In the title compound, the configuration about the N=N bond is E, and the central benzene ring is inclined to the pyridine ring by 31. 43 (8)° and to the 4-methoxyphenyl ring by 4.73 (8)°. In the crystal, molecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers with an
(12) ring motif.
Keywords: crystal structure, azo compounds, diazenyl, pyridine, hydrogen bonding, C—H⋯π interactions, offset π–π interactions, supramolecular framework, Hirshfeld surface analysis
Abstract
In the title compound, C20H19N3O3, the configuration about the azo N=N bond is E, and the central benzene ring is inclined to the pyridine ring by 31.43 (8)° and to the 4-methoxyphenyl ring by 4.73 (8)°. In the crystal, molecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers with an R 2 2(12) ring motif. The dimers are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. There are C—H⋯π interactions present within the layers and between the layers, leading to the formation of a supramolecular framework. The layers are also linked by offset π–π interactions, with an interplanar distance of 3.416 (2) Å.
Chemical context
Azo compounds have received much attention in fundamental and applied chemistry (Nishihara, 2004 ▸; İspir, 2009 ▸). The well-known applications of azo dyes in acid–base indicators and chemical sensors and as electron-transfer catalysts have attracted the interest of many investigators (Tunçel & Serin, 2006 ▸). The versatile applications of azo compounds in various fields include dyeing textile fibres, colouring different materials, plastics, biological medical studies, lasers, liquid crystalline displays, electro-optical devices and ink-jet printers in high-technology areas (Gregory, 1991 ▸). The conversion from the trans to the cis form in azo compounds can lead to photochromism. Photochromic compounds are of great interest for the control and measurement of radiation intensity, optical computers and display systems (Dürr & Bouas-Laurent, 1990 ▸), and for potential applications in molecular electronic devices (Martin et al., 1995 ▸). Schiff bases often exhibit various biological activities, including antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975 ▸). The present work is part of an ongoing structural study of heterocyclic compounds (Faizi et al., 2016 ▸, 2017 ▸) and excited state proton-transfer compounds and fluorescent chemosensors (Faizi et al., 2018 ▸; Kumar et al., 2018 ▸; Mukherjee et al., 2018 ▸). In the present work, we report the synthesis, crystal structure and Hirshfeld surface analysis of the title compound, (E)-2-[1-hydroxy-2-(pyridin-2-yl)ethyl]-4-[2-(4-methoxyphenyl)diazen-1-yl]phenol.
Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1 ▸. The configuration about the azo N=N bond is E, and the N2=N3 bond length is 1.256 (2) Å. The molecule is non-planar, with the central benzene ring (C8–C13) being inclined to the pyridine ring (N1/C1–C5) by 31.43 (8)° and to the outer 4-methoxyphenyl ring (C14–C19) by 4.73 (8)°.
Figure 1.
The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.
Supramolecular features
In the crystal, molecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers with an
(12) ring motif (Table 1 ▸ and Fig. 2 ▸). The dimers are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming undulating layers lying parallel to the ac plane (Fig. 3 ▸ and Table 1 ▸). There are C—H⋯π interactions present within the layers and between the layers, leading to the formation of a supramolecular framework (Table 1 ▸ and Fig. 4 ▸). The layers are also linked by offset π–π interactions, involving inversion-related 4-methoxyphenol rings, which strengthen the supramolecular framework [Cg3⋯Cg3vi = 3.584 (2) Å, interplanar distance = 3.416 (2) Å, offset = 1.085 Å; Cg3 is the centroid of the C14–C19 ring; symmetry code: (vi) −x + 1, −y + 1, −z + 1].
Table 1. Hydrogen-bond geometry (Å, °).
Cg2 and Cg3 are the centroids of rings C8–C13 and C14–C19, respectively.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯N1i | 0.82 | 2.04 | 2.801 (2) | 154 |
| O2—H2⋯O1ii | 0.82 | 1.91 | 2.686 (2) | 158 |
| C4—H4⋯O2iii | 0.93 | 2.47 | 3.165 (2) | 132 |
| C3—H3⋯Cg2iv | 0.93 | 2.82 | 3.593 (3) | 141 |
| C19—H19⋯Cg3v | 0.93 | 2.98 | 3.841 (3) | 155 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Figure 2.
A view of the inversion dimer forming an
(12) ring motif; see Table 1 ▸ for details of the hydrogen-bonding (dashed lines) interactions involved.
Figure 3.
A view along the c axis of the crystal packing of the title compound. For clarity, H atoms not involved in hydrogen bonding (dashed lines, see Table 1 ▸) have been omitted.
Figure 4.
A view along the b axis of the crystal packing of the title compound. For clarity, H atoms not involved in hydrogen bonding (dashed lines, see Table 1 ▸) have been omitted. The C—H⋯π interactions are represented by brown arrows and the offset π–π interactions by blue double arrows.
Database survey
A search of the Cambridge Structural Database (CSD, V5.40, update of February 2019; Groom et al., 2016 ▸) for compounds containing the 4-[(4-methoxyphenyl)diazenyl]phenol skeleton gave 14 hits. There are five compounds that closely resemble the title compound, namely (E)-2-acetyl-4-(4-methoxyphenyldiazenyl)phenol (CSD refcode AQIDIO; Yazici et al., 2011 ▸), 2-hydroxy-5-[(E)-(4-methoxyphenyl)diazenyl]benzoic acid (FUGYIP; Basu Baul et al., 2000 ▸), 4-[(E)-(4-methoxyphenyl)diazenyl]-2-((E)-{[4-(phenylamino)phenyl]imino} methyl)phenol (MANTON; Faizi et al., 2017 ▸), 2,6-dimethyl-4-(4-methoxyphenyldiazenyl)phenol (PAHFUA; Kocaokutgen et al., 2004 ▸) and 2-methyl-4-(4-methoxyphenylazo)phenol (VEVKEN; İskeleli et al., 2006 ▸). In all five compounds, the configuration about the N=N bond is E, and the dihedral angles between the 4-methoxyphenyl ring and the other aryl ring are ca 3.04, 5.43, 11.61, 8.34 and 16.01°, respectively. In the title compound, this dihedral angle is 4.73 (8)°, similar to that in AQIDIO and FUGYIP.
Hirshfeld surface analysis and two-dimensional fingerprint plots
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009 ▸) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007 ▸) were performed with CrystalExplorer17 (Turner et al., 2017 ▸). The reader is referred to a recent article by Tiekink and collaborators (Tan et al., 2019 ▸) who have published an excellent explanation of the use of Hirshfeld surface analysis and other calculations to study molecular packing.
Two views, front and back, of the Hirshfeld surface of the title compound mapped over d norm are given in Fig. 5 ▸, and the two-dimensional fingerprint plots are given in Fig. 6 ▸. The latter reveals that the principal intermolecular contacts are, as is often the case, H⋯H at 47.4% (Fig. 6 ▸ b). This is followed by the H⋯C/C⋯H contacts at 24.7% (Fig. 6 ▸ c), related to the C—H⋯π interactions (see Table 1 ▸ for details). The classical O—H⋯N hydrogen bonds (Table 1 ▸) contribute, via N⋯H/H⋯N contacts (11.7%; Fig. 6 ▸ d), while the classical O—H⋯O and non-classical C—H⋯O hydrogen bonds (Table 1 ▸) contribute, via O⋯H/H⋯O contacts (11.5%; Fig. 6 ▸ e). The C⋯C contacts contribute only 3.3% (Fig. 6 ▸ f), but are significant when analysing the offset π–π interactions in the crystal (see §3. Supramolecular features) and the formation of the supramolecular framework.
Figure 5.
Two views, (a) front and (b) back, of the Hirshfeld surface of the title compound mapped over d norm.
Figure 6.
(a) The full two-dimensional fingerprint plot for the title compound, and the two-dimensional fingerprint plots delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N, (e) O⋯H/H⋯O, (f) C⋯C contacts.
Synthesis and crystallization
The title compound was prepared by adding n-butyllithium (4.91 ml, 12.29 mmol, 2.5 M in cyclohexane) to a solution of 2-picoline (1 ml, 10.24 mmol) in anhydrous THF (25 ml) cooled at 195 K. The orange mixture was left to warm up to 143 K and then 5-(4-methoxyphenylazo)salicyaldehyde (MPS) (2.00 g, 8.53 mmol) dissolved in THF (10 ml) was added, giving a yellow solution. The solution was then stirred for 2 h at room temperature. The reaction was quenched by the addition of an aqueous saturated solution of ammonium chloride (50 ml), and the product was extracted with diethyl ether. It was then dried over MgSO4 and purified by column chromatography (cyclohexane/ethyl acetate 9/1) to give a yellow solid (1.10 g, 3.36 mmol, yield: 60%). Yellow needle-like crystals of the title compound were obtained by slow evaporation of a solution in methanol.
Spectroscopic and analytical data: Yellow solid: R f = 0.43 (cyclohexane/ethyl acetate = 9/1); IR νmax (KBr, cm−1): 3170, 2837, 1596, 1500, 1480, 1440, 1428, 1339, 1281, 1257, 1206, 1178, 1140, 1103, 1052, 1032, 1005, 905, 869, 841, 824, 773, 730, 652, 570, 531, 493; 1H NMR (500 MHz, CDCl3) δ 3.14 (dd, 1H, J = 2.1, 15.8Hz), 3.44–3.49 (m, 1H), 3.88 (s, 3H), 5.46–5.49 (m, 1H), 6.98–7.01 (m, 3H), 7.21 (d, 1H, J = 7.6 Hz), 7.62–7.63 (m, 1H), 7.69–7.73 (m, 1H), 7.78 (dd, 1H, J =2.5, 8.6 Hz), 7.84–7.86 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 42.7, 55.6,75.1, 114.2, 118.1, 121.4, 122.4, 124.1, 124.2, 124.3, 126.6, 137.7, 146.2, 147.1, 148.0, 159.2, 159.6, 161.5; HRMS (ESI) for C20H20N3O3 (M + H+): calculated 350.1504, found: 350.1507.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å and C—H = 0.93–0.98 Å, with U iso(H) = 1.5U eq(O-hydroxyl and C-methyl) and 1.2U eq(C) for other H atoms.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C20H19N3O3 |
| M r | 349.38 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 296 |
| a, b, c (Å) | 18.451 (5), 8.169 (5), 11.591 (5) |
| β (°) | 100.059 (5) |
| V (Å3) | 1720.2 (14) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.09 |
| Crystal size (mm) | 0.30 × 0.25 × 0.20 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD area detector |
| Absorption correction | Multi-scan (SADABS; Bruker, 2003 ▸) |
| T min, T max | 0.281, 0.397 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 12516, 3381, 2169 |
| R int | 0.056 |
| (sin θ/λ)max (Å−1) | 0.617 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.045, 0.100, 1.02 |
| No. of reflections | 3381 |
| No. of parameters | 238 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.23, −0.19 |
Supplementary Material
Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019004377/su5489sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004377/su5489Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019004377/su5489Isup3.cml
CCDC reference: 959013
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, for financial support, and the Department of Chemistry, Langat Singh College, B. R. A. Bihar University, for the X-ray data collection.
supplementary crystallographic information
Crystal data
| C20H19N3O3 | F(000) = 736 |
| Mr = 349.38 | Dx = 1.349 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 18.451 (5) Å | Cell parameters from 1490 reflections |
| b = 8.169 (5) Å | θ = 3.7–26.0° |
| c = 11.591 (5) Å | µ = 0.09 mm−1 |
| β = 100.059 (5)° | T = 296 K |
| V = 1720.2 (14) Å3 | Needle, yellow |
| Z = 4 | 0.30 × 0.25 × 0.20 mm |
Data collection
| Bruker APEXII CCD area detector diffractometer | 3381 independent reflections |
| Radiation source: sealed tube | 2169 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.056 |
| phi and ω scans | θmax = 26.0°, θmin = 2.2° |
| Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −22→13 |
| Tmin = 0.281, Tmax = 0.397 | k = −10→10 |
| 12516 measured reflections | l = −14→14 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.100 | H-atom parameters constrained |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0428P)2 + 0.2309P] where P = (Fo2 + 2Fc2)/3 |
| 3381 reflections | (Δ/σ)max = 0.001 |
| 238 parameters | Δρmax = 0.23 e Å−3 |
| 0 restraints | Δρmin = −0.19 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.92494 (7) | 0.95556 (14) | 0.84820 (10) | 0.0173 (3) | |
| H1 | 0.911689 | 1.038088 | 0.879019 | 0.026* | |
| O2 | 0.92659 (7) | 0.63827 (16) | 1.12657 (10) | 0.0192 (3) | |
| H2 | 0.917704 | 0.591870 | 1.185268 | 0.029* | |
| O3 | 0.36888 (7) | 0.68602 (17) | 0.45972 (11) | 0.0273 (4) | |
| N1 | 1.11161 (8) | 0.82930 (19) | 0.98278 (13) | 0.0185 (4) | |
| N2 | 0.68013 (9) | 0.68483 (19) | 0.77772 (13) | 0.0211 (4) | |
| N3 | 0.62436 (9) | 0.6015 (2) | 0.78765 (13) | 0.0215 (4) | |
| C5 | 1.06621 (10) | 0.7859 (2) | 0.88320 (16) | 0.0165 (4) | |
| C4 | 1.08607 (10) | 0.8094 (2) | 0.77434 (16) | 0.0180 (4) | |
| H4 | 1.053929 | 0.778909 | 0.706776 | 0.022* | |
| C1 | 1.17713 (11) | 0.8933 (2) | 0.97259 (17) | 0.0208 (5) | |
| H1A | 1.209217 | 0.920515 | 1.041003 | 0.025* | |
| C2 | 1.20001 (11) | 0.9212 (2) | 0.86736 (17) | 0.0220 (5) | |
| H2A | 1.245666 | 0.967932 | 0.864834 | 0.026* | |
| C3 | 1.15317 (10) | 0.8778 (2) | 0.76592 (16) | 0.0205 (5) | |
| H3 | 1.166638 | 0.894338 | 0.693146 | 0.025* | |
| C6 | 0.99387 (10) | 0.7089 (2) | 0.89526 (16) | 0.0184 (4) | |
| H6A | 1.003179 | 0.620943 | 0.952107 | 0.022* | |
| H6B | 0.972356 | 0.660762 | 0.820624 | 0.022* | |
| C7 | 0.93790 (10) | 0.8263 (2) | 0.93306 (15) | 0.0155 (4) | |
| H7 | 0.958956 | 0.873197 | 1.009369 | 0.019* | |
| C8 | 0.86746 (10) | 0.7372 (2) | 0.94404 (15) | 0.0150 (4) | |
| C9 | 0.80465 (10) | 0.7454 (2) | 0.85966 (16) | 0.0171 (4) | |
| H9 | 0.805051 | 0.809928 | 0.793644 | 0.021* | |
| C10 | 0.74100 (10) | 0.6607 (2) | 0.87024 (15) | 0.0167 (4) | |
| C11 | 0.74037 (10) | 0.5601 (2) | 0.96750 (16) | 0.0200 (5) | |
| H11 | 0.698601 | 0.499720 | 0.974301 | 0.024* | |
| C12 | 0.80215 (10) | 0.5512 (2) | 1.05329 (15) | 0.0176 (4) | |
| H12 | 0.801859 | 0.485124 | 1.118536 | 0.021* | |
| C13 | 0.86500 (10) | 0.6403 (2) | 1.04309 (15) | 0.0155 (4) | |
| C14 | 0.56281 (10) | 0.6283 (2) | 0.69611 (16) | 0.0199 (5) | |
| C15 | 0.56281 (10) | 0.7290 (2) | 0.59953 (16) | 0.0208 (5) | |
| H15 | 0.605862 | 0.782243 | 0.589646 | 0.025* | |
| C16 | 0.49943 (11) | 0.7506 (2) | 0.51820 (17) | 0.0216 (5) | |
| H16 | 0.499724 | 0.818338 | 0.453772 | 0.026* | |
| C17 | 0.43502 (10) | 0.6707 (2) | 0.53292 (16) | 0.0213 (5) | |
| C18 | 0.43565 (11) | 0.5659 (2) | 0.62726 (16) | 0.0235 (5) | |
| H18 | 0.393131 | 0.509452 | 0.635834 | 0.028* | |
| C19 | 0.49901 (10) | 0.5451 (2) | 0.70808 (16) | 0.0228 (5) | |
| H19 | 0.499085 | 0.474861 | 0.771220 | 0.027* | |
| C20 | 0.36725 (11) | 0.7824 (3) | 0.35657 (17) | 0.0298 (5) | |
| H20A | 0.318289 | 0.782488 | 0.311822 | 0.045* | |
| H20B | 0.400634 | 0.736834 | 0.310239 | 0.045* | |
| H20C | 0.381746 | 0.892552 | 0.378279 | 0.045* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0236 (8) | 0.0129 (7) | 0.0162 (7) | 0.0019 (6) | 0.0053 (6) | 0.0002 (6) |
| O2 | 0.0192 (7) | 0.0238 (8) | 0.0139 (7) | −0.0022 (6) | 0.0009 (6) | 0.0042 (6) |
| O3 | 0.0176 (8) | 0.0376 (9) | 0.0252 (8) | −0.0018 (7) | −0.0007 (6) | 0.0062 (7) |
| N1 | 0.0175 (9) | 0.0192 (9) | 0.0187 (9) | 0.0023 (7) | 0.0028 (7) | −0.0024 (7) |
| N2 | 0.0180 (9) | 0.0235 (9) | 0.0221 (9) | −0.0016 (8) | 0.0044 (7) | −0.0040 (8) |
| N3 | 0.0183 (9) | 0.0222 (9) | 0.0239 (9) | −0.0016 (8) | 0.0029 (8) | −0.0038 (7) |
| C5 | 0.0169 (11) | 0.0125 (9) | 0.0197 (10) | 0.0038 (8) | 0.0019 (9) | −0.0002 (8) |
| C4 | 0.0185 (11) | 0.0169 (10) | 0.0180 (10) | 0.0020 (9) | 0.0011 (8) | −0.0029 (8) |
| C1 | 0.0178 (11) | 0.0213 (11) | 0.0214 (11) | 0.0014 (9) | −0.0020 (9) | −0.0053 (9) |
| C2 | 0.0155 (11) | 0.0189 (10) | 0.0326 (12) | −0.0017 (9) | 0.0068 (10) | −0.0011 (9) |
| C3 | 0.0215 (11) | 0.0195 (10) | 0.0222 (11) | 0.0026 (9) | 0.0082 (9) | 0.0030 (9) |
| C6 | 0.0207 (11) | 0.0163 (10) | 0.0185 (10) | 0.0018 (9) | 0.0043 (9) | 0.0020 (8) |
| C7 | 0.0168 (10) | 0.0168 (10) | 0.0125 (9) | 0.0002 (8) | 0.0014 (8) | 0.0024 (8) |
| C8 | 0.0167 (11) | 0.0124 (10) | 0.0158 (10) | 0.0005 (8) | 0.0028 (9) | −0.0029 (8) |
| C9 | 0.0189 (11) | 0.0182 (10) | 0.0150 (10) | 0.0018 (9) | 0.0052 (8) | −0.0007 (8) |
| C10 | 0.0160 (11) | 0.0180 (10) | 0.0153 (10) | 0.0032 (9) | 0.0007 (8) | −0.0034 (8) |
| C11 | 0.0160 (11) | 0.0209 (11) | 0.0241 (11) | −0.0042 (9) | 0.0063 (9) | −0.0019 (9) |
| C12 | 0.0217 (11) | 0.0175 (10) | 0.0150 (10) | −0.0001 (9) | 0.0067 (9) | 0.0010 (8) |
| C13 | 0.0160 (11) | 0.0150 (10) | 0.0156 (10) | 0.0036 (9) | 0.0029 (9) | −0.0027 (8) |
| C14 | 0.0187 (11) | 0.0205 (10) | 0.0201 (11) | 0.0035 (9) | 0.0019 (9) | −0.0054 (9) |
| C15 | 0.0166 (11) | 0.0206 (10) | 0.0263 (11) | −0.0020 (9) | 0.0066 (9) | −0.0045 (9) |
| C16 | 0.0212 (11) | 0.0245 (12) | 0.0191 (11) | 0.0009 (9) | 0.0032 (9) | −0.0011 (9) |
| C17 | 0.0168 (11) | 0.0268 (12) | 0.0192 (11) | 0.0002 (9) | 0.0001 (9) | −0.0068 (9) |
| C18 | 0.0185 (11) | 0.0281 (11) | 0.0245 (11) | −0.0049 (9) | 0.0052 (9) | −0.0018 (9) |
| C19 | 0.0229 (12) | 0.0246 (11) | 0.0215 (11) | −0.0004 (10) | 0.0059 (9) | 0.0015 (9) |
| C20 | 0.0236 (12) | 0.0348 (13) | 0.0286 (12) | −0.0001 (10) | −0.0021 (10) | 0.0049 (10) |
Geometric parameters (Å, º)
| O1—C7 | 1.435 (2) | C7—H7 | 0.9800 |
| O1—H1 | 0.8200 | C8—C9 | 1.381 (2) |
| O2—C13 | 1.358 (2) | C8—C13 | 1.401 (2) |
| O2—H2 | 0.8200 | C9—C10 | 1.387 (3) |
| O3—C17 | 1.365 (2) | C9—H9 | 0.9300 |
| O3—C20 | 1.427 (2) | C10—C11 | 1.396 (3) |
| N1—C1 | 1.341 (2) | C11—C12 | 1.378 (2) |
| N1—C5 | 1.350 (2) | C11—H11 | 0.9300 |
| N2—N3 | 1.256 (2) | C12—C13 | 1.392 (3) |
| N2—C10 | 1.425 (2) | C12—H12 | 0.9300 |
| N3—C14 | 1.429 (2) | C14—C19 | 1.387 (3) |
| C5—C4 | 1.387 (3) | C14—C15 | 1.389 (3) |
| C5—C6 | 1.504 (3) | C15—C16 | 1.379 (3) |
| C4—C3 | 1.377 (3) | C15—H15 | 0.9300 |
| C4—H4 | 0.9300 | C16—C17 | 1.392 (3) |
| C1—C2 | 1.378 (3) | C16—H16 | 0.9300 |
| C1—H1A | 0.9300 | C17—C18 | 1.388 (3) |
| C2—C3 | 1.378 (3) | C18—C19 | 1.375 (3) |
| C2—H2A | 0.9300 | C18—H18 | 0.9300 |
| C3—H3 | 0.9300 | C19—H19 | 0.9300 |
| C6—C7 | 1.528 (3) | C20—H20A | 0.9600 |
| C6—H6A | 0.9700 | C20—H20B | 0.9600 |
| C6—H6B | 0.9700 | C20—H20C | 0.9600 |
| C7—C8 | 1.514 (2) | ||
| C7—O1—H1 | 109.5 | C10—C9—H9 | 119.0 |
| C13—O2—H2 | 109.5 | C9—C10—C11 | 119.44 (17) |
| C17—O3—C20 | 117.19 (15) | C9—C10—N2 | 115.63 (17) |
| C1—N1—C5 | 117.47 (16) | C11—C10—N2 | 124.93 (17) |
| N3—N2—C10 | 114.01 (16) | C12—C11—C10 | 119.43 (17) |
| N2—N3—C14 | 113.99 (16) | C12—C11—H11 | 120.3 |
| N1—C5—C4 | 121.23 (17) | C10—C11—H11 | 120.3 |
| N1—C5—C6 | 117.29 (16) | C11—C12—C13 | 120.52 (17) |
| C4—C5—C6 | 121.47 (17) | C11—C12—H12 | 119.7 |
| C3—C4—C5 | 120.27 (18) | C13—C12—H12 | 119.7 |
| C3—C4—H4 | 119.9 | O2—C13—C12 | 122.62 (16) |
| C5—C4—H4 | 119.9 | O2—C13—C8 | 116.61 (16) |
| N1—C1—C2 | 124.26 (18) | C12—C13—C8 | 120.77 (16) |
| N1—C1—H1A | 117.9 | C19—C14—C15 | 119.35 (17) |
| C2—C1—H1A | 117.9 | C19—C14—N3 | 115.39 (17) |
| C1—C2—C3 | 117.98 (18) | C15—C14—N3 | 125.25 (18) |
| C1—C2—H2A | 121.0 | C16—C15—C14 | 120.48 (18) |
| C3—C2—H2A | 121.0 | C16—C15—H15 | 119.8 |
| C4—C3—C2 | 118.78 (18) | C14—C15—H15 | 119.8 |
| C4—C3—H3 | 120.6 | C15—C16—C17 | 119.75 (18) |
| C2—C3—H3 | 120.6 | C15—C16—H16 | 120.1 |
| C5—C6—C7 | 114.81 (16) | C17—C16—H16 | 120.1 |
| C5—C6—H6A | 108.6 | O3—C17—C18 | 115.46 (18) |
| C7—C6—H6A | 108.6 | O3—C17—C16 | 124.79 (18) |
| C5—C6—H6B | 108.6 | C18—C17—C16 | 119.75 (18) |
| C7—C6—H6B | 108.6 | C19—C18—C17 | 120.14 (19) |
| H6A—C6—H6B | 107.5 | C19—C18—H18 | 119.9 |
| O1—C7—C8 | 111.64 (15) | C17—C18—H18 | 119.9 |
| O1—C7—C6 | 107.77 (14) | C18—C19—C14 | 120.47 (18) |
| C8—C7—C6 | 110.83 (15) | C18—C19—H19 | 119.8 |
| O1—C7—H7 | 108.8 | C14—C19—H19 | 119.8 |
| C8—C7—H7 | 108.8 | O3—C20—H20A | 109.5 |
| C6—C7—H7 | 108.8 | O3—C20—H20B | 109.5 |
| C9—C8—C13 | 117.68 (17) | H20A—C20—H20B | 109.5 |
| C9—C8—C7 | 122.90 (16) | O3—C20—H20C | 109.5 |
| C13—C8—C7 | 119.42 (16) | H20A—C20—H20C | 109.5 |
| C8—C9—C10 | 122.10 (17) | H20B—C20—H20C | 109.5 |
| C8—C9—H9 | 118.9 | ||
| C10—N2—N3—C14 | 178.77 (15) | C9—C10—C11—C12 | 2.2 (3) |
| C1—N1—C5—C4 | −1.1 (3) | N2—C10—C11—C12 | −177.81 (17) |
| C1—N1—C5—C6 | 177.95 (16) | C10—C11—C12—C13 | −0.5 (3) |
| N1—C5—C4—C3 | 0.1 (3) | C11—C12—C13—O2 | 178.50 (16) |
| C6—C5—C4—C3 | −178.93 (17) | C11—C12—C13—C8 | −1.8 (3) |
| C5—N1—C1—C2 | 1.8 (3) | C9—C8—C13—O2 | −177.94 (15) |
| N1—C1—C2—C3 | −1.3 (3) | C7—C8—C13—O2 | 2.6 (2) |
| C5—C4—C3—C2 | 0.3 (3) | C9—C8—C13—C12 | 2.3 (3) |
| C1—C2—C3—C4 | 0.2 (3) | C7—C8—C13—C12 | −177.13 (16) |
| N1—C5—C6—C7 | 71.7 (2) | N2—N3—C14—C19 | −176.48 (16) |
| C4—C5—C6—C7 | −109.2 (2) | N2—N3—C14—C15 | 3.4 (3) |
| C5—C6—C7—O1 | 58.2 (2) | C19—C14—C15—C16 | 2.2 (3) |
| C5—C6—C7—C8 | −179.36 (15) | N3—C14—C15—C16 | −177.72 (18) |
| O1—C7—C8—C9 | 18.4 (2) | C14—C15—C16—C17 | −0.1 (3) |
| C6—C7—C8—C9 | −101.8 (2) | C20—O3—C17—C18 | −175.10 (17) |
| O1—C7—C8—C13 | −162.15 (15) | C20—O3—C17—C16 | 4.5 (3) |
| C6—C7—C8—C13 | 77.7 (2) | C15—C16—C17—O3 | 178.39 (17) |
| C13—C8—C9—C10 | −0.6 (3) | C15—C16—C17—C18 | −2.1 (3) |
| C7—C8—C9—C10 | 178.84 (17) | O3—C17—C18—C19 | −178.22 (17) |
| C8—C9—C10—C11 | −1.7 (3) | C16—C17—C18—C19 | 2.2 (3) |
| C8—C9—C10—N2 | 178.37 (16) | C17—C18—C19—C14 | −0.1 (3) |
| N3—N2—C10—C9 | 177.37 (16) | C15—C14—C19—C18 | −2.0 (3) |
| N3—N2—C10—C11 | −2.6 (3) | N3—C14—C19—C18 | 177.85 (17) |
Hydrogen-bond geometry (Å, º)
Cg2 and Cg3 are the centroids of rings C8–C13 and C14–C19, respectively.
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···N1i | 0.82 | 2.04 | 2.801 (2) | 154 |
| O2—H2···O1ii | 0.82 | 1.91 | 2.686 (2) | 158 |
| C4—H4···O2iii | 0.93 | 2.47 | 3.165 (2) | 132 |
| C3—H3···Cg2iv | 0.93 | 2.82 | 3.593 (3) | 141 |
| C19—H19···Cg3v | 0.93 | 2.98 | 3.841 (3) | 155 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) x, −y+3/2, z+1/2; (iii) x, −y+3/2, z−1/2; (iv) −x+2, y+1/2, −z+3/2; (v) −x+1, y−1/2, −z+3/2.
Funding Statement
This work was funded by University Grants Commission grant .
References
- Basu Baul, T. S., Dhar, S. & Tiekink, E. R. T. (2000). Acta Cryst. C56, 1280–1281. [DOI] [PubMed]
- Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dürr, H. & Bouas-Laurent, H. (1990). In Photochromism: Molecules and Systems. Amsterdam: Elsevier.
- Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.
- Faizi, M. S. H., Dege, N. & Goleva, K. (2017). IUCrData, 2, x170548.
- Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.
- Gregory, P. (1991). Colorants for High Technology, Colour Chemistry: The Design and Synthesis of Organic Dyes and Pigments, edited by A. T. Peters & H. S. Freeman. London, New York: Elsevier.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- İskeleli, N. O., Karabıyık, H., Albayrak, C., Petek, H. & Ağar, E. (2006). Struct. Chem. 17, 393–399.
- İspir, E. (2009). Dyes Pigments, 82, 13–19.
- Kocaokutgen, H., Gür, M., Soylu, M. S. & Lörnnecke, P. (2004). Acta Cryst. E60, o1756–o1758. [DOI] [PubMed]
- Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.
- Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Martin, P. J., Petty, M. C., Bryce, M. R. & Bloor, D. (1995). In An Introduction to Molecular Electronics, ch. 6. New York: Oxford University Press.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). ChemistrySelect, 3, 3787–3796.
- Nishihara, H. (2004). Bull. Chem. Soc. Jpn, 77, 407–428.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
- Tunçel, M. & Serin, S. (2006). Transition Met. Chem. 31, 805–812.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yazici, S., Albayrak, C., Gümrükçüoğlu, I. E., Şenel, I. & Büyükgüngör, O. (2011). Turk. J. Chem. 35, 341–347.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019004377/su5489sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004377/su5489Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019004377/su5489Isup3.cml
CCDC reference: 959013
Additional supporting information: crystallographic information; 3D view; checkCIF report






