The title adamantane-oxadiazole hybrid compounds are built up from an adamantane unit and a halogenophenyl ring, [X = F (I), Cl (II)], in position 5 on the central 1,3,4-oxadiazole unit.
Keywords: crystal structure; adamantyl derivatives; 1,3,4-oxadiazoles; C—H⋯N hydrogen bonds; C—H⋯F interactions; Hirshfeld surface analysis.
Abstract
The crystal structures of the title adamantane-oxadiazole hybrid compounds, C18H19FN2O (I) and C18H19ClN2O (II), are built up from an adamantane unit and a halogenophenyl ring, [X = F (I), Cl (II)], in position 5 on the central 1,3,4-oxadiazole unit. The molecular structures are very similar, only the relative orientation of the halogenophenyl ring in comparison with the central five-membered ring differs slightly. In the crystals of both compounds, molecules are linked by pairs of C—H⋯N hydrogen bonds, forming inversion dimers with R
2
2(12) ring motifs. In (I) the dimers are connected by C—H⋯F interactions, forming slabs lying parallel to the bc plane. In (II), the dimers are linked by C—H⋯π and offset π–π interactions [interplanar distance = 3.4039 (9) Å], forming layers parallel to (10
).
Chemical context
Considerable attention has been devoted to adamantane derivatives, which have long been known for their diverse biological properties (Liu et al., 2011 ▸; Lamoureux & Artavia, 2010 ▸). In view of the pronounced lipophilicity of the adamantane cage, it has been observed that adamantyl-bearing compounds are characterized by high therapeutic indices (Wanka et al., 2013 ▸). Sixty years ago, the first adamantane-based drug, amantadine, was discovered to be an efficient therapy for the treatment of Influenza A infection (Davies et al., 1964 ▸; Togo et al., 1968 ▸). As a result of intensive research based on adamantane derivatives, the adamantane nucleus was further recognized as the key pharmacophore in several biologically active compounds. Among the major biological activities displayed by adamantane derivatives, the anti-HIV (El-Emam et al., 2004 ▸; Burstein et al., 1999 ▸; Balzarini et al., 2009 ▸), antibacterial (Protopopova et al., 2005 ▸; El-Emam et al., 2013 ▸; Kadi et al., 2010 ▸; Al-Abdullah et al., 2014 ▸; Al-Wahaibi et al., 2017 ▸), antifungal (Omar et al., 2010 ▸), anticancer (Sun et al., 2002 ▸), anti-diabetic (Villhauer et al., 2003 ▸; Augeri et al., 2005 ▸) and antimalarial (Dong et al., 2010 ▸) activities are the most interesting. In addition, 1,3,4-oxadiazole derivatives occupy a unique place in the field of medicinal chemistry as pharmacophores or auxophores possessing diverse pharmacological activities including antibacterial (Prakash et al., 2010 ▸; Ogata et al., 1971 ▸; Kadi et al., 2007 ▸), anticancer (Zhang et al., 2014 ▸), antiviral (Wu et al., 2015 ▸) and anti-inflammatory (Bansal et al., 2014 ▸) activities. We report herein on the crystal structure determinations of the title adamantane-oxadiazole hybrid molecules 2-(adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I) and 2-(adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). The crystal structure of the 4-bromophenyl derivative has been reported previously (Alzoman et al., 2014 ▸), and after examination of the deposited CIF and transformation of the space group, from P21/c to P21/n, it is found to be isotypic with compound (II).
Structural commentary
Compounds (I) and (II), are built up from a central 1,3,4-oxadiazole unit, an adamantane unit and a halogenophenyl group (Figs. 1 ▸ and 2 ▸, respectively). The C—N bonds in the oxadiazole rings have double-bond character [C7=N1 = 1.279 (5) and 1.292 (3) Å, and C8=N2 = 1.288 (5) and 1.288 (3) Å in (I) and (II), respectively], while the N—N and C—O bonds exhibit single-bond character [N1—N2 = 1.408 (4) and 1.417 (3) Å, C7—O1 = 1.366 (4) and 1.360 (2) Å, and C8—O1 = 1.369 (4) and 1.359 (2) Å in (I) and (II), respectively]. These geometrical parameters are very similar to those observed for similar compounds; see §5. Database survey.
Figure 1.
Molecular structure of compound (I), with the atom labelling and displacement ellipsoids drawn at the 50% probability level.
Figure 2.
Molecular structure of compound (II), with the atom labelling and displacement ellipsoids drawn at the 50% probability level.
As seen in Fig. 3 ▸, the molecular structures of compounds (I) and (II) are very similar. The largest difference is highlighted by the structural overlay plot, and comes from the relative orientation of the halogenophenyl group with respect to the oxadiazole ring. In compound (II), the rings are almost coplanar with their mean planes being inclined to each other by 9.5 (1)°, while in compound (I) the equivalent dihedral angle is 20.8 (2)°.
Figure 3.
View of the structural overlay of compounds (I) and (II). Compound (I) is drawn according to element type, while compound (II) is drawn in pale green.
Supramolecular features
In the crystals of both compounds, molecules are linked by pairs of C—H⋯N hydrogen bonds, forming inversion dimers with
(12) ring motifs (Tables 1 ▸ and 2 ▸, respectively). In the crystal of (I), the dimers are connected by C—H⋯F interactions, forming slabs lying parallel to the bc plane (Fig. 4 ▸ and Table 1 ▸). In the crystal of (II), the dimers are linked by C—H⋯π and offset π–π interactions, forming layers lying parallel to the (10
) plane; see Fig. 5 ▸ and Table 2 ▸. The offset π–π interactions involve inversion-related 4-chlorophenyl rings (C1–C6) with an intercentroid distance of 3.687 (1) Å, an interplanar distance of 3.404 (1) Å, and an offset of 1.418 Å. In Fig. 5 ▸ these interactions are represented by double-headed red arrows.
Table 1. Hydrogen-bond geometry (Å, °) for (I) .
Cg1 is the centroid of the C1–C6 ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C3—H3⋯N1i | 0.95 | 2.56 | 3.383 (5) | 146 |
| C18—H18A⋯F1ii | 0.99 | 2.47 | 3.415 (5) | 159 |
Symmetry codes: (i)
; (ii)
.
Table 2. Hydrogen-bond geometry (Å, °) for (II) .
Cg1 is the centroid of the C1–C6 ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C3—H3⋯N1i | 0.95 | 2.61 | 3.386 (3) | 139 |
| C12—H12A⋯Cg1ii | 0.99 | 2.73 | 3.680 (3) | 160 |
Symmetry codes: (i)
; (ii)
.
Figure 4.
A view along the b axis of the crystal packing of compound (I). The hydrogen-bonding interactions (see Table 1 ▸) are shown as dashed lines. For clarity, only hydrogen atoms H3 and H18A have been included.
Figure 5.
A view along the b axis of the crystal packing of compound (II), showing the C—H⋯N hydrogen bonds and the C—H⋯π interactions (see Table 2 ▸) as dashed lines. The offset π–π interactions are indicated by double-headed red arrows. For clarity, only hydrogen atoms H3 and H12A have been included.
Hirshfeld surface analysis
The Hirshfeld surfaces for (I) and (II) mapped over d
norm were calculated using CrystalExplorer 17 (Turner et al., 2017 ▸) with the default setting of arbitrary units range. The characteristic bright-red spots near atoms H3, H18A, N1 and F1 (Fig. 6 ▸) confirm the previously mentioned C3—H3⋯N1i and C18—H18A⋯F1ii [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, y −
, −z +
] interatomic contacts in the crystal packing of (I). As expected, the same bright-red spots are observed near atoms H3 and N1 on the Hirshfeld surface of (II); see Fig. 7 ▸. The Hirshfeld surface mapped over the shape-index property elegantly illustrates the π–π stacking and the C—H⋯π interactions observed in the crystal packing of (II). Two views are presented in Fig. 8 ▸. The π–π stacking between inversion-related 4-chlorophenyl rings (C1–C6) is indicated by the appearance of small blue regions surrounding a bright-red triangle within the six-membered ring (Fig. 8 ▸
a), while the C12—H12A⋯π(C1–C6)iii interaction [symmetry code: (iii) x +
, −y +
, z +
] appears as a large red region within the ring (Fig. 8 ▸
b).
Figure 6.
A view of the Hirshfeld surface mapped over d norm for compound (I) over the range −0.138 to 1.364 arbitrary units.
Figure 7.
A view of the Hirshfeld surface mapped over d norm for compound (II) over the range −0.203 to 1.273 arbitrary units.
Figure 8.
Two views, (a) and (b), of the Hirshfeld surface mapped over the shape-index property for compound (II).
Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, February 2019; Groom et al., 2016 ▸) for the substructure 2-(adamantan-1-yl)-1,3,4-oxadiazole gave five hits. The crystal structures of three very similar compounds were reported in the last decade, namely 2-(adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole (CSD refcode LAPVOP; El-Emam et al., 2012 ▸), which has an NO2 group on the phenyl ring (in the para position to the oxadiazole ring), 2-(adamantan-1-yl)-5-(4-bromophenyl)-1,3,4-oxadiazole (SOSXIJ; Alzoman et al. 2014 ▸), which has a Br atom on the phenyl ring (same para position) and 2-(adamantan-1-yl)-5-(3-fluorophenyl)-1,3,4-oxadiazole (SIKKAA; Khan et al., 2012 ▸), with a 3-fluorophenyl substituent at position 5 on the oxadiazole ring. Two more recently reported structures are (5-(adamantan-1-yl)-1,3,4-oxadiazole-2-thiolato)triphenylphosphinegold(I) (AZECAL; Garcia et al., 2016 ▸) and 2-(adamantan-1-yl)-5-[2-(2-methylphenyl)-1,3-thiazol-4-yl]-1,3,4-oxadiazole (XARGEE01; Khan et al., 2016 ▸).
The reduced cell of SOSXIJ indicates that it is isotypic with compound (II). Compound LAPVOP resides on a mirror plane, while compound SIKKAA crystallizes with two independent molecules in the asymmetric unit. The geometrical parameters of the oxadiazole rings are similar to those reported above for the title compounds. The 4-substituted phenyl rings are inclined to the oxadiazole ring by 0.0° in LAPVOP (as it lies in a mirror plane), 3.01 and 3.31° in the two independent molecules of SIKKAA and 10.44° in SOSXIJ. In the title compounds the corresponding dihedral angle is 20.8 (2)° for compound (I) and 9.5 (1)° for compound (II).
Synthesis and crystallization
Compounds (I) and (II) were synthesized via condensation of adamantane-1-carboxylic acid with 4-fluorobenzohydrazide, or 4-chlorobenzohydrazide in the presence of phosphorus oxychloride, as described previously (Kadi et al., 2007 ▸). Colourless plate-like crystals of compound (I) and colourless needle-like crystals of compound (II) were obtained by slow evaporation of CHCl3:EtOH (1:1 v:v) solutions at room temperature.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. All H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.95–1.00 Å with U iso = 1.2U eq(C).
Table 3. Experimental details.
| (I) | (II) | |
|---|---|---|
| Crystal data | ||
| Chemical formula | C18H19FN2O | C18H19ClN2O |
| M r | 298.35 | 314.80 |
| Crystal system, space group | Monoclinic, P21/c | Monoclinic, P21/n |
| Temperature (K) | 160 | 160 |
| a, b, c (Å) | 18.2525 (4), 7.07855 (16), 11.2207 (2) | 13.08241 (19), 6.49259 (9), 18.5129 (3) |
| β (°) | 98.556 (2) | 105.5609 (16) |
| V (Å3) | 1433.59 (6) | 1514.83 (4) |
| Z | 4 | 4 |
| Radiation type | Cu Kα | Cu Kα |
| μ (mm−1) | 0.78 | 2.25 |
| Crystal size (mm) | 0.18 × 0.15 × 0.02 | 0.33 × 0.12 × 0.08 |
| Data collection | ||
| Diffractometer | XtaLAB Synergy, Dualflex, Pilatus 200K | XtaLAB Synergy, Dualflex, Pilatus 200K |
| Absorption correction | Analytical (CrysAlis PRO; Rigaku OD, 2019 ▸) | Analytical (CrysAlis PRO; Rigaku OD, 2019 ▸) |
| T min, T max | 0.921, 0.990 | 0.642, 0.870 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 13058, 2903, 2578 | 14318, 3217, 3052 |
| R int | 0.030 | 0.023 |
| (sin θ/λ)max (Å−1) | 0.625 | 0.636 |
| Refinement | ||
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.080, 0.233, 1.23 | 0.061, 0.167, 1.08 |
| No. of reflections | 2903 | 3217 |
| No. of parameters | 199 | 199 |
| H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.47, −0.38 | 0.81, −0.26 |
Supplementary Material
Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989019004651/su5492sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004651/su5492Isup4.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019004651/su5492IIsup5.hkl
Supporting information file. DOI: 10.1107/S2056989019004651/su5492Isup4.cml
Supporting information file. DOI: 10.1107/S2056989019004651/su5492IIsup5.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Crystal data
| C18H19FN2O | F(000) = 632 |
| Mr = 298.35 | Dx = 1.382 Mg m−3 |
| Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
| a = 18.2525 (4) Å | Cell parameters from 7588 reflections |
| b = 7.07855 (16) Å | θ = 4.9–78.5° |
| c = 11.2207 (2) Å | µ = 0.78 mm−1 |
| β = 98.556 (2)° | T = 160 K |
| V = 1433.59 (6) Å3 | Plate, colourless |
| Z = 4 | 0.18 × 0.15 × 0.02 mm |
2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Data collection
| XtaLAB Synergy, Dualflex, Pilatus 200K diffractometer | 2903 independent reflections |
| Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2578 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.030 |
| Detector resolution: 5.8140 pixels mm-1 | θmax = 74.5°, θmin = 4.9° |
| ω scans | h = −22→22 |
| Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2019) | k = −8→8 |
| Tmin = 0.921, Tmax = 0.990 | l = −11→14 |
| 13058 measured reflections |
2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Refinement
| Refinement on F2 | Primary atom site location: dual |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.080 | H-atom parameters constrained |
| wR(F2) = 0.233 | w = 1/[σ2(Fo2) + (0.0572P)2 + 6.0123P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.23 | (Δ/σ)max < 0.001 |
| 2903 reflections | Δρmax = 0.47 e Å−3 |
| 199 parameters | Δρmin = −0.38 e Å−3 |
| 0 restraints |
2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.6397 (2) | 0.5834 (6) | 0.8751 (3) | 0.0220 (8) | |
| C2 | 0.6287 (2) | 0.5485 (6) | 0.7528 (3) | 0.0218 (8) | |
| H2 | 0.669009 | 0.519350 | 0.711237 | 0.026* | |
| C3 | 0.5568 (2) | 0.5574 (5) | 0.6928 (3) | 0.0189 (7) | |
| H3 | 0.547397 | 0.536452 | 0.608242 | 0.023* | |
| C4 | 0.4979 (2) | 0.5973 (5) | 0.7558 (3) | 0.0178 (7) | |
| C5 | 0.5114 (2) | 0.6345 (5) | 0.8784 (3) | 0.0201 (8) | |
| H5 | 0.471482 | 0.664740 | 0.920495 | 0.024* | |
| C6 | 0.5836 (2) | 0.6276 (6) | 0.9397 (3) | 0.0234 (8) | |
| H6 | 0.593767 | 0.652639 | 1.023700 | 0.028* | |
| C7 | 0.42268 (19) | 0.5993 (5) | 0.6869 (3) | 0.0188 (7) | |
| C8 | 0.3054 (2) | 0.5755 (5) | 0.6523 (3) | 0.0194 (8) | |
| C9 | 0.22741 (19) | 0.5532 (5) | 0.6776 (3) | 0.0188 (8) | |
| C10 | 0.2034 (2) | 0.7286 (6) | 0.7450 (4) | 0.0229 (8) | |
| H10A | 0.235907 | 0.742685 | 0.823383 | 0.027* | |
| H10B | 0.208148 | 0.843843 | 0.696746 | 0.027* | |
| C11 | 0.1226 (2) | 0.7041 (6) | 0.7656 (4) | 0.0249 (9) | |
| H11 | 0.107002 | 0.816945 | 0.809285 | 0.030* | |
| C12 | 0.0729 (2) | 0.6855 (7) | 0.6436 (4) | 0.0280 (9) | |
| H12A | 0.020522 | 0.672769 | 0.656054 | 0.034* | |
| H12B | 0.077248 | 0.800506 | 0.594894 | 0.034* | |
| C13 | 0.0958 (2) | 0.5124 (6) | 0.5766 (3) | 0.0261 (9) | |
| H13 | 0.063156 | 0.501154 | 0.496999 | 0.031* | |
| C14 | 0.1769 (2) | 0.5336 (6) | 0.5561 (3) | 0.0241 (8) | |
| H14A | 0.191844 | 0.421626 | 0.512660 | 0.029* | |
| H14B | 0.181982 | 0.646678 | 0.506007 | 0.029* | |
| C15 | 0.1155 (2) | 0.5267 (7) | 0.8408 (4) | 0.0282 (9) | |
| H15A | 0.147857 | 0.538200 | 0.919522 | 0.034* | |
| H15B | 0.063748 | 0.512872 | 0.855987 | 0.034* | |
| C16 | 0.1378 (2) | 0.3532 (6) | 0.7743 (4) | 0.0264 (9) | |
| H16 | 0.132697 | 0.237763 | 0.823688 | 0.032* | |
| C17 | 0.0881 (2) | 0.3342 (6) | 0.6516 (4) | 0.0282 (9) | |
| H17A | 0.102861 | 0.221647 | 0.608557 | 0.034* | |
| H17B | 0.035805 | 0.318109 | 0.663834 | 0.034* | |
| C18 | 0.2193 (2) | 0.3748 (6) | 0.7544 (4) | 0.0242 (8) | |
| H18A | 0.234847 | 0.261751 | 0.712615 | 0.029* | |
| H18B | 0.251650 | 0.386012 | 0.833140 | 0.029* | |
| F1 | 0.71024 (12) | 0.5714 (4) | 0.9363 (2) | 0.0321 (6) | |
| N1 | 0.40489 (17) | 0.6139 (5) | 0.5727 (3) | 0.0237 (7) | |
| N2 | 0.32721 (18) | 0.5975 (5) | 0.5493 (3) | 0.0245 (7) | |
| O1 | 0.36296 (13) | 0.5751 (4) | 0.7457 (2) | 0.0192 (6) |
2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0185 (18) | 0.0220 (19) | 0.0239 (19) | −0.0016 (15) | −0.0015 (14) | 0.0036 (15) |
| C2 | 0.0179 (17) | 0.0239 (19) | 0.0245 (19) | −0.0014 (15) | 0.0059 (14) | 0.0014 (15) |
| C3 | 0.0218 (18) | 0.0180 (17) | 0.0177 (17) | 0.0000 (14) | 0.0055 (14) | −0.0012 (13) |
| C4 | 0.0152 (16) | 0.0155 (16) | 0.0232 (17) | −0.0024 (13) | 0.0048 (13) | 0.0008 (14) |
| C5 | 0.0199 (17) | 0.0201 (18) | 0.0217 (18) | 0.0007 (14) | 0.0083 (14) | 0.0003 (14) |
| C6 | 0.028 (2) | 0.0220 (19) | 0.0204 (18) | −0.0023 (16) | 0.0029 (15) | −0.0004 (15) |
| C7 | 0.0170 (17) | 0.0187 (17) | 0.0220 (18) | −0.0004 (14) | 0.0074 (14) | 0.0000 (14) |
| C8 | 0.0182 (17) | 0.0217 (19) | 0.0178 (17) | 0.0005 (14) | 0.0014 (13) | −0.0002 (14) |
| C9 | 0.0163 (17) | 0.0260 (19) | 0.0141 (16) | 0.0021 (14) | 0.0015 (13) | 0.0001 (14) |
| C10 | 0.0163 (18) | 0.027 (2) | 0.0257 (19) | −0.0027 (15) | 0.0034 (14) | −0.0046 (16) |
| C11 | 0.0153 (17) | 0.034 (2) | 0.027 (2) | 0.0003 (16) | 0.0061 (14) | −0.0057 (17) |
| C12 | 0.0159 (18) | 0.039 (2) | 0.029 (2) | 0.0032 (17) | 0.0029 (15) | 0.0023 (18) |
| C13 | 0.0170 (18) | 0.041 (2) | 0.0191 (18) | −0.0018 (16) | −0.0021 (14) | −0.0039 (17) |
| C14 | 0.0179 (18) | 0.038 (2) | 0.0161 (17) | −0.0002 (16) | 0.0018 (14) | −0.0001 (16) |
| C15 | 0.0197 (18) | 0.045 (3) | 0.0201 (19) | −0.0023 (17) | 0.0047 (14) | −0.0018 (18) |
| C16 | 0.0197 (18) | 0.031 (2) | 0.030 (2) | −0.0026 (16) | 0.0057 (15) | 0.0047 (17) |
| C17 | 0.0205 (19) | 0.034 (2) | 0.030 (2) | −0.0060 (17) | 0.0046 (16) | −0.0061 (18) |
| C18 | 0.0211 (18) | 0.029 (2) | 0.0233 (19) | 0.0043 (16) | 0.0051 (15) | 0.0048 (16) |
| F1 | 0.0198 (11) | 0.0465 (16) | 0.0278 (12) | −0.0006 (10) | −0.0032 (9) | 0.0031 (11) |
| N1 | 0.0194 (15) | 0.0318 (18) | 0.0207 (16) | 0.0022 (13) | 0.0061 (12) | 0.0008 (14) |
| N2 | 0.0202 (16) | 0.0366 (19) | 0.0171 (15) | 0.0020 (14) | 0.0044 (12) | 0.0013 (14) |
| O1 | 0.0148 (12) | 0.0288 (14) | 0.0146 (12) | −0.0007 (10) | 0.0036 (9) | −0.0009 (10) |
2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Geometric parameters (Å, º)
| C1—C2 | 1.380 (5) | C11—H11 | 1.0000 |
| C1—C6 | 1.376 (5) | C11—C12 | 1.532 (6) |
| C1—F1 | 1.369 (4) | C11—C15 | 1.529 (6) |
| C2—H2 | 0.9500 | C12—H12A | 0.9900 |
| C2—C3 | 1.384 (5) | C12—H12B | 0.9900 |
| C3—H3 | 0.9500 | C12—C13 | 1.528 (6) |
| C3—C4 | 1.400 (5) | C13—H13 | 1.0000 |
| C4—C5 | 1.386 (5) | C13—C14 | 1.539 (5) |
| C4—C7 | 1.472 (5) | C13—C17 | 1.535 (6) |
| C5—H5 | 0.9500 | C14—H14A | 0.9900 |
| C5—C6 | 1.394 (5) | C14—H14B | 0.9900 |
| C6—H6 | 0.9500 | C15—H15A | 0.9900 |
| C7—N1 | 1.279 (5) | C15—H15B | 0.9900 |
| C7—O1 | 1.366 (4) | C15—C16 | 1.523 (6) |
| C8—C9 | 1.500 (5) | C16—H16 | 1.0000 |
| C8—N2 | 1.288 (5) | C16—C17 | 1.538 (6) |
| C8—O1 | 1.369 (4) | C16—C18 | 1.544 (5) |
| C9—C10 | 1.550 (5) | C17—H17A | 0.9900 |
| C9—C14 | 1.534 (5) | C17—H17B | 0.9900 |
| C9—C18 | 1.548 (5) | C18—H18A | 0.9900 |
| C10—H10A | 0.9900 | C18—H18B | 0.9900 |
| C10—H10B | 0.9900 | N1—N2 | 1.408 (4) |
| C10—C11 | 1.537 (5) | ||
| C6—C1—C2 | 123.8 (4) | H12A—C12—H12B | 108.2 |
| F1—C1—C2 | 118.3 (3) | C13—C12—C11 | 109.8 (3) |
| F1—C1—C6 | 117.9 (3) | C13—C12—H12A | 109.7 |
| C1—C2—H2 | 121.2 | C13—C12—H12B | 109.7 |
| C1—C2—C3 | 117.5 (3) | C12—C13—H13 | 109.5 |
| C3—C2—H2 | 121.2 | C12—C13—C14 | 109.6 (3) |
| C2—C3—H3 | 119.8 | C12—C13—C17 | 109.6 (3) |
| C2—C3—C4 | 120.5 (3) | C14—C13—H13 | 109.5 |
| C4—C3—H3 | 119.8 | C17—C13—H13 | 109.5 |
| C3—C4—C7 | 117.6 (3) | C17—C13—C14 | 109.3 (3) |
| C5—C4—C3 | 120.2 (3) | C9—C14—C13 | 109.9 (3) |
| C5—C4—C7 | 122.2 (3) | C9—C14—H14A | 109.7 |
| C4—C5—H5 | 120.1 | C9—C14—H14B | 109.7 |
| C4—C5—C6 | 119.9 (3) | C13—C14—H14A | 109.7 |
| C6—C5—H5 | 120.1 | C13—C14—H14B | 109.7 |
| C1—C6—C5 | 118.1 (3) | H14A—C14—H14B | 108.2 |
| C1—C6—H6 | 121.0 | C11—C15—H15A | 109.7 |
| C5—C6—H6 | 121.0 | C11—C15—H15B | 109.7 |
| N1—C7—C4 | 127.2 (3) | H15A—C15—H15B | 108.2 |
| N1—C7—O1 | 113.1 (3) | C16—C15—C11 | 110.0 (3) |
| O1—C7—C4 | 119.7 (3) | C16—C15—H15A | 109.7 |
| N2—C8—C9 | 127.7 (3) | C16—C15—H15B | 109.7 |
| N2—C8—O1 | 112.5 (3) | C15—C16—H16 | 109.4 |
| O1—C8—C9 | 119.8 (3) | C15—C16—C17 | 110.1 (3) |
| C8—C9—C10 | 110.7 (3) | C15—C16—C18 | 108.9 (3) |
| C8—C9—C14 | 107.7 (3) | C17—C16—H16 | 109.4 |
| C8—C9—C18 | 111.2 (3) | C17—C16—C18 | 109.5 (3) |
| C14—C9—C10 | 109.3 (3) | C18—C16—H16 | 109.4 |
| C14—C9—C18 | 109.1 (3) | C13—C17—C16 | 109.2 (3) |
| C18—C9—C10 | 108.9 (3) | C13—C17—H17A | 109.8 |
| C9—C10—H10A | 109.8 | C13—C17—H17B | 109.8 |
| C9—C10—H10B | 109.8 | C16—C17—H17A | 109.8 |
| H10A—C10—H10B | 108.3 | C16—C17—H17B | 109.8 |
| C11—C10—C9 | 109.3 (3) | H17A—C17—H17B | 108.3 |
| C11—C10—H10A | 109.8 | C9—C18—H18A | 109.8 |
| C11—C10—H10B | 109.8 | C9—C18—H18B | 109.8 |
| C10—C11—H11 | 109.4 | C16—C18—C9 | 109.6 (3) |
| C12—C11—C10 | 109.2 (3) | C16—C18—H18A | 109.8 |
| C12—C11—H11 | 109.4 | C16—C18—H18B | 109.8 |
| C15—C11—C10 | 109.7 (3) | H18A—C18—H18B | 108.2 |
| C15—C11—H11 | 109.4 | C7—N1—N2 | 106.2 (3) |
| C15—C11—C12 | 109.6 (3) | C8—N2—N1 | 106.3 (3) |
| C11—C12—H12A | 109.7 | C7—O1—C8 | 102.0 (3) |
| C11—C12—H12B | 109.7 | ||
| C1—C2—C3—C4 | −1.1 (6) | C11—C15—C16—C17 | −59.2 (4) |
| C2—C1—C6—C5 | 1.1 (6) | C11—C15—C16—C18 | 60.8 (4) |
| C2—C3—C4—C5 | 2.2 (6) | C12—C11—C15—C16 | 59.0 (4) |
| C2—C3—C4—C7 | −178.3 (3) | C12—C13—C14—C9 | 59.4 (4) |
| C3—C4—C5—C6 | −1.6 (6) | C12—C13—C17—C16 | −59.5 (4) |
| C3—C4—C7—N1 | −18.2 (6) | C14—C9—C10—C11 | 59.8 (4) |
| C3—C4—C7—O1 | 158.6 (3) | C14—C9—C18—C16 | −59.3 (4) |
| C4—C5—C6—C1 | 0.0 (6) | C14—C13—C17—C16 | 60.6 (4) |
| C4—C7—N1—N2 | 176.5 (4) | C15—C11—C12—C13 | −59.5 (4) |
| C4—C7—O1—C8 | −176.9 (3) | C15—C16—C17—C13 | 59.3 (4) |
| C5—C4—C7—N1 | 161.3 (4) | C15—C16—C18—C9 | −60.5 (4) |
| C5—C4—C7—O1 | −22.0 (5) | C17—C13—C14—C9 | −60.7 (4) |
| C6—C1—C2—C3 | −0.5 (6) | C17—C16—C18—C9 | 59.9 (4) |
| C7—C4—C5—C6 | 178.9 (4) | C18—C9—C10—C11 | −59.3 (4) |
| C7—N1—N2—C8 | 0.4 (4) | C18—C9—C14—C13 | 59.8 (4) |
| C8—C9—C10—C11 | 178.1 (3) | C18—C16—C17—C13 | −60.5 (4) |
| C8—C9—C14—C13 | −179.4 (3) | F1—C1—C2—C3 | 178.7 (3) |
| C8—C9—C18—C16 | −177.9 (3) | F1—C1—C6—C5 | −178.2 (3) |
| C9—C8—N2—N1 | 179.3 (4) | N1—C7—O1—C8 | 0.3 (4) |
| C9—C8—O1—C7 | −179.6 (3) | N2—C8—C9—C10 | −111.7 (4) |
| C9—C10—C11—C12 | −60.3 (4) | N2—C8—C9—C14 | 7.7 (6) |
| C9—C10—C11—C15 | 59.8 (4) | N2—C8—C9—C18 | 127.1 (4) |
| C10—C9—C14—C13 | −59.2 (4) | N2—C8—O1—C7 | −0.1 (4) |
| C10—C9—C18—C16 | 59.8 (4) | O1—C7—N1—N2 | −0.4 (4) |
| C10—C11—C12—C13 | 60.7 (4) | O1—C8—C9—C10 | 67.8 (4) |
| C10—C11—C15—C16 | −60.9 (4) | O1—C8—C9—C14 | −172.9 (3) |
| C11—C12—C13—C14 | −60.0 (4) | O1—C8—C9—C18 | −53.4 (4) |
| C11—C12—C13—C17 | 60.0 (4) | O1—C8—N2—N1 | −0.2 (4) |
2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I). Hydrogen-bond geometry (Å, º)
Cg1 is the centroid of the C1–C6 ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| C3—H3···N1i | 0.95 | 2.56 | 3.383 (5) | 146 |
| C18—H18A···F1ii | 0.99 | 2.47 | 3.415 (5) | 159 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+3/2.
2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Crystal data
| C18H19ClN2O | F(000) = 664 |
| Mr = 314.80 | Dx = 1.380 Mg m−3 |
| Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
| a = 13.08241 (19) Å | Cell parameters from 11758 reflections |
| b = 6.49259 (9) Å | θ = 3.7–79.0° |
| c = 18.5129 (3) Å | µ = 2.25 mm−1 |
| β = 105.5609 (16)° | T = 160 K |
| V = 1514.83 (4) Å3 | Needle, colourless |
| Z = 4 | 0.33 × 0.12 × 0.08 mm |
2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Data collection
| XtaLAB Synergy, Dualflex, Pilatus 200K diffractometer | 3217 independent reflections |
| Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3052 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.023 |
| Detector resolution: 5.8140 pixels mm-1 | θmax = 78.9°, θmin = 3.7° |
| ω scans | h = −16→16 |
| Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2019) | k = −7→8 |
| Tmin = 0.642, Tmax = 0.870 | l = −23→23 |
| 14318 measured reflections |
2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Refinement
| Refinement on F2 | Primary atom site location: dual |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.061 | H-atom parameters constrained |
| wR(F2) = 0.167 | w = 1/[σ2(Fo2) + (0.094P)2 + 1.5575P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.08 | (Δ/σ)max < 0.001 |
| 3217 reflections | Δρmax = 0.81 e Å−3 |
| 199 parameters | Δρmin = −0.26 e Å−3 |
| 0 restraints |
2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.42626 (17) | 0.6044 (4) | 0.35491 (12) | 0.0302 (5) | |
| C2 | 0.40263 (17) | 0.4056 (4) | 0.37203 (12) | 0.0317 (5) | |
| H2 | 0.333320 | 0.351478 | 0.352048 | 0.038* | |
| C3 | 0.48137 (17) | 0.2855 (4) | 0.41883 (12) | 0.0279 (5) | |
| H3 | 0.466239 | 0.148920 | 0.431206 | 0.034* | |
| C4 | 0.58338 (16) | 0.3685 (3) | 0.44753 (11) | 0.0254 (4) | |
| C5 | 0.60437 (17) | 0.5705 (3) | 0.43076 (12) | 0.0280 (5) | |
| H5 | 0.672884 | 0.627166 | 0.451644 | 0.034* | |
| C6 | 0.52611 (17) | 0.6897 (4) | 0.38380 (13) | 0.0302 (5) | |
| H6 | 0.540617 | 0.826921 | 0.371688 | 0.036* | |
| C7 | 0.66623 (17) | 0.2413 (3) | 0.49555 (12) | 0.0229 (4) | |
| C8 | 0.81754 (16) | 0.1694 (3) | 0.56872 (11) | 0.0238 (4) | |
| C9 | 0.92972 (16) | 0.2106 (3) | 0.61176 (11) | 0.0219 (4) | |
| C10 | 0.93691 (16) | 0.3930 (4) | 0.66595 (12) | 0.0282 (5) | |
| H10A | 0.897237 | 0.360738 | 0.703168 | 0.034* | |
| H10B | 0.904931 | 0.517124 | 0.637722 | 0.034* | |
| C11 | 1.05425 (18) | 0.4345 (4) | 0.70636 (13) | 0.0314 (5) | |
| H11 | 1.059032 | 0.553003 | 0.741610 | 0.038* | |
| C12 | 1.1016 (2) | 0.2426 (4) | 0.75071 (13) | 0.0333 (5) | |
| H12A | 1.062078 | 0.209782 | 0.787976 | 0.040* | |
| H12B | 1.176566 | 0.268774 | 0.778004 | 0.040* | |
| C13 | 1.09521 (18) | 0.0597 (4) | 0.69691 (13) | 0.0319 (5) | |
| H13 | 1.126743 | −0.065180 | 0.726092 | 0.038* | |
| C14 | 0.97843 (17) | 0.0175 (3) | 0.65594 (12) | 0.0285 (5) | |
| H14A | 0.938650 | −0.018439 | 0.692756 | 0.034* | |
| H14B | 0.973710 | −0.100189 | 0.621181 | 0.034* | |
| C15 | 1.11625 (17) | 0.4853 (3) | 0.64960 (14) | 0.0319 (5) | |
| H15A | 1.191412 | 0.512639 | 0.676075 | 0.038* | |
| H15B | 1.086479 | 0.610423 | 0.621095 | 0.038* | |
| C16 | 1.10922 (16) | 0.3031 (4) | 0.59555 (13) | 0.0284 (5) | |
| H16 | 1.149192 | 0.336599 | 0.557972 | 0.034* | |
| C17 | 1.15702 (17) | 0.1113 (4) | 0.63970 (14) | 0.0330 (5) | |
| H17A | 1.232475 | 0.136605 | 0.665944 | 0.040* | |
| H17B | 1.153464 | −0.006047 | 0.604985 | 0.040* | |
| C18 | 0.99249 (17) | 0.2645 (3) | 0.55507 (12) | 0.0231 (4) | |
| H18A | 0.987062 | 0.149794 | 0.518988 | 0.028* | |
| H18B | 0.961848 | 0.389182 | 0.526636 | 0.028* | |
| Cl1 | 0.32838 (4) | 0.75434 (10) | 0.29606 (3) | 0.0384 (2) | |
| N1 | 0.66468 (15) | 0.0461 (3) | 0.50869 (12) | 0.0348 (5) | |
| N2 | 0.76544 (15) | −0.0012 (3) | 0.55744 (12) | 0.0330 (4) | |
| O1 | 0.76044 (11) | 0.3299 (2) | 0.53130 (8) | 0.0254 (3) |
2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0236 (10) | 0.0423 (13) | 0.0245 (10) | 0.0028 (9) | 0.0060 (8) | 0.0015 (9) |
| C2 | 0.0215 (9) | 0.0424 (13) | 0.0291 (10) | −0.0040 (9) | 0.0036 (8) | −0.0017 (9) |
| C3 | 0.0218 (10) | 0.0354 (11) | 0.0263 (10) | −0.0056 (8) | 0.0060 (8) | −0.0019 (8) |
| C4 | 0.0218 (9) | 0.0291 (11) | 0.0248 (9) | −0.0027 (8) | 0.0054 (7) | −0.0014 (8) |
| C5 | 0.0232 (9) | 0.0290 (11) | 0.0307 (10) | −0.0028 (8) | 0.0050 (8) | −0.0010 (8) |
| C6 | 0.0256 (10) | 0.0341 (11) | 0.0310 (11) | −0.0006 (9) | 0.0077 (8) | 0.0012 (9) |
| C7 | 0.0186 (9) | 0.0250 (10) | 0.0244 (10) | −0.0048 (7) | 0.0045 (8) | −0.0021 (7) |
| C8 | 0.0236 (9) | 0.0217 (10) | 0.0263 (9) | −0.0011 (8) | 0.0069 (8) | −0.0003 (8) |
| C9 | 0.0200 (9) | 0.0223 (9) | 0.0233 (9) | −0.0016 (7) | 0.0055 (7) | −0.0007 (7) |
| C10 | 0.0248 (10) | 0.0286 (11) | 0.0303 (10) | 0.0010 (8) | 0.0056 (8) | −0.0073 (8) |
| C11 | 0.0292 (11) | 0.0290 (11) | 0.0311 (11) | −0.0009 (9) | −0.0001 (8) | −0.0078 (9) |
| C12 | 0.0294 (11) | 0.0431 (14) | 0.0233 (10) | −0.0022 (9) | −0.0001 (9) | 0.0021 (8) |
| C13 | 0.0289 (11) | 0.0258 (11) | 0.0349 (11) | 0.0003 (9) | −0.0018 (9) | 0.0083 (9) |
| C14 | 0.0285 (10) | 0.0229 (10) | 0.0314 (10) | −0.0029 (8) | 0.0034 (8) | 0.0052 (8) |
| C15 | 0.0238 (10) | 0.0234 (10) | 0.0432 (12) | −0.0052 (8) | −0.0004 (9) | 0.0036 (9) |
| C16 | 0.0205 (10) | 0.0332 (11) | 0.0322 (11) | −0.0003 (8) | 0.0081 (8) | 0.0056 (9) |
| C17 | 0.0251 (10) | 0.0296 (11) | 0.0413 (12) | 0.0057 (9) | 0.0036 (9) | 0.0000 (9) |
| C18 | 0.0213 (9) | 0.0254 (10) | 0.0225 (9) | −0.0001 (7) | 0.0059 (8) | 0.0018 (7) |
| Cl1 | 0.0242 (3) | 0.0543 (4) | 0.0342 (3) | 0.0096 (2) | 0.0034 (2) | 0.0102 (2) |
| N1 | 0.0268 (9) | 0.0279 (10) | 0.0437 (11) | −0.0052 (7) | −0.0007 (8) | 0.0024 (8) |
| N2 | 0.0258 (9) | 0.0255 (9) | 0.0426 (11) | −0.0055 (7) | 0.0000 (8) | 0.0036 (8) |
| O1 | 0.0203 (7) | 0.0236 (7) | 0.0300 (7) | −0.0035 (6) | 0.0030 (6) | 0.0005 (6) |
2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Geometric parameters (Å, º)
| C1—C2 | 1.384 (4) | C11—H11 | 1.0000 |
| C1—C6 | 1.387 (3) | C11—C12 | 1.529 (3) |
| C1—Cl1 | 1.740 (2) | C11—C15 | 1.526 (3) |
| C2—H2 | 0.9500 | C12—H12A | 0.9900 |
| C2—C3 | 1.393 (3) | C12—H12B | 0.9900 |
| C3—H3 | 0.9500 | C12—C13 | 1.538 (3) |
| C3—C4 | 1.405 (3) | C13—H13 | 1.0000 |
| C4—C5 | 1.391 (3) | C13—C14 | 1.537 (3) |
| C4—C7 | 1.460 (3) | C13—C17 | 1.532 (3) |
| C5—H5 | 0.9500 | C14—H14A | 0.9900 |
| C5—C6 | 1.388 (3) | C14—H14B | 0.9900 |
| C6—H6 | 0.9500 | C15—H15A | 0.9900 |
| C7—N1 | 1.292 (3) | C15—H15B | 0.9900 |
| C7—O1 | 1.360 (2) | C15—C16 | 1.536 (3) |
| C8—C9 | 1.494 (3) | C16—H16 | 1.0000 |
| C8—N2 | 1.288 (3) | C16—C17 | 1.528 (3) |
| C8—O1 | 1.359 (3) | C16—C18 | 1.531 (3) |
| C9—C10 | 1.538 (3) | C17—H17A | 0.9900 |
| C9—C14 | 1.539 (3) | C17—H17B | 0.9900 |
| C9—C18 | 1.536 (3) | C18—H18A | 0.9900 |
| C10—H10A | 0.9900 | C18—H18B | 0.9900 |
| C10—H10B | 0.9900 | N1—N2 | 1.417 (3) |
| C10—C11 | 1.540 (3) | ||
| C2—C1—C6 | 122.0 (2) | C11—C12—C13 | 109.73 (18) |
| C2—C1—Cl1 | 119.56 (17) | H12A—C12—H12B | 108.2 |
| C6—C1—Cl1 | 118.48 (19) | C13—C12—H12A | 109.7 |
| C1—C2—H2 | 120.3 | C13—C12—H12B | 109.7 |
| C1—C2—C3 | 119.4 (2) | C12—C13—H13 | 109.5 |
| C3—C2—H2 | 120.3 | C14—C13—C12 | 109.36 (19) |
| C2—C3—H3 | 120.3 | C14—C13—H13 | 109.5 |
| C2—C3—C4 | 119.3 (2) | C17—C13—C12 | 109.38 (19) |
| C4—C3—H3 | 120.3 | C17—C13—H13 | 109.5 |
| C3—C4—C7 | 119.2 (2) | C17—C13—C14 | 109.69 (18) |
| C5—C4—C3 | 120.1 (2) | C9—C14—H14A | 109.8 |
| C5—C4—C7 | 120.68 (19) | C9—C14—H14B | 109.8 |
| C4—C5—H5 | 119.7 | C13—C14—C9 | 109.39 (17) |
| C6—C5—C4 | 120.6 (2) | C13—C14—H14A | 109.8 |
| C6—C5—H5 | 119.7 | C13—C14—H14B | 109.8 |
| C1—C6—C5 | 118.6 (2) | H14A—C14—H14B | 108.2 |
| C1—C6—H6 | 120.7 | C11—C15—H15A | 109.8 |
| C5—C6—H6 | 120.7 | C11—C15—H15B | 109.8 |
| N1—C7—C4 | 128.6 (2) | C11—C15—C16 | 109.40 (18) |
| N1—C7—O1 | 112.39 (19) | H15A—C15—H15B | 108.2 |
| O1—C7—C4 | 119.03 (17) | C16—C15—H15A | 109.8 |
| N2—C8—C9 | 129.94 (19) | C16—C15—H15B | 109.8 |
| N2—C8—O1 | 112.47 (18) | C15—C16—H16 | 109.5 |
| O1—C8—C9 | 117.48 (17) | C17—C16—C15 | 109.55 (18) |
| C8—C9—C10 | 111.42 (17) | C17—C16—H16 | 109.5 |
| C8—C9—C14 | 110.16 (17) | C17—C16—C18 | 109.88 (18) |
| C8—C9—C18 | 107.76 (17) | C18—C16—C15 | 108.81 (17) |
| C10—C9—C14 | 109.67 (17) | C18—C16—H16 | 109.5 |
| C18—C9—C10 | 108.65 (17) | C13—C17—H17A | 109.8 |
| C18—C9—C14 | 109.12 (17) | C13—C17—H17B | 109.8 |
| C9—C10—H10A | 109.8 | C16—C17—C13 | 109.39 (18) |
| C9—C10—H10B | 109.8 | C16—C17—H17A | 109.8 |
| C9—C10—C11 | 109.27 (17) | C16—C17—H17B | 109.8 |
| H10A—C10—H10B | 108.3 | H17A—C17—H17B | 108.2 |
| C11—C10—H10A | 109.8 | C9—C18—H18A | 109.6 |
| C11—C10—H10B | 109.8 | C9—C18—H18B | 109.6 |
| C10—C11—H11 | 109.3 | C16—C18—C9 | 110.41 (17) |
| C12—C11—C10 | 109.02 (19) | C16—C18—H18A | 109.6 |
| C12—C11—H11 | 109.3 | C16—C18—H18B | 109.6 |
| C15—C11—C10 | 110.36 (18) | H18A—C18—H18B | 108.1 |
| C15—C11—H11 | 109.3 | C7—N1—N2 | 105.90 (18) |
| C15—C11—C12 | 109.41 (19) | C8—N2—N1 | 106.14 (18) |
| C11—C12—H12A | 109.7 | C8—O1—C7 | 103.10 (16) |
| C11—C12—H12B | 109.7 |
2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). Hydrogen-bond geometry (Å, º)
Cg1 is the centroid of the C1–C6 ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| C3—H3···N1i | 0.95 | 2.61 | 3.386 (3) | 139 |
| C12—H12A···Cg1ii | 0.99 | 2.73 | 3.680 (3) | 160 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1/2, −y+1/2, z+1/2.
Funding Statement
This work was funded by Princess Nourah Bint Abdulrahman University grant RGP-1438–0010.
References
- Al-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). Drug Des. Dev. Ther. 8, 505–518. [DOI] [PMC free article] [PubMed]
- Al-Wahaibi, L. H., Hassan, H. M., Abo-Kamar, A. M., Ghabbour, H. A. & El-Emam, A. A. (2017). Molecules, 22, 710, 1–12. [DOI] [PMC free article] [PubMed]
- Alzoman, N. Z., El-Emam, A. A., Ghabbour, H. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o1231–o1232. [DOI] [PMC free article] [PubMed]
- Augeri, D. J., Robl, J. A., Betebenner, D. A., Magnin, D. R., Khanna, A., Robertson, J. G., Wang, A., Simpkins, L. M., Taunk, P., Huang, Q., Han, S., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G. E., Egan, D. M., Marcinkeviciene, J., Chang, S. Y., Biller, S. A., Kirby, M. S., Parker, R. A. & Hamann, L. G. (2005). J. Med. Chem. 48, 5025–5037. [DOI] [PubMed]
- Balzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303–311. [DOI] [PMC free article] [PubMed]
- Bansal, S., Bala, M., Suthar, S. K., Choudhary, S., Bhattacharya, S., Bhardwaj, V., Singla, S. & Joseph, A. (2014). Eur. J. Med. Chem. 80, 167–174. [DOI] [PubMed]
- Burstein, M. E., Serbin, A. V., Khakhulina, T. V., Alymova, I. V., Stotskaya, L. L., Bogdan, O. P., Manukchina, E. E., Jdanov, V. V., Sharova, N. K. & Bukrinskaya, A. G. (1999). Antiviral Res. 41, 135–144. [DOI] [PubMed]
- Davies, W. L., Grunert, R. R., Haff, R. F., Mcgahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C. & Hoffmann, C. E. (1964). Science, 144, 862–863. [DOI] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Dong, Y., Wittlin, S., Sriraghavan, K., Chollet, J., Charman, S. A., Charman, W. N., Scheurer, C., Urwyler, H., Santo Tomas, J., Snyder, C., Creek, D. J., Morizzi, J., Koltun, M., Matile, H., Wang, X., Padmanilayam, M., Tang, Y., Dorn, A., Brun, R. & Vennerstrom, J. L. (2010). J. Med. Chem. 53, 481–491. [DOI] [PubMed]
- El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. [DOI] [PubMed]
- El-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96–102. [DOI] [PubMed]
- El-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795. [DOI] [PMC free article] [PubMed]
- Garcia, A., Machado, R. C., Grazul, R. M., Lopes, M. T. P., Corrêa, C. C., Dos Santos, H. F., de Almeida, M. V. & Silva, H. (2016). J. Biol. Inorg. Chem. 21, 275–292. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. [DOI] [PubMed]
- Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242. [DOI] [PubMed]
- Khan, M., Akhtar, T., Al-Masoudi, N. A., Stoeckli-Evans, H. & Hameed, S. (2012). Med. Chem. 8, 1190–1197. [DOI] [PubMed]
- Khan, M., Hameed, S., Akhtar, T., Al-Masoudi, N. A., Al-Masoudi, W. A., Jones, P. G. & Pannecouque, C. (2016). Med. Chem. Res. 25, 2399–2409.
- Lamoureux, G. & Artavia, G. (2010). Curr. Med. Chem. 17, 2967–2978. [DOI] [PubMed]
- Liu, J., Obando, D., Liao, V., Lifa, T. & Codd, R. (2011). Eur. J. Med. Chem. 46, 1949–1963. [DOI] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Ogata, M., Atobe, H., Kushida, H. & Yamamoto, K. (1971). J. Antibiot. 24, 443–451. [DOI] [PubMed]
- Omar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A. & Glamočlija, J. (2010). Bioorg. Med. Chem. 18, 426–432. [DOI] [PubMed]
- Prakash, O., Kumar, M., Kumar, R., Sharma, C. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 4252–4257. [DOI] [PubMed]
- Protopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968–974. [DOI] [PubMed]
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Sun, S. Y., Yue, P., Chen, X., Hong, W. K. & Lotan, R. (2002). Cancer Res. 62, 2430–2436. [PubMed]
- Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
- Villhauer, E. B., Brinkman, J. A., Naderi, G. B., Burkey, B. F., Dunning, B. E., Prasad, K., Mangold, B. L., Russell, M. E. & Hughes, T. E. (2003). J. Med. Chem. 46, 2774–2789. [DOI] [PubMed]
- Wanka, L., Iqbal, K. & Schreiner, P. R. (2013). Chem. Rev. 113, 3516–3604. [DOI] [PMC free article] [PubMed]
- Wu, W., Chen, Q., Tai, A., Jiang, G. & Ouyang, G. (2015). Bioorg. Med. Chem. Lett. 25, 2243–2246. [DOI] [PubMed]
- Zhang, K., Wang, P., Xuan, L.-N., Fu, X.-Y., Jing, F., Li, S., Liu, Y.-M. & Chen, B.-Q. (2014). Bioorg. Med. Chem. Lett. 24, 5154–5156. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989019004651/su5492sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004651/su5492Isup4.hkl
Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019004651/su5492IIsup5.hkl
Supporting information file. DOI: 10.1107/S2056989019004651/su5492Isup4.cml
Supporting information file. DOI: 10.1107/S2056989019004651/su5492IIsup5.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report








