Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 12;75(Pt 5):611–615. doi: 10.1107/S2056989019004651

Crystal structures and Hirshfeld surface analysis of 2-(adamantan-1-yl)-5-(4-fluoro­phen­yl)-1,3,4-oxa­diazole and 2-(adamantan-1-yl)-5-(4-chloro­phen­yl)-1,3,4-oxa­diazole

Lamya H Al-Wahaibi a, Aisha Alsfouk b, Ali A El-Emam c, Olivier Blacque d,*
PMCID: PMC6505599  PMID: 31110797

The title adamantane-oxa­diazole hybrid compounds are built up from an adamantane unit and a halogenophenyl ring, [X = F (I), Cl (II)], in position 5 on the central 1,3,4-oxa­diazole unit.

Keywords: crystal structure; adamantyl derivatives; 1,3,4-oxa­diazo­les; C—H⋯N hydrogen bonds; C—H⋯F inter­actions; Hirshfeld surface analysis.

Abstract

The crystal structures of the title adamantane-oxa­diazole hybrid compounds, C18H19FN2O (I) and C18H19ClN2O (II), are built up from an adamantane unit and a halogenophenyl ring, [X = F (I), Cl (II)], in position 5 on the central 1,3,4-oxa­diazole unit. The mol­ecular structures are very similar, only the relative orientation of the halogenophenyl ring in comparison with the central five-membered ring differs slightly. In the crystals of both compounds, mol­ecules are linked by pairs of C—H⋯N hydrogen bonds, forming inversion dimers with R 2 2(12) ring motifs. In (I) the dimers are connected by C—H⋯F inter­actions, forming slabs lying parallel to the bc plane. In (II), the dimers are linked by C—H⋯π and offset π–π inter­actions [inter­planar distance = 3.4039 (9) Å], forming layers parallel to (10Inline graphic).

Chemical context  

Considerable attention has been devoted to adamantane derivatives, which have long been known for their diverse biological properties (Liu et al., 2011; Lamoureux & Artavia, 2010). In view of the pronounced lipophilicity of the adamantane cage, it has been observed that adamantyl-bearing compounds are characterized by high therapeutic indices (Wanka et al., 2013). Sixty years ago, the first adamantane-based drug, amantadine, was discovered to be an efficient therapy for the treatment of Influenza A infection (Davies et al., 1964; Togo et al., 1968). As a result of intensive research based on adamantane derivatives, the adamantane nucleus was further recognized as the key pharmacophore in several biologically active compounds. Among the major biological activities displayed by adamantane derivatives, the anti-HIV (El-Emam et al., 2004; Burstein et al., 1999; Balzarini et al., 2009), anti­bacterial (Protopopova et al., 2005; El-Emam et al., 2013; Kadi et al., 2010; Al-Abdullah et al., 2014; Al-Wahaibi et al., 2017), anti­fungal (Omar et al., 2010), anti­cancer (Sun et al., 2002), anti-diabetic (Villhauer et al., 2003; Augeri et al., 2005) and anti­malarial (Dong et al., 2010) activities are the most inter­esting. In addition, 1,3,4-oxa­diazole derivatives occupy a unique place in the field of medicinal chemistry as pharmacophores or auxophores possessing diverse pharmacological activities including anti­bacterial (Prakash et al., 2010; Ogata et al., 1971; Kadi et al., 2007), anti­cancer (Zhang et al., 2014), anti­viral (Wu et al., 2015) and anti-inflammatory (Bansal et al., 2014) activities. We report herein on the crystal structure determinations of the title adamantane-oxa­diazole hybrid mol­ecules 2-(adamantan-1-yl)-5-(4-fluoro­phen­yl)-1,3,4-oxa­diazole (I) and 2-(adamantan-1-yl)-5-(4-chloro­phen­yl)-1,3,4-oxa­diazole (II). The crystal structure of the 4-bromo­phenyl derivative has been reported previously (Alzoman et al., 2014), and after examination of the deposited CIF and transformation of the space group, from P21/c to P21/n, it is found to be isotypic with compound (II).graphic file with name e-75-00611-scheme1.jpg

Structural commentary  

Compounds (I) and (II), are built up from a central 1,3,4-oxa­diazole unit, an adamantane unit and a halogenophenyl group (Figs. 1 and 2, respectively). The C—N bonds in the oxa­diazole rings have double-bond character [C7=N1 = 1.279 (5) and 1.292 (3) Å, and C8=N2 = 1.288 (5) and 1.288 (3) Å in (I) and (II), respectively], while the N—N and C—O bonds exhibit single-bond character [N1—N2 = 1.408 (4) and 1.417 (3) Å, C7—O1 = 1.366 (4) and 1.360 (2) Å, and C8—O1 = 1.369 (4) and 1.359 (2) Å in (I) and (II), respectively]. These geometrical parameters are very similar to those observed for similar compounds; see §5. Database survey.

Figure 1.

Figure 1

Mol­ecular structure of compound (I), with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

Mol­ecular structure of compound (II), with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

As seen in Fig. 3, the mol­ecular structures of compounds (I) and (II) are very similar. The largest difference is highlighted by the structural overlay plot, and comes from the relative orientation of the halogenophenyl group with respect to the oxa­diazole ring. In compound (II), the rings are almost coplanar with their mean planes being inclined to each other by 9.5 (1)°, while in compound (I) the equivalent dihedral angle is 20.8 (2)°.

Figure 3.

Figure 3

View of the structural overlay of compounds (I) and (II). Compound (I) is drawn according to element type, while compound (II) is drawn in pale green.

Supra­molecular features  

In the crystals of both compounds, mol­ecules are linked by pairs of C—H⋯N hydrogen bonds, forming inversion dimers with Inline graphic(12) ring motifs (Tables 1 and 2, respectively). In the crystal of (I), the dimers are connected by C—H⋯F inter­actions, forming slabs lying parallel to the bc plane (Fig. 4 and Table 1). In the crystal of (II), the dimers are linked by C—H⋯π and offset π–π inter­actions, forming layers lying parallel to the (10Inline graphic) plane; see Fig. 5 and Table 2. The offset π–π inter­actions involve inversion-related 4-chloro­phenyl rings (C1–C6) with an inter­centroid distance of 3.687 (1) Å, an inter­planar distance of 3.404 (1) Å, and an offset of 1.418 Å. In Fig. 5 these inter­actions are represented by double-headed red arrows.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.95 2.56 3.383 (5) 146
C18—H18A⋯F1ii 0.99 2.47 3.415 (5) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.95 2.61 3.386 (3) 139
C12—H12ACg1ii 0.99 2.73 3.680 (3) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

A view along the b axis of the crystal packing of compound (I). The hydrogen-bonding inter­actions (see Table 1) are shown as dashed lines. For clarity, only hydrogen atoms H3 and H18A have been included.

Figure 5.

Figure 5

A view along the b axis of the crystal packing of compound (II), showing the C—H⋯N hydrogen bonds and the C—H⋯π inter­actions (see Table 2) as dashed lines. The offset π–π inter­actions are indicated by double-headed red arrows. For clarity, only hydrogen atoms H3 and H12A have been included.

Hirshfeld surface analysis  

The Hirshfeld surfaces for (I) and (II) mapped over d norm were calculated using CrystalExplorer 17 (Turner et al., 2017) with the default setting of arbitrary units range. The characteristic bright-red spots near atoms H3, H18A, N1 and F1 (Fig. 6) confirm the previously mentioned C3—H3⋯N1i and C18—H18A⋯F1ii [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, y − Inline graphic, −z + Inline graphic] inter­atomic contacts in the crystal packing of (I). As expected, the same bright-red spots are observed near atoms H3 and N1 on the Hirshfeld surface of (II); see Fig. 7. The Hirshfeld surface mapped over the shape-index property elegantly illustrates the π–π stacking and the C—H⋯π inter­actions observed in the crystal packing of (II). Two views are presented in Fig. 8. The π–π stacking between inversion-related 4-chloro­phenyl rings (C1–C6) is indicated by the appearance of small blue regions surrounding a bright-red triangle within the six-membered ring (Fig. 8 a), while the C12—H12A⋯π(C1–C6)iii inter­action [symmetry code: (iii) x + Inline graphic, −y + Inline graphic, z + Inline graphic] appears as a large red region within the ring (Fig. 8 b).

Figure 6.

Figure 6

A view of the Hirshfeld surface mapped over d norm for compound (I) over the range −0.138 to 1.364 arbitrary units.

Figure 7.

Figure 7

A view of the Hirshfeld surface mapped over d norm for compound (II) over the range −0.203 to 1.273 arbitrary units.

Figure 8.

Figure 8

Two views, (a) and (b), of the Hirshfeld surface mapped over the shape-index property for compound (II).

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.40, February 2019; Groom et al., 2016) for the substructure 2-(adamantan-1-yl)-1,3,4-oxa­diazole gave five hits. The crystal structures of three very similar compounds were reported in the last decade, namely 2-(adamantan-1-yl)-5-(4-nitro­phen­yl)-1,3,4-oxa­diazole (CSD refcode LAPVOP; El-Emam et al., 2012), which has an NO2 group on the phenyl ring (in the para position to the oxa­diazole ring), 2-(adamantan-1-yl)-5-(4-bromo­phen­yl)-1,3,4-oxa­diazole (SOSXIJ; Alzoman et al. 2014), which has a Br atom on the phenyl ring (same para position) and 2-(adamantan-1-yl)-5-(3-fluoro­phen­yl)-1,3,4-oxa­diazole (SIKKAA; Khan et al., 2012), with a 3-fluoro­phenyl substituent at position 5 on the oxa­diazole ring. Two more recently reported structures are (5-(adamantan-1-yl)-1,3,4-oxa­diazole-2-thiol­ato)tri­phenyl­phosphinegold(I) (AZECAL; Garcia et al., 2016) and 2-(adamantan-1-yl)-5-[2-(2-methyl­phen­yl)-1,3-thia­zol-4-yl]-1,3,4-oxa­diazole (XARGEE­01; Khan et al., 2016).

The reduced cell of SOSXIJ indicates that it is isotypic with compound (II). Compound LAPVOP resides on a mirror plane, while compound SIKKAA crystallizes with two independent mol­ecules in the asymmetric unit. The geometrical parameters of the oxa­diazole rings are similar to those reported above for the title compounds. The 4-substituted phenyl rings are inclined to the oxa­diazole ring by 0.0° in LAPVOP (as it lies in a mirror plane), 3.01 and 3.31° in the two independent mol­ecules of SIKKAA and 10.44° in SOSXIJ. In the title compounds the corresponding dihedral angle is 20.8 (2)° for compound (I) and 9.5 (1)° for compound (II).

Synthesis and crystallization  

Compounds (I) and (II) were synthesized via condensation of adamantane-1-carb­oxy­lic acid with 4-fluoro­benzohydrazide, or 4-chloro­benzohydrazide in the presence of phospho­rus oxychloride, as described previously (Kadi et al., 2007). Colourless plate-like crystals of compound (I) and colourless needle-like crystals of compound (II) were obtained by slow evaporation of CHCl3:EtOH (1:1 v:v) solutions at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.95–1.00 Å with U iso = 1.2U eq(C).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C18H19FN2O C18H19ClN2O
M r 298.35 314.80
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 160 160
a, b, c (Å) 18.2525 (4), 7.07855 (16), 11.2207 (2) 13.08241 (19), 6.49259 (9), 18.5129 (3)
β (°) 98.556 (2) 105.5609 (16)
V3) 1433.59 (6) 1514.83 (4)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.78 2.25
Crystal size (mm) 0.18 × 0.15 × 0.02 0.33 × 0.12 × 0.08
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, Pilatus 200K XtaLAB Synergy, Dualflex, Pilatus 200K
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2019) Analytical (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.921, 0.990 0.642, 0.870
No. of measured, independent and observed [I > 2σ(I)] reflections 13058, 2903, 2578 14318, 3217, 3052
R int 0.030 0.023
(sin θ/λ)max−1) 0.625 0.636
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.080, 0.233, 1.23 0.061, 0.167, 1.08
No. of reflections 2903 3217
No. of parameters 199 199
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.38 0.81, −0.26

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), Mercury (Macrae et al., 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989019004651/su5492sup1.cif

e-75-00611-sup1.cif (978.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004651/su5492Isup4.hkl

e-75-00611-Isup4.hkl (232.2KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019004651/su5492IIsup5.hkl

e-75-00611-IIsup5.hkl (257KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004651/su5492Isup4.cml

Supporting information file. DOI: 10.1107/S2056989019004651/su5492IIsup5.cml

CCDC references: 1908204, 1908203

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Crystal data

C18H19FN2O F(000) = 632
Mr = 298.35 Dx = 1.382 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 18.2525 (4) Å Cell parameters from 7588 reflections
b = 7.07855 (16) Å θ = 4.9–78.5°
c = 11.2207 (2) Å µ = 0.78 mm1
β = 98.556 (2)° T = 160 K
V = 1433.59 (6) Å3 Plate, colourless
Z = 4 0.18 × 0.15 × 0.02 mm

2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Data collection

XtaLAB Synergy, Dualflex, Pilatus 200K diffractometer 2903 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 2578 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.030
Detector resolution: 5.8140 pixels mm-1 θmax = 74.5°, θmin = 4.9°
ω scans h = −22→22
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2019) k = −8→8
Tmin = 0.921, Tmax = 0.990 l = −11→14
13058 measured reflections

2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080 H-atom parameters constrained
wR(F2) = 0.233 w = 1/[σ2(Fo2) + (0.0572P)2 + 6.0123P] where P = (Fo2 + 2Fc2)/3
S = 1.23 (Δ/σ)max < 0.001
2903 reflections Δρmax = 0.47 e Å3
199 parameters Δρmin = −0.38 e Å3
0 restraints

2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6397 (2) 0.5834 (6) 0.8751 (3) 0.0220 (8)
C2 0.6287 (2) 0.5485 (6) 0.7528 (3) 0.0218 (8)
H2 0.669009 0.519350 0.711237 0.026*
C3 0.5568 (2) 0.5574 (5) 0.6928 (3) 0.0189 (7)
H3 0.547397 0.536452 0.608242 0.023*
C4 0.4979 (2) 0.5973 (5) 0.7558 (3) 0.0178 (7)
C5 0.5114 (2) 0.6345 (5) 0.8784 (3) 0.0201 (8)
H5 0.471482 0.664740 0.920495 0.024*
C6 0.5836 (2) 0.6276 (6) 0.9397 (3) 0.0234 (8)
H6 0.593767 0.652639 1.023700 0.028*
C7 0.42268 (19) 0.5993 (5) 0.6869 (3) 0.0188 (7)
C8 0.3054 (2) 0.5755 (5) 0.6523 (3) 0.0194 (8)
C9 0.22741 (19) 0.5532 (5) 0.6776 (3) 0.0188 (8)
C10 0.2034 (2) 0.7286 (6) 0.7450 (4) 0.0229 (8)
H10A 0.235907 0.742685 0.823383 0.027*
H10B 0.208148 0.843843 0.696746 0.027*
C11 0.1226 (2) 0.7041 (6) 0.7656 (4) 0.0249 (9)
H11 0.107002 0.816945 0.809285 0.030*
C12 0.0729 (2) 0.6855 (7) 0.6436 (4) 0.0280 (9)
H12A 0.020522 0.672769 0.656054 0.034*
H12B 0.077248 0.800506 0.594894 0.034*
C13 0.0958 (2) 0.5124 (6) 0.5766 (3) 0.0261 (9)
H13 0.063156 0.501154 0.496999 0.031*
C14 0.1769 (2) 0.5336 (6) 0.5561 (3) 0.0241 (8)
H14A 0.191844 0.421626 0.512660 0.029*
H14B 0.181982 0.646678 0.506007 0.029*
C15 0.1155 (2) 0.5267 (7) 0.8408 (4) 0.0282 (9)
H15A 0.147857 0.538200 0.919522 0.034*
H15B 0.063748 0.512872 0.855987 0.034*
C16 0.1378 (2) 0.3532 (6) 0.7743 (4) 0.0264 (9)
H16 0.132697 0.237763 0.823688 0.032*
C17 0.0881 (2) 0.3342 (6) 0.6516 (4) 0.0282 (9)
H17A 0.102861 0.221647 0.608557 0.034*
H17B 0.035805 0.318109 0.663834 0.034*
C18 0.2193 (2) 0.3748 (6) 0.7544 (4) 0.0242 (8)
H18A 0.234847 0.261751 0.712615 0.029*
H18B 0.251650 0.386012 0.833140 0.029*
F1 0.71024 (12) 0.5714 (4) 0.9363 (2) 0.0321 (6)
N1 0.40489 (17) 0.6139 (5) 0.5727 (3) 0.0237 (7)
N2 0.32721 (18) 0.5975 (5) 0.5493 (3) 0.0245 (7)
O1 0.36296 (13) 0.5751 (4) 0.7457 (2) 0.0192 (6)

2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0185 (18) 0.0220 (19) 0.0239 (19) −0.0016 (15) −0.0015 (14) 0.0036 (15)
C2 0.0179 (17) 0.0239 (19) 0.0245 (19) −0.0014 (15) 0.0059 (14) 0.0014 (15)
C3 0.0218 (18) 0.0180 (17) 0.0177 (17) 0.0000 (14) 0.0055 (14) −0.0012 (13)
C4 0.0152 (16) 0.0155 (16) 0.0232 (17) −0.0024 (13) 0.0048 (13) 0.0008 (14)
C5 0.0199 (17) 0.0201 (18) 0.0217 (18) 0.0007 (14) 0.0083 (14) 0.0003 (14)
C6 0.028 (2) 0.0220 (19) 0.0204 (18) −0.0023 (16) 0.0029 (15) −0.0004 (15)
C7 0.0170 (17) 0.0187 (17) 0.0220 (18) −0.0004 (14) 0.0074 (14) 0.0000 (14)
C8 0.0182 (17) 0.0217 (19) 0.0178 (17) 0.0005 (14) 0.0014 (13) −0.0002 (14)
C9 0.0163 (17) 0.0260 (19) 0.0141 (16) 0.0021 (14) 0.0015 (13) 0.0001 (14)
C10 0.0163 (18) 0.027 (2) 0.0257 (19) −0.0027 (15) 0.0034 (14) −0.0046 (16)
C11 0.0153 (17) 0.034 (2) 0.027 (2) 0.0003 (16) 0.0061 (14) −0.0057 (17)
C12 0.0159 (18) 0.039 (2) 0.029 (2) 0.0032 (17) 0.0029 (15) 0.0023 (18)
C13 0.0170 (18) 0.041 (2) 0.0191 (18) −0.0018 (16) −0.0021 (14) −0.0039 (17)
C14 0.0179 (18) 0.038 (2) 0.0161 (17) −0.0002 (16) 0.0018 (14) −0.0001 (16)
C15 0.0197 (18) 0.045 (3) 0.0201 (19) −0.0023 (17) 0.0047 (14) −0.0018 (18)
C16 0.0197 (18) 0.031 (2) 0.030 (2) −0.0026 (16) 0.0057 (15) 0.0047 (17)
C17 0.0205 (19) 0.034 (2) 0.030 (2) −0.0060 (17) 0.0046 (16) −0.0061 (18)
C18 0.0211 (18) 0.029 (2) 0.0233 (19) 0.0043 (16) 0.0051 (15) 0.0048 (16)
F1 0.0198 (11) 0.0465 (16) 0.0278 (12) −0.0006 (10) −0.0032 (9) 0.0031 (11)
N1 0.0194 (15) 0.0318 (18) 0.0207 (16) 0.0022 (13) 0.0061 (12) 0.0008 (14)
N2 0.0202 (16) 0.0366 (19) 0.0171 (15) 0.0020 (14) 0.0044 (12) 0.0013 (14)
O1 0.0148 (12) 0.0288 (14) 0.0146 (12) −0.0007 (10) 0.0036 (9) −0.0009 (10)

2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Geometric parameters (Å, º)

C1—C2 1.380 (5) C11—H11 1.0000
C1—C6 1.376 (5) C11—C12 1.532 (6)
C1—F1 1.369 (4) C11—C15 1.529 (6)
C2—H2 0.9500 C12—H12A 0.9900
C2—C3 1.384 (5) C12—H12B 0.9900
C3—H3 0.9500 C12—C13 1.528 (6)
C3—C4 1.400 (5) C13—H13 1.0000
C4—C5 1.386 (5) C13—C14 1.539 (5)
C4—C7 1.472 (5) C13—C17 1.535 (6)
C5—H5 0.9500 C14—H14A 0.9900
C5—C6 1.394 (5) C14—H14B 0.9900
C6—H6 0.9500 C15—H15A 0.9900
C7—N1 1.279 (5) C15—H15B 0.9900
C7—O1 1.366 (4) C15—C16 1.523 (6)
C8—C9 1.500 (5) C16—H16 1.0000
C8—N2 1.288 (5) C16—C17 1.538 (6)
C8—O1 1.369 (4) C16—C18 1.544 (5)
C9—C10 1.550 (5) C17—H17A 0.9900
C9—C14 1.534 (5) C17—H17B 0.9900
C9—C18 1.548 (5) C18—H18A 0.9900
C10—H10A 0.9900 C18—H18B 0.9900
C10—H10B 0.9900 N1—N2 1.408 (4)
C10—C11 1.537 (5)
C6—C1—C2 123.8 (4) H12A—C12—H12B 108.2
F1—C1—C2 118.3 (3) C13—C12—C11 109.8 (3)
F1—C1—C6 117.9 (3) C13—C12—H12A 109.7
C1—C2—H2 121.2 C13—C12—H12B 109.7
C1—C2—C3 117.5 (3) C12—C13—H13 109.5
C3—C2—H2 121.2 C12—C13—C14 109.6 (3)
C2—C3—H3 119.8 C12—C13—C17 109.6 (3)
C2—C3—C4 120.5 (3) C14—C13—H13 109.5
C4—C3—H3 119.8 C17—C13—H13 109.5
C3—C4—C7 117.6 (3) C17—C13—C14 109.3 (3)
C5—C4—C3 120.2 (3) C9—C14—C13 109.9 (3)
C5—C4—C7 122.2 (3) C9—C14—H14A 109.7
C4—C5—H5 120.1 C9—C14—H14B 109.7
C4—C5—C6 119.9 (3) C13—C14—H14A 109.7
C6—C5—H5 120.1 C13—C14—H14B 109.7
C1—C6—C5 118.1 (3) H14A—C14—H14B 108.2
C1—C6—H6 121.0 C11—C15—H15A 109.7
C5—C6—H6 121.0 C11—C15—H15B 109.7
N1—C7—C4 127.2 (3) H15A—C15—H15B 108.2
N1—C7—O1 113.1 (3) C16—C15—C11 110.0 (3)
O1—C7—C4 119.7 (3) C16—C15—H15A 109.7
N2—C8—C9 127.7 (3) C16—C15—H15B 109.7
N2—C8—O1 112.5 (3) C15—C16—H16 109.4
O1—C8—C9 119.8 (3) C15—C16—C17 110.1 (3)
C8—C9—C10 110.7 (3) C15—C16—C18 108.9 (3)
C8—C9—C14 107.7 (3) C17—C16—H16 109.4
C8—C9—C18 111.2 (3) C17—C16—C18 109.5 (3)
C14—C9—C10 109.3 (3) C18—C16—H16 109.4
C14—C9—C18 109.1 (3) C13—C17—C16 109.2 (3)
C18—C9—C10 108.9 (3) C13—C17—H17A 109.8
C9—C10—H10A 109.8 C13—C17—H17B 109.8
C9—C10—H10B 109.8 C16—C17—H17A 109.8
H10A—C10—H10B 108.3 C16—C17—H17B 109.8
C11—C10—C9 109.3 (3) H17A—C17—H17B 108.3
C11—C10—H10A 109.8 C9—C18—H18A 109.8
C11—C10—H10B 109.8 C9—C18—H18B 109.8
C10—C11—H11 109.4 C16—C18—C9 109.6 (3)
C12—C11—C10 109.2 (3) C16—C18—H18A 109.8
C12—C11—H11 109.4 C16—C18—H18B 109.8
C15—C11—C10 109.7 (3) H18A—C18—H18B 108.2
C15—C11—H11 109.4 C7—N1—N2 106.2 (3)
C15—C11—C12 109.6 (3) C8—N2—N1 106.3 (3)
C11—C12—H12A 109.7 C7—O1—C8 102.0 (3)
C11—C12—H12B 109.7
C1—C2—C3—C4 −1.1 (6) C11—C15—C16—C17 −59.2 (4)
C2—C1—C6—C5 1.1 (6) C11—C15—C16—C18 60.8 (4)
C2—C3—C4—C5 2.2 (6) C12—C11—C15—C16 59.0 (4)
C2—C3—C4—C7 −178.3 (3) C12—C13—C14—C9 59.4 (4)
C3—C4—C5—C6 −1.6 (6) C12—C13—C17—C16 −59.5 (4)
C3—C4—C7—N1 −18.2 (6) C14—C9—C10—C11 59.8 (4)
C3—C4—C7—O1 158.6 (3) C14—C9—C18—C16 −59.3 (4)
C4—C5—C6—C1 0.0 (6) C14—C13—C17—C16 60.6 (4)
C4—C7—N1—N2 176.5 (4) C15—C11—C12—C13 −59.5 (4)
C4—C7—O1—C8 −176.9 (3) C15—C16—C17—C13 59.3 (4)
C5—C4—C7—N1 161.3 (4) C15—C16—C18—C9 −60.5 (4)
C5—C4—C7—O1 −22.0 (5) C17—C13—C14—C9 −60.7 (4)
C6—C1—C2—C3 −0.5 (6) C17—C16—C18—C9 59.9 (4)
C7—C4—C5—C6 178.9 (4) C18—C9—C10—C11 −59.3 (4)
C7—N1—N2—C8 0.4 (4) C18—C9—C14—C13 59.8 (4)
C8—C9—C10—C11 178.1 (3) C18—C16—C17—C13 −60.5 (4)
C8—C9—C14—C13 −179.4 (3) F1—C1—C2—C3 178.7 (3)
C8—C9—C18—C16 −177.9 (3) F1—C1—C6—C5 −178.2 (3)
C9—C8—N2—N1 179.3 (4) N1—C7—O1—C8 0.3 (4)
C9—C8—O1—C7 −179.6 (3) N2—C8—C9—C10 −111.7 (4)
C9—C10—C11—C12 −60.3 (4) N2—C8—C9—C14 7.7 (6)
C9—C10—C11—C15 59.8 (4) N2—C8—C9—C18 127.1 (4)
C10—C9—C14—C13 −59.2 (4) N2—C8—O1—C7 −0.1 (4)
C10—C9—C18—C16 59.8 (4) O1—C7—N1—N2 −0.4 (4)
C10—C11—C12—C13 60.7 (4) O1—C8—C9—C10 67.8 (4)
C10—C11—C15—C16 −60.9 (4) O1—C8—C9—C14 −172.9 (3)
C11—C12—C13—C14 −60.0 (4) O1—C8—C9—C18 −53.4 (4)
C11—C12—C13—C17 60.0 (4) O1—C8—N2—N1 −0.2 (4)

2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C3—H3···N1i 0.95 2.56 3.383 (5) 146
C18—H18A···F1ii 0.99 2.47 3.415 (5) 159

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+3/2.

2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Crystal data

C18H19ClN2O F(000) = 664
Mr = 314.80 Dx = 1.380 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 13.08241 (19) Å Cell parameters from 11758 reflections
b = 6.49259 (9) Å θ = 3.7–79.0°
c = 18.5129 (3) Å µ = 2.25 mm1
β = 105.5609 (16)° T = 160 K
V = 1514.83 (4) Å3 Needle, colourless
Z = 4 0.33 × 0.12 × 0.08 mm

2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Data collection

XtaLAB Synergy, Dualflex, Pilatus 200K diffractometer 3217 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 3052 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.023
Detector resolution: 5.8140 pixels mm-1 θmax = 78.9°, θmin = 3.7°
ω scans h = −16→16
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2019) k = −7→8
Tmin = 0.642, Tmax = 0.870 l = −23→23
14318 measured reflections

2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061 H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.094P)2 + 1.5575P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3217 reflections Δρmax = 0.81 e Å3
199 parameters Δρmin = −0.26 e Å3
0 restraints

2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.42626 (17) 0.6044 (4) 0.35491 (12) 0.0302 (5)
C2 0.40263 (17) 0.4056 (4) 0.37203 (12) 0.0317 (5)
H2 0.333320 0.351478 0.352048 0.038*
C3 0.48137 (17) 0.2855 (4) 0.41883 (12) 0.0279 (5)
H3 0.466239 0.148920 0.431206 0.034*
C4 0.58338 (16) 0.3685 (3) 0.44753 (11) 0.0254 (4)
C5 0.60437 (17) 0.5705 (3) 0.43076 (12) 0.0280 (5)
H5 0.672884 0.627166 0.451644 0.034*
C6 0.52611 (17) 0.6897 (4) 0.38380 (13) 0.0302 (5)
H6 0.540617 0.826921 0.371688 0.036*
C7 0.66623 (17) 0.2413 (3) 0.49555 (12) 0.0229 (4)
C8 0.81754 (16) 0.1694 (3) 0.56872 (11) 0.0238 (4)
C9 0.92972 (16) 0.2106 (3) 0.61176 (11) 0.0219 (4)
C10 0.93691 (16) 0.3930 (4) 0.66595 (12) 0.0282 (5)
H10A 0.897237 0.360738 0.703168 0.034*
H10B 0.904931 0.517124 0.637722 0.034*
C11 1.05425 (18) 0.4345 (4) 0.70636 (13) 0.0314 (5)
H11 1.059032 0.553003 0.741610 0.038*
C12 1.1016 (2) 0.2426 (4) 0.75071 (13) 0.0333 (5)
H12A 1.062078 0.209782 0.787976 0.040*
H12B 1.176566 0.268774 0.778004 0.040*
C13 1.09521 (18) 0.0597 (4) 0.69691 (13) 0.0319 (5)
H13 1.126743 −0.065180 0.726092 0.038*
C14 0.97843 (17) 0.0175 (3) 0.65594 (12) 0.0285 (5)
H14A 0.938650 −0.018439 0.692756 0.034*
H14B 0.973710 −0.100189 0.621181 0.034*
C15 1.11625 (17) 0.4853 (3) 0.64960 (14) 0.0319 (5)
H15A 1.191412 0.512639 0.676075 0.038*
H15B 1.086479 0.610423 0.621095 0.038*
C16 1.10922 (16) 0.3031 (4) 0.59555 (13) 0.0284 (5)
H16 1.149192 0.336599 0.557972 0.034*
C17 1.15702 (17) 0.1113 (4) 0.63970 (14) 0.0330 (5)
H17A 1.232475 0.136605 0.665944 0.040*
H17B 1.153464 −0.006047 0.604985 0.040*
C18 0.99249 (17) 0.2645 (3) 0.55507 (12) 0.0231 (4)
H18A 0.987062 0.149794 0.518988 0.028*
H18B 0.961848 0.389182 0.526636 0.028*
Cl1 0.32838 (4) 0.75434 (10) 0.29606 (3) 0.0384 (2)
N1 0.66468 (15) 0.0461 (3) 0.50869 (12) 0.0348 (5)
N2 0.76544 (15) −0.0012 (3) 0.55744 (12) 0.0330 (4)
O1 0.76044 (11) 0.3299 (2) 0.53130 (8) 0.0254 (3)

2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0236 (10) 0.0423 (13) 0.0245 (10) 0.0028 (9) 0.0060 (8) 0.0015 (9)
C2 0.0215 (9) 0.0424 (13) 0.0291 (10) −0.0040 (9) 0.0036 (8) −0.0017 (9)
C3 0.0218 (10) 0.0354 (11) 0.0263 (10) −0.0056 (8) 0.0060 (8) −0.0019 (8)
C4 0.0218 (9) 0.0291 (11) 0.0248 (9) −0.0027 (8) 0.0054 (7) −0.0014 (8)
C5 0.0232 (9) 0.0290 (11) 0.0307 (10) −0.0028 (8) 0.0050 (8) −0.0010 (8)
C6 0.0256 (10) 0.0341 (11) 0.0310 (11) −0.0006 (9) 0.0077 (8) 0.0012 (9)
C7 0.0186 (9) 0.0250 (10) 0.0244 (10) −0.0048 (7) 0.0045 (8) −0.0021 (7)
C8 0.0236 (9) 0.0217 (10) 0.0263 (9) −0.0011 (8) 0.0069 (8) −0.0003 (8)
C9 0.0200 (9) 0.0223 (9) 0.0233 (9) −0.0016 (7) 0.0055 (7) −0.0007 (7)
C10 0.0248 (10) 0.0286 (11) 0.0303 (10) 0.0010 (8) 0.0056 (8) −0.0073 (8)
C11 0.0292 (11) 0.0290 (11) 0.0311 (11) −0.0009 (9) −0.0001 (8) −0.0078 (9)
C12 0.0294 (11) 0.0431 (14) 0.0233 (10) −0.0022 (9) −0.0001 (9) 0.0021 (8)
C13 0.0289 (11) 0.0258 (11) 0.0349 (11) 0.0003 (9) −0.0018 (9) 0.0083 (9)
C14 0.0285 (10) 0.0229 (10) 0.0314 (10) −0.0029 (8) 0.0034 (8) 0.0052 (8)
C15 0.0238 (10) 0.0234 (10) 0.0432 (12) −0.0052 (8) −0.0004 (9) 0.0036 (9)
C16 0.0205 (10) 0.0332 (11) 0.0322 (11) −0.0003 (8) 0.0081 (8) 0.0056 (9)
C17 0.0251 (10) 0.0296 (11) 0.0413 (12) 0.0057 (9) 0.0036 (9) 0.0000 (9)
C18 0.0213 (9) 0.0254 (10) 0.0225 (9) −0.0001 (7) 0.0059 (8) 0.0018 (7)
Cl1 0.0242 (3) 0.0543 (4) 0.0342 (3) 0.0096 (2) 0.0034 (2) 0.0102 (2)
N1 0.0268 (9) 0.0279 (10) 0.0437 (11) −0.0052 (7) −0.0007 (8) 0.0024 (8)
N2 0.0258 (9) 0.0255 (9) 0.0426 (11) −0.0055 (7) 0.0000 (8) 0.0036 (8)
O1 0.0203 (7) 0.0236 (7) 0.0300 (7) −0.0035 (6) 0.0030 (6) 0.0005 (6)

2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Geometric parameters (Å, º)

C1—C2 1.384 (4) C11—H11 1.0000
C1—C6 1.387 (3) C11—C12 1.529 (3)
C1—Cl1 1.740 (2) C11—C15 1.526 (3)
C2—H2 0.9500 C12—H12A 0.9900
C2—C3 1.393 (3) C12—H12B 0.9900
C3—H3 0.9500 C12—C13 1.538 (3)
C3—C4 1.405 (3) C13—H13 1.0000
C4—C5 1.391 (3) C13—C14 1.537 (3)
C4—C7 1.460 (3) C13—C17 1.532 (3)
C5—H5 0.9500 C14—H14A 0.9900
C5—C6 1.388 (3) C14—H14B 0.9900
C6—H6 0.9500 C15—H15A 0.9900
C7—N1 1.292 (3) C15—H15B 0.9900
C7—O1 1.360 (2) C15—C16 1.536 (3)
C8—C9 1.494 (3) C16—H16 1.0000
C8—N2 1.288 (3) C16—C17 1.528 (3)
C8—O1 1.359 (3) C16—C18 1.531 (3)
C9—C10 1.538 (3) C17—H17A 0.9900
C9—C14 1.539 (3) C17—H17B 0.9900
C9—C18 1.536 (3) C18—H18A 0.9900
C10—H10A 0.9900 C18—H18B 0.9900
C10—H10B 0.9900 N1—N2 1.417 (3)
C10—C11 1.540 (3)
C2—C1—C6 122.0 (2) C11—C12—C13 109.73 (18)
C2—C1—Cl1 119.56 (17) H12A—C12—H12B 108.2
C6—C1—Cl1 118.48 (19) C13—C12—H12A 109.7
C1—C2—H2 120.3 C13—C12—H12B 109.7
C1—C2—C3 119.4 (2) C12—C13—H13 109.5
C3—C2—H2 120.3 C14—C13—C12 109.36 (19)
C2—C3—H3 120.3 C14—C13—H13 109.5
C2—C3—C4 119.3 (2) C17—C13—C12 109.38 (19)
C4—C3—H3 120.3 C17—C13—H13 109.5
C3—C4—C7 119.2 (2) C17—C13—C14 109.69 (18)
C5—C4—C3 120.1 (2) C9—C14—H14A 109.8
C5—C4—C7 120.68 (19) C9—C14—H14B 109.8
C4—C5—H5 119.7 C13—C14—C9 109.39 (17)
C6—C5—C4 120.6 (2) C13—C14—H14A 109.8
C6—C5—H5 119.7 C13—C14—H14B 109.8
C1—C6—C5 118.6 (2) H14A—C14—H14B 108.2
C1—C6—H6 120.7 C11—C15—H15A 109.8
C5—C6—H6 120.7 C11—C15—H15B 109.8
N1—C7—C4 128.6 (2) C11—C15—C16 109.40 (18)
N1—C7—O1 112.39 (19) H15A—C15—H15B 108.2
O1—C7—C4 119.03 (17) C16—C15—H15A 109.8
N2—C8—C9 129.94 (19) C16—C15—H15B 109.8
N2—C8—O1 112.47 (18) C15—C16—H16 109.5
O1—C8—C9 117.48 (17) C17—C16—C15 109.55 (18)
C8—C9—C10 111.42 (17) C17—C16—H16 109.5
C8—C9—C14 110.16 (17) C17—C16—C18 109.88 (18)
C8—C9—C18 107.76 (17) C18—C16—C15 108.81 (17)
C10—C9—C14 109.67 (17) C18—C16—H16 109.5
C18—C9—C10 108.65 (17) C13—C17—H17A 109.8
C18—C9—C14 109.12 (17) C13—C17—H17B 109.8
C9—C10—H10A 109.8 C16—C17—C13 109.39 (18)
C9—C10—H10B 109.8 C16—C17—H17A 109.8
C9—C10—C11 109.27 (17) C16—C17—H17B 109.8
H10A—C10—H10B 108.3 H17A—C17—H17B 108.2
C11—C10—H10A 109.8 C9—C18—H18A 109.6
C11—C10—H10B 109.8 C9—C18—H18B 109.6
C10—C11—H11 109.3 C16—C18—C9 110.41 (17)
C12—C11—C10 109.02 (19) C16—C18—H18A 109.6
C12—C11—H11 109.3 C16—C18—H18B 109.6
C15—C11—C10 110.36 (18) H18A—C18—H18B 108.1
C15—C11—H11 109.3 C7—N1—N2 105.90 (18)
C15—C11—C12 109.41 (19) C8—N2—N1 106.14 (18)
C11—C12—H12A 109.7 C8—O1—C7 103.10 (16)
C11—C12—H12B 109.7

2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C3—H3···N1i 0.95 2.61 3.386 (3) 139
C12—H12A···Cg1ii 0.99 2.73 3.680 (3) 160

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1/2, −y+1/2, z+1/2.

Funding Statement

This work was funded by Princess Nourah Bint Abdulrahman University grant RGP-1438–0010.

References

  1. Al-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). Drug Des. Dev. Ther. 8, 505–518. [DOI] [PMC free article] [PubMed]
  2. Al-Wahaibi, L. H., Hassan, H. M., Abo-Kamar, A. M., Ghabbour, H. A. & El-Emam, A. A. (2017). Molecules, 22, 710, 1–12. [DOI] [PMC free article] [PubMed]
  3. Alzoman, N. Z., El-Emam, A. A., Ghabbour, H. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o1231–o1232. [DOI] [PMC free article] [PubMed]
  4. Augeri, D. J., Robl, J. A., Betebenner, D. A., Magnin, D. R., Khanna, A., Robertson, J. G., Wang, A., Simpkins, L. M., Taunk, P., Huang, Q., Han, S., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G. E., Egan, D. M., Marcinkeviciene, J., Chang, S. Y., Biller, S. A., Kirby, M. S., Parker, R. A. & Hamann, L. G. (2005). J. Med. Chem. 48, 5025–5037. [DOI] [PubMed]
  5. Balzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303–311. [DOI] [PMC free article] [PubMed]
  6. Bansal, S., Bala, M., Suthar, S. K., Choudhary, S., Bhattacharya, S., Bhardwaj, V., Singla, S. & Joseph, A. (2014). Eur. J. Med. Chem. 80, 167–174. [DOI] [PubMed]
  7. Burstein, M. E., Serbin, A. V., Khakhulina, T. V., Alymova, I. V., Stotskaya, L. L., Bogdan, O. P., Manukchina, E. E., Jdanov, V. V., Sharova, N. K. & Bukrinskaya, A. G. (1999). Antiviral Res. 41, 135–144. [DOI] [PubMed]
  8. Davies, W. L., Grunert, R. R., Haff, R. F., Mcgahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C. & Hoffmann, C. E. (1964). Science, 144, 862–863. [DOI] [PubMed]
  9. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  10. Dong, Y., Wittlin, S., Sriraghavan, K., Chollet, J., Charman, S. A., Charman, W. N., Scheurer, C., Urwyler, H., Santo Tomas, J., Snyder, C., Creek, D. J., Morizzi, J., Koltun, M., Matile, H., Wang, X., Padmanilayam, M., Tang, Y., Dorn, A., Brun, R. & Vennerstrom, J. L. (2010). J. Med. Chem. 53, 481–491. [DOI] [PubMed]
  11. El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. [DOI] [PubMed]
  12. El-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96–102. [DOI] [PubMed]
  13. El-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795. [DOI] [PMC free article] [PubMed]
  14. Garcia, A., Machado, R. C., Grazul, R. M., Lopes, M. T. P., Corrêa, C. C., Dos Santos, H. F., de Almeida, M. V. & Silva, H. (2016). J. Biol. Inorg. Chem. 21, 275–292. [DOI] [PubMed]
  15. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  16. Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. [DOI] [PubMed]
  17. Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242. [DOI] [PubMed]
  18. Khan, M., Akhtar, T., Al-Masoudi, N. A., Stoeckli-Evans, H. & Hameed, S. (2012). Med. Chem. 8, 1190–1197. [DOI] [PubMed]
  19. Khan, M., Hameed, S., Akhtar, T., Al-Masoudi, N. A., Al-Masoudi, W. A., Jones, P. G. & Pannecouque, C. (2016). Med. Chem. Res. 25, 2399–2409.
  20. Lamoureux, G. & Artavia, G. (2010). Curr. Med. Chem. 17, 2967–2978. [DOI] [PubMed]
  21. Liu, J., Obando, D., Liao, V., Lifa, T. & Codd, R. (2011). Eur. J. Med. Chem. 46, 1949–1963. [DOI] [PubMed]
  22. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  23. Ogata, M., Atobe, H., Kushida, H. & Yamamoto, K. (1971). J. Antibiot. 24, 443–451. [DOI] [PubMed]
  24. Omar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A. & Glamočlija, J. (2010). Bioorg. Med. Chem. 18, 426–432. [DOI] [PubMed]
  25. Prakash, O., Kumar, M., Kumar, R., Sharma, C. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 4252–4257. [DOI] [PubMed]
  26. Protopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968–974. [DOI] [PubMed]
  27. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.
  28. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  29. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  30. Sun, S. Y., Yue, P., Chen, X., Hong, W. K. & Lotan, R. (2002). Cancer Res. 62, 2430–2436. [PubMed]
  31. Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094.
  32. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  33. Villhauer, E. B., Brinkman, J. A., Naderi, G. B., Burkey, B. F., Dunning, B. E., Prasad, K., Mangold, B. L., Russell, M. E. & Hughes, T. E. (2003). J. Med. Chem. 46, 2774–2789. [DOI] [PubMed]
  34. Wanka, L., Iqbal, K. & Schreiner, P. R. (2013). Chem. Rev. 113, 3516–3604. [DOI] [PMC free article] [PubMed]
  35. Wu, W., Chen, Q., Tai, A., Jiang, G. & Ouyang, G. (2015). Bioorg. Med. Chem. Lett. 25, 2243–2246. [DOI] [PubMed]
  36. Zhang, K., Wang, P., Xuan, L.-N., Fu, X.-Y., Jing, F., Li, S., Liu, Y.-M. & Chen, B.-Q. (2014). Bioorg. Med. Chem. Lett. 24, 5154–5156. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989019004651/su5492sup1.cif

e-75-00611-sup1.cif (978.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004651/su5492Isup4.hkl

e-75-00611-Isup4.hkl (232.2KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019004651/su5492IIsup5.hkl

e-75-00611-IIsup5.hkl (257KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004651/su5492Isup4.cml

Supporting information file. DOI: 10.1107/S2056989019004651/su5492IIsup5.cml

CCDC references: 1908204, 1908203

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES