −138.3 (3) C12—C13—C14—C15 −1.5 (15)
N1—N2—C3—N3 −0.7 (3) C13—C14—C15—C16 1.4 (12)
C1—N2—C3—N3 −173.7 (2) C12—C11—C16—C15 −0.2 (9)
N1—N2—C3—S1 179.87 (14) C2—C11—C16—C15 −178.7 (5)
C1—N2—C3—S1 6.8 (3) C14—C15—C16—C11 −0.6 (10)
C2—S1—C3—N3 −168.1 (2) C1—C2—C11'—C16' −64.5 (7)
C2—S1—C3—N2 11.35 (19) S1—C2—C11'—C16' 59.9 (7)
N2—N1—C4—C5 −177.36 (19) C1—C2—C11'—C12' 109.3 (6)
N1—C4—C5—C6 174.4 (2) S1—C2—C11'—C12' −126.3 (5)
N1—C4—C5—C10 −4.2 (4) C16'—C11'—C12'—C13' 2.2 (9)
C10—C5—C6—C7 0.8 (4) C2—C11'—C12'—C13' −171.6 (5)
C4—C5—C6—C7 −177.9 (2) C11'—C12'—C13'—C14' −0.9 (9)
C5—C6—C7—C8 1.2 (4) C12'—C13'—C14'—C15' −1.0 (13)
C6—C7—C8—F1 179.3 (2) C13'—C14'—C15'—C16' 1.5 (16)
C6—C7—C8—C9 −2.3 (4) C12'—C11'—C16'—C15' −1.7 (11)
F1—C8—C9—C10 179.6 (2) C2—C11'—C16'—C15' 172.2 (6)
C7—C8—C9—C10 1.1 (4) C14'—C15'—C16'—C11' −0.2 (14)
C8—C9—C10—C5 1.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···Br1 0.90 2.36 3.2557 (18) 172
N3—H3B···Br1i 0.90 2.55 3.3552 (18) 150
C4—H4A···Br1ii 0.93 2.99 3.726 (2) 137

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, y+1, z.

References

  1. Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. [DOI] [PubMed]
  2. Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. [DOI] [PMC free article] [PubMed]
  3. Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.
  8. Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011). Inorg. Chim. Acta, 374, 175–180.
  9. Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.
  10. Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.
  11. Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
  12. Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018c). Eur. J. Inorg. Chem. pp. 4763–4772.
  13. Mahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014a). J. Organomet. Chem. 760, 67–73.
  14. Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610. [DOI] [PubMed]
  15. Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.
  16. Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54–72.
  17. Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121–10138. [DOI] [PubMed]
  18. Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014b). Coord. Chem. Rev. 265, 1–37.
  19. Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281.
  20. Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165.
  21. Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.
  22. Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.
  23. Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.
  24. Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.
  25. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  27. Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
  28. Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79.
  29. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  30. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  31. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
  32. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004973/rz5254sup1.cif

e-75-00662-sup1.cif (368.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004973/rz5254Isup2.hkl

e-75-00662-Isup2.hkl (265.1KB, hkl)

CCDC reference: 1909594

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES