Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 9;75(Pt 5):600–603. doi: 10.1107/S2056989019004377

Crystal structure and Hirshfeld surface analysis of (E)-2-[1-hy­droxy-2-(pyridin-2-yl)eth­yl]-4-[2-(4-meth­oxy­phen­yl)diazen-1-yl]phenol

Md Serajul Haque Faizi a,*, Pratik Sen b, Gyanesh Kumar Saxena b, Irina A Golenya c,*
PMCID: PMC6505601  PMID: 31110794

In the title compound, the configuration about the N=N bond is E, and the central benzene ring is inclined to the pyridine ring by 31. 43 (8)° and to the 4-meth­oxy­phenyl ring by 4.73 (8)°. In the crystal, mol­ecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers with an Inline graphic(12) ring motif.

Keywords: crystal structure, azo compounds, diazen­yl, pyridine, hydrogen bonding, C—H⋯π inter­actions, offset π–π inter­actions, supra­molecular framework, Hirshfeld surface analysis

Abstract

In the title compound, C20H19N3O3, the configuration about the azo N=N bond is E, and the central benzene ring is inclined to the pyridine ring by 31.43 (8)° and to the 4-meth­oxy­phenyl ring by 4.73 (8)°. In the crystal, mol­ecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers with an R 2 2(12) ring motif. The dimers are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. There are C—H⋯π inter­actions present within the layers and between the layers, leading to the formation of a supra­molecular framework. The layers are also linked by offset π–π inter­actions, with an inter­planar distance of 3.416 (2) Å.

Chemical context  

Azo compounds have received much attention in fundamental and applied chemistry (Nishihara, 2004; İspir, 2009). The well-known applications of azo dyes in acid–base indicators and chemical sensors and as electron-transfer catalysts have attracted the inter­est of many investigators (Tunçel & Serin, 2006). The versatile applications of azo compounds in various fields include dyeing textile fibres, colouring different materials, plastics, biological medical studies, lasers, liquid crystalline displays, electro-optical devices and ink-jet printers in high-technology areas (Gregory, 1991). The conversion from the trans to the cis form in azo compounds can lead to photochromism. Photochromic compounds are of great inter­est for the control and measurement of radiation intensity, optical computers and display systems (Dürr & Bouas-Laurent, 1990), and for potential applications in mol­ecular electronic devices (Martin et al., 1995). Schiff bases often exhibit various biological activities, including anti­bacterial, anti­cancer, anti-inflammatory and anti­toxic properties (Lozier et al., 1975). The present work is part of an ongoing structural study of heterocyclic compounds (Faizi et al., 2016, 2017) and excited state proton-transfer compounds and fluorescent chemosensors (Faizi et al., 2018; Kumar et al., 2018; Mukherjee et al., 2018). In the present work, we report the synthesis, crystal structure and Hirshfeld surface analysis of the title compound, (E)-2-[1-hy­droxy-2-(pyridin-2-yl)eth­yl]-4-[2-(4-meth­oxy­phen­yl)diazen-1-yl]phenol.graphic file with name e-75-00600-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The configuration about the azo N=N bond is E, and the N2=N3 bond length is 1.256 (2) Å. The mol­ecule is non-planar, with the central benzene ring (C8–C13) being inclined to the pyridine ring (N1/C1–C5) by 31.43 (8)° and to the outer 4-meth­oxy­phenyl ring (C14–C19) by 4.73 (8)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers with an Inline graphic(12) ring motif (Table 1 and Fig. 2). The dimers are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming undulating layers lying parallel to the ac plane (Fig. 3 and Table 1). There are C—H⋯π inter­actions present within the layers and between the layers, leading to the formation of a supra­molecular framework (Table 1 and Fig. 4). The layers are also linked by offset π–π inter­actions, involving inversion-related 4-meth­oxy­phenol rings, which strengthen the supra­molecular framework [Cg3⋯Cg3vi = 3.584 (2) Å, inter­planar distance = 3.416 (2) Å, offset = 1.085 Å; Cg3 is the centroid of the C14–C19 ring; symmetry code: (vi) −x + 1, −y + 1, −z + 1].

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of rings C8–C13 and C14–C19, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.04 2.801 (2) 154
O2—H2⋯O1ii 0.82 1.91 2.686 (2) 158
C4—H4⋯O2iii 0.93 2.47 3.165 (2) 132
C3—H3⋯Cg2iv 0.93 2.82 3.593 (3) 141
C19—H19⋯Cg3v 0.93 2.98 3.841 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

A view of the inversion dimer forming an Inline graphic(12) ring motif; see Table 1 for details of the hydrogen-bonding (dashed lines) inter­actions involved.

Figure 3.

Figure 3

A view along the c axis of the crystal packing of the title compound. For clarity, H atoms not involved in hydrogen bonding (dashed lines, see Table 1) have been omitted.

Figure 4.

Figure 4

A view along the b axis of the crystal packing of the title compound. For clarity, H atoms not involved in hydrogen bonding (dashed lines, see Table 1) have been omitted. The C—H⋯π inter­actions are represented by brown arrows and the offset π–π inter­actions by blue double arrows.

Database survey  

A search of the Cambridge Structural Database (CSD, V5.40, update of February 2019; Groom et al., 2016) for compounds containing the 4-[(4-meth­oxy­phen­yl)diazen­yl]phenol skeleton gave 14 hits. There are five compounds that closely resemble the title compound, namely (E)-2-acetyl-4-(4-meth­oxy­phenyl­diazen­yl)phenol (CSD refcode AQIDIO; Yazici et al., 2011), 2-hy­droxy-5-[(E)-(4-meth­oxy­phen­yl)diazen­yl]benzoic acid (FUGYIP; Basu Baul et al., 2000), 4-[(E)-(4-meth­oxy­phen­yl)diazen­yl]-2-((E)-{[4-(phenyl­amino)­phen­yl]imino} meth­yl)phenol (MANTON; Faizi et al., 2017), 2,6-dimethyl-4-(4-meth­oxy­phenyl­diazen­yl)phenol (PAHFUA; Kocaokutgen et al., 2004) and 2-methyl-4-(4-meth­oxy­phenyl­azo)phenol (VEVKEN; İskeleli et al., 2006). In all five compounds, the configuration about the N=N bond is E, and the dihedral angles between the 4-meth­oxy­phenyl ring and the other aryl ring are ca 3.04, 5.43, 11.61, 8.34 and 16.01°, respectively. In the title compound, this dihedral angle is 4.73 (8)°, similar to that in AQIDIO and FUGYIP.

Hirshfeld surface analysis and two-dimensional fingerprint plots  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The reader is referred to a recent article by Tiekink and collaborators (Tan et al., 2019) who have published an excellent explanation of the use of Hirshfeld surface analysis and other calculations to study mol­ecular packing.

Two views, front and back, of the Hirshfeld surface of the title compound mapped over d norm are given in Fig. 5, and the two-dimensional fingerprint plots are given in Fig. 6. The latter reveals that the principal inter­molecular contacts are, as is often the case, H⋯H at 47.4% (Fig. 6 b). This is followed by the H⋯C/C⋯H contacts at 24.7% (Fig. 6 c), related to the C—H⋯π inter­actions (see Table 1 for details). The classical O—H⋯N hydrogen bonds (Table 1) contribute, via N⋯H/H⋯N contacts (11.7%; Fig. 6 d), while the classical O—H⋯O and non-classical C—H⋯O hydrogen bonds (Table 1) contribute, via O⋯H/H⋯O contacts (11.5%; Fig. 6 e). The C⋯C contacts contribute only 3.3% (Fig. 6 f), but are significant when analysing the offset π–π inter­actions in the crystal (see §3. Supra­molecular features) and the formation of the supra­molecular framework.

Figure 5.

Figure 5

Two views, (a) front and (b) back, of the Hirshfeld surface of the title compound mapped over d norm.

Figure 6.

Figure 6

(a) The full two-dimensional fingerprint plot for the title compound, and the two-dimensional fingerprint plots delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N, (e) O⋯H/H⋯O, (f) C⋯C contacts.

Synthesis and crystallization  

The title compound was prepared by adding n-butyl­lithium (4.91 ml, 12.29 mmol, 2.5 M in cyclo­hexa­ne) to a solution of 2-picoline (1 ml, 10.24 mmol) in anhydrous THF (25 ml) cooled at 195 K. The orange mixture was left to warm up to 143 K and then 5-(4-meth­oxy­phenyl­azo)salicyaldehyde (MPS) (2.00 g, 8.53 mmol) dissolved in THF (10 ml) was added, giving a yellow solution. The solution was then stirred for 2 h at room temperature. The reaction was quenched by the addition of an aqueous saturated solution of ammonium chloride (50 ml), and the product was extracted with diethyl ether. It was then dried over MgSO4 and purified by column chromatography (cyclo­hexa­ne/ethyl acetate 9/1) to give a yellow solid (1.10 g, 3.36 mmol, yield: 60%). Yellow needle-like crystals of the title compound were obtained by slow evaporation of a solution in methanol.

Spectroscopic and analytical data: Yellow solid: R f = 0.43 (cyclo­hexa­ne/ethyl acetate = 9/1); IR νmax (KBr, cm−1): 3170, 2837, 1596, 1500, 1480, 1440, 1428, 1339, 1281, 1257, 1206, 1178, 1140, 1103, 1052, 1032, 1005, 905, 869, 841, 824, 773, 730, 652, 570, 531, 493; 1H NMR (500 MHz, CDCl3) δ 3.14 (dd, 1H, J = 2.1, 15.8Hz), 3.44–3.49 (m, 1H), 3.88 (s, 3H), 5.46–5.49 (m, 1H), 6.98–7.01 (m, 3H), 7.21 (d, 1H, J = 7.6 Hz), 7.62–7.63 (m, 1H), 7.69–7.73 (m, 1H), 7.78 (dd, 1H, J =2.5, 8.6 Hz), 7.84–7.86 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 42.7, 55.6,75.1, 114.2, 118.1, 121.4, 122.4, 124.1, 124.2, 124.3, 126.6, 137.7, 146.2, 147.1, 148.0, 159.2, 159.6, 161.5; HRMS (ESI) for C20H20N3O3 (M + H+): calculated 350.1504, found: 350.1507.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å and C—H = 0.93–0.98 Å, with U iso(H) = 1.5U eq(O-hydroxyl and C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C20H19N3O3
M r 349.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 18.451 (5), 8.169 (5), 11.591 (5)
β (°) 100.059 (5)
V3) 1720.2 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.281, 0.397
No. of measured, independent and observed [I > 2σ(I)] reflections 12516, 3381, 2169
R int 0.056
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.100, 1.02
No. of reflections 3381
No. of parameters 238
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.19

Computer programs: APEX2 and SAINT (Bruker, 2003), SHELXS2018 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL2018 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019004377/su5489sup1.cif

e-75-00600-sup1.cif (469.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004377/su5489Isup2.hkl

e-75-00600-Isup2.hkl (270KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004377/su5489Isup3.cml

CCDC reference: 959013

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, for financial support, and the Department of Chemistry, Langat Singh College, B. R. A. Bihar University, for the X-ray data collection.

supplementary crystallographic information

Crystal data

C20H19N3O3 F(000) = 736
Mr = 349.38 Dx = 1.349 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 18.451 (5) Å Cell parameters from 1490 reflections
b = 8.169 (5) Å θ = 3.7–26.0°
c = 11.591 (5) Å µ = 0.09 mm1
β = 100.059 (5)° T = 296 K
V = 1720.2 (14) Å3 Needle, yellow
Z = 4 0.30 × 0.25 × 0.20 mm

Data collection

Bruker APEXII CCD area detector diffractometer 3381 independent reflections
Radiation source: sealed tube 2169 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.056
phi and ω scans θmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −22→13
Tmin = 0.281, Tmax = 0.397 k = −10→10
12516 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.2309P] where P = (Fo2 + 2Fc2)/3
3381 reflections (Δ/σ)max = 0.001
238 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.92494 (7) 0.95556 (14) 0.84820 (10) 0.0173 (3)
H1 0.911689 1.038088 0.879019 0.026*
O2 0.92659 (7) 0.63827 (16) 1.12657 (10) 0.0192 (3)
H2 0.917704 0.591870 1.185268 0.029*
O3 0.36888 (7) 0.68602 (17) 0.45972 (11) 0.0273 (4)
N1 1.11161 (8) 0.82930 (19) 0.98278 (13) 0.0185 (4)
N2 0.68013 (9) 0.68483 (19) 0.77772 (13) 0.0211 (4)
N3 0.62436 (9) 0.6015 (2) 0.78765 (13) 0.0215 (4)
C5 1.06621 (10) 0.7859 (2) 0.88320 (16) 0.0165 (4)
C4 1.08607 (10) 0.8094 (2) 0.77434 (16) 0.0180 (4)
H4 1.053929 0.778909 0.706776 0.022*
C1 1.17713 (11) 0.8933 (2) 0.97259 (17) 0.0208 (5)
H1A 1.209217 0.920515 1.041003 0.025*
C2 1.20001 (11) 0.9212 (2) 0.86736 (17) 0.0220 (5)
H2A 1.245666 0.967932 0.864834 0.026*
C3 1.15317 (10) 0.8778 (2) 0.76592 (16) 0.0205 (5)
H3 1.166638 0.894338 0.693146 0.025*
C6 0.99387 (10) 0.7089 (2) 0.89526 (16) 0.0184 (4)
H6A 1.003179 0.620943 0.952107 0.022*
H6B 0.972356 0.660762 0.820624 0.022*
C7 0.93790 (10) 0.8263 (2) 0.93306 (15) 0.0155 (4)
H7 0.958956 0.873197 1.009369 0.019*
C8 0.86746 (10) 0.7372 (2) 0.94404 (15) 0.0150 (4)
C9 0.80465 (10) 0.7454 (2) 0.85966 (16) 0.0171 (4)
H9 0.805051 0.809928 0.793644 0.021*
C10 0.74100 (10) 0.6607 (2) 0.87024 (15) 0.0167 (4)
C11 0.74037 (10) 0.5601 (2) 0.96750 (16) 0.0200 (5)
H11 0.698601 0.499720 0.974301 0.024*
C12 0.80215 (10) 0.5512 (2) 1.05329 (15) 0.0176 (4)
H12 0.801859 0.485124 1.118536 0.021*
C13 0.86500 (10) 0.6403 (2) 1.04309 (15) 0.0155 (4)
C14 0.56281 (10) 0.6283 (2) 0.69611 (16) 0.0199 (5)
C15 0.56281 (10) 0.7290 (2) 0.59953 (16) 0.0208 (5)
H15 0.605862 0.782243 0.589646 0.025*
C16 0.49943 (11) 0.7506 (2) 0.51820 (17) 0.0216 (5)
H16 0.499724 0.818338 0.453772 0.026*
C17 0.43502 (10) 0.6707 (2) 0.53292 (16) 0.0213 (5)
C18 0.43565 (11) 0.5659 (2) 0.62726 (16) 0.0235 (5)
H18 0.393131 0.509452 0.635834 0.028*
C19 0.49901 (10) 0.5451 (2) 0.70808 (16) 0.0228 (5)
H19 0.499085 0.474861 0.771220 0.027*
C20 0.36725 (11) 0.7824 (3) 0.35657 (17) 0.0298 (5)
H20A 0.318289 0.782488 0.311822 0.045*
H20B 0.400634 0.736834 0.310239 0.045*
H20C 0.381746 0.892552 0.378279 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0236 (8) 0.0129 (7) 0.0162 (7) 0.0019 (6) 0.0053 (6) 0.0002 (6)
O2 0.0192 (7) 0.0238 (8) 0.0139 (7) −0.0022 (6) 0.0009 (6) 0.0042 (6)
O3 0.0176 (8) 0.0376 (9) 0.0252 (8) −0.0018 (7) −0.0007 (6) 0.0062 (7)
N1 0.0175 (9) 0.0192 (9) 0.0187 (9) 0.0023 (7) 0.0028 (7) −0.0024 (7)
N2 0.0180 (9) 0.0235 (9) 0.0221 (9) −0.0016 (8) 0.0044 (7) −0.0040 (8)
N3 0.0183 (9) 0.0222 (9) 0.0239 (9) −0.0016 (8) 0.0029 (8) −0.0038 (7)
C5 0.0169 (11) 0.0125 (9) 0.0197 (10) 0.0038 (8) 0.0019 (9) −0.0002 (8)
C4 0.0185 (11) 0.0169 (10) 0.0180 (10) 0.0020 (9) 0.0011 (8) −0.0029 (8)
C1 0.0178 (11) 0.0213 (11) 0.0214 (11) 0.0014 (9) −0.0020 (9) −0.0053 (9)
C2 0.0155 (11) 0.0189 (10) 0.0326 (12) −0.0017 (9) 0.0068 (10) −0.0011 (9)
C3 0.0215 (11) 0.0195 (10) 0.0222 (11) 0.0026 (9) 0.0082 (9) 0.0030 (9)
C6 0.0207 (11) 0.0163 (10) 0.0185 (10) 0.0018 (9) 0.0043 (9) 0.0020 (8)
C7 0.0168 (10) 0.0168 (10) 0.0125 (9) 0.0002 (8) 0.0014 (8) 0.0024 (8)
C8 0.0167 (11) 0.0124 (10) 0.0158 (10) 0.0005 (8) 0.0028 (9) −0.0029 (8)
C9 0.0189 (11) 0.0182 (10) 0.0150 (10) 0.0018 (9) 0.0052 (8) −0.0007 (8)
C10 0.0160 (11) 0.0180 (10) 0.0153 (10) 0.0032 (9) 0.0007 (8) −0.0034 (8)
C11 0.0160 (11) 0.0209 (11) 0.0241 (11) −0.0042 (9) 0.0063 (9) −0.0019 (9)
C12 0.0217 (11) 0.0175 (10) 0.0150 (10) −0.0001 (9) 0.0067 (9) 0.0010 (8)
C13 0.0160 (11) 0.0150 (10) 0.0156 (10) 0.0036 (9) 0.0029 (9) −0.0027 (8)
C14 0.0187 (11) 0.0205 (10) 0.0201 (11) 0.0035 (9) 0.0019 (9) −0.0054 (9)
C15 0.0166 (11) 0.0206 (10) 0.0263 (11) −0.0020 (9) 0.0066 (9) −0.0045 (9)
C16 0.0212 (11) 0.0245 (12) 0.0191 (11) 0.0009 (9) 0.0032 (9) −0.0011 (9)
C17 0.0168 (11) 0.0268 (12) 0.0192 (11) 0.0002 (9) 0.0001 (9) −0.0068 (9)
C18 0.0185 (11) 0.0281 (11) 0.0245 (11) −0.0049 (9) 0.0052 (9) −0.0018 (9)
C19 0.0229 (12) 0.0246 (11) 0.0215 (11) −0.0004 (10) 0.0059 (9) 0.0015 (9)
C20 0.0236 (12) 0.0348 (13) 0.0286 (12) −0.0001 (10) −0.0021 (10) 0.0049 (10)

Geometric parameters (Å, º)

O1—C7 1.435 (2) C7—H7 0.9800
O1—H1 0.8200 C8—C9 1.381 (2)
O2—C13 1.358 (2) C8—C13 1.401 (2)
O2—H2 0.8200 C9—C10 1.387 (3)
O3—C17 1.365 (2) C9—H9 0.9300
O3—C20 1.427 (2) C10—C11 1.396 (3)
N1—C1 1.341 (2) C11—C12 1.378 (2)
N1—C5 1.350 (2) C11—H11 0.9300
N2—N3 1.256 (2) C12—C13 1.392 (3)
N2—C10 1.425 (2) C12—H12 0.9300
N3—C14 1.429 (2) C14—C19 1.387 (3)
C5—C4 1.387 (3) C14—C15 1.389 (3)
C5—C6 1.504 (3) C15—C16 1.379 (3)
C4—C3 1.377 (3) C15—H15 0.9300
C4—H4 0.9300 C16—C17 1.392 (3)
C1—C2 1.378 (3) C16—H16 0.9300
C1—H1A 0.9300 C17—C18 1.388 (3)
C2—C3 1.378 (3) C18—C19 1.375 (3)
C2—H2A 0.9300 C18—H18 0.9300
C3—H3 0.9300 C19—H19 0.9300
C6—C7 1.528 (3) C20—H20A 0.9600
C6—H6A 0.9700 C20—H20B 0.9600
C6—H6B 0.9700 C20—H20C 0.9600
C7—C8 1.514 (2)
C7—O1—H1 109.5 C10—C9—H9 119.0
C13—O2—H2 109.5 C9—C10—C11 119.44 (17)
C17—O3—C20 117.19 (15) C9—C10—N2 115.63 (17)
C1—N1—C5 117.47 (16) C11—C10—N2 124.93 (17)
N3—N2—C10 114.01 (16) C12—C11—C10 119.43 (17)
N2—N3—C14 113.99 (16) C12—C11—H11 120.3
N1—C5—C4 121.23 (17) C10—C11—H11 120.3
N1—C5—C6 117.29 (16) C11—C12—C13 120.52 (17)
C4—C5—C6 121.47 (17) C11—C12—H12 119.7
C3—C4—C5 120.27 (18) C13—C12—H12 119.7
C3—C4—H4 119.9 O2—C13—C12 122.62 (16)
C5—C4—H4 119.9 O2—C13—C8 116.61 (16)
N1—C1—C2 124.26 (18) C12—C13—C8 120.77 (16)
N1—C1—H1A 117.9 C19—C14—C15 119.35 (17)
C2—C1—H1A 117.9 C19—C14—N3 115.39 (17)
C1—C2—C3 117.98 (18) C15—C14—N3 125.25 (18)
C1—C2—H2A 121.0 C16—C15—C14 120.48 (18)
C3—C2—H2A 121.0 C16—C15—H15 119.8
C4—C3—C2 118.78 (18) C14—C15—H15 119.8
C4—C3—H3 120.6 C15—C16—C17 119.75 (18)
C2—C3—H3 120.6 C15—C16—H16 120.1
C5—C6—C7 114.81 (16) C17—C16—H16 120.1
C5—C6—H6A 108.6 O3—C17—C18 115.46 (18)
C7—C6—H6A 108.6 O3—C17—C16 124.79 (18)
C5—C6—H6B 108.6 C18—C17—C16 119.75 (18)
C7—C6—H6B 108.6 C19—C18—C17 120.14 (19)
H6A—C6—H6B 107.5 C19—C18—H18 119.9
O1—C7—C8 111.64 (15) C17—C18—H18 119.9
O1—C7—C6 107.77 (14) C18—C19—C14 120.47 (18)
C8—C7—C6 110.83 (15) C18—C19—H19 119.8
O1—C7—H7 108.8 C14—C19—H19 119.8
C8—C7—H7 108.8 O3—C20—H20A 109.5
C6—C7—H7 108.8 O3—C20—H20B 109.5
C9—C8—C13 117.68 (17) H20A—C20—H20B 109.5
C9—C8—C7 122.90 (16) O3—C20—H20C 109.5
C13—C8—C7 119.42 (16) H20A—C20—H20C 109.5
C8—C9—C10 122.10 (17) H20B—C20—H20C 109.5
C8—C9—H9 118.9
C10—N2—N3—C14 178.77 (15) C9—C10—C11—C12 2.2 (3)
C1—N1—C5—C4 −1.1 (3) N2—C10—C11—C12 −177.81 (17)
C1—N1—C5—C6 177.95 (16) C10—C11—C12—C13 −0.5 (3)
N1—C5—C4—C3 0.1 (3) C11—C12—C13—O2 178.50 (16)
C6—C5—C4—C3 −178.93 (17) C11—C12—C13—C8 −1.8 (3)
C5—N1—C1—C2 1.8 (3) C9—C8—C13—O2 −177.94 (15)
N1—C1—C2—C3 −1.3 (3) C7—C8—C13—O2 2.6 (2)
C5—C4—C3—C2 0.3 (3) C9—C8—C13—C12 2.3 (3)
C1—C2—C3—C4 0.2 (3) C7—C8—C13—C12 −177.13 (16)
N1—C5—C6—C7 71.7 (2) N2—N3—C14—C19 −176.48 (16)
C4—C5—C6—C7 −109.2 (2) N2—N3—C14—C15 3.4 (3)
C5—C6—C7—O1 58.2 (2) C19—C14—C15—C16 2.2 (3)
C5—C6—C7—C8 −179.36 (15) N3—C14—C15—C16 −177.72 (18)
O1—C7—C8—C9 18.4 (2) C14—C15—C16—C17 −0.1 (3)
C6—C7—C8—C9 −101.8 (2) C20—O3—C17—C18 −175.10 (17)
O1—C7—C8—C13 −162.15 (15) C20—O3—C17—C16 4.5 (3)
C6—C7—C8—C13 77.7 (2) C15—C16—C17—O3 178.39 (17)
C13—C8—C9—C10 −0.6 (3) C15—C16—C17—C18 −2.1 (3)
C7—C8—C9—C10 178.84 (17) O3—C17—C18—C19 −178.22 (17)
C8—C9—C10—C11 −1.7 (3) C16—C17—C18—C19 2.2 (3)
C8—C9—C10—N2 178.37 (16) C17—C18—C19—C14 −0.1 (3)
N3—N2—C10—C9 177.37 (16) C15—C14—C19—C18 −2.0 (3)
N3—N2—C10—C11 −2.6 (3) N3—C14—C19—C18 177.85 (17)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of rings C8–C13 and C14–C19, respectively.

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.82 2.04 2.801 (2) 154
O2—H2···O1ii 0.82 1.91 2.686 (2) 158
C4—H4···O2iii 0.93 2.47 3.165 (2) 132
C3—H3···Cg2iv 0.93 2.82 3.593 (3) 141
C19—H19···Cg3v 0.93 2.98 3.841 (3) 155

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) x, −y+3/2, z+1/2; (iii) x, −y+3/2, z−1/2; (iv) −x+2, y+1/2, −z+3/2; (v) −x+1, y−1/2, −z+3/2.

Funding Statement

This work was funded by University Grants Commission grant .

References

  1. Basu Baul, T. S., Dhar, S. & Tiekink, E. R. T. (2000). Acta Cryst. C56, 1280–1281. [DOI] [PubMed]
  2. Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dürr, H. & Bouas-Laurent, H. (1990). In Photochromism: Molecules and Systems. Amsterdam: Elsevier.
  4. Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.
  5. Faizi, M. S. H., Dege, N. & Goleva, K. (2017). IUCrData, 2, x170548.
  6. Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.
  7. Gregory, P. (1991). Colorants for High Technology, Colour Chemistry: The Design and Synthesis of Organic Dyes and Pigments, edited by A. T. Peters & H. S. Freeman. London, New York: Elsevier.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. İskeleli, N. O., Karabıyık, H., Albayrak, C., Petek, H. & Ağar, E. (2006). Struct. Chem. 17, 393–399.
  10. İspir, E. (2009). Dyes Pigments, 82, 13–19.
  11. Kocaokutgen, H., Gür, M., Soylu, M. S. & Lörnnecke, P. (2004). Acta Cryst. E60, o1756–o1758. [DOI] [PubMed]
  12. Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.
  13. Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. [DOI] [PMC free article] [PubMed]
  14. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  15. Martin, P. J., Petty, M. C., Bryce, M. R. & Bloor, D. (1995). In An Introduction to Molecular Electronics, ch. 6. New York: Oxford University Press.
  16. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  17. Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). ChemistrySelect, 3, 3787–3796.
  18. Nishihara, H. (2004). Bull. Chem. Soc. Jpn, 77, 407–428.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  21. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  24. Tunçel, M. & Serin, S. (2006). Transition Met. Chem. 31, 805–812.
  25. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  26. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  27. Yazici, S., Albayrak, C., Gümrükçüoğlu, I. E., Şenel, I. & Büyükgüngör, O. (2011). Turk. J. Chem. 35, 341–347.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989019004377/su5489sup1.cif

e-75-00600-sup1.cif (469.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004377/su5489Isup2.hkl

e-75-00600-Isup2.hkl (270KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004377/su5489Isup3.cml

CCDC reference: 959013

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES