Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 5;75(Pt 5):580–584. doi: 10.1107/S2056989019004298

Crystal structure of fac-aqua­[(E)-4-(benzo[d]thia­zol-2-yl)-N-(pyridin-2-yl­methyl­idene)aniline-κ2 N,N′]tricarbonylrhenium(I) hexa­fluorido­phosphate methanol monosolvate

Ioanna Roupa a, Michael Kaplanis a, Catherine Raptopoulou b, Maria Pelecanou c, Ioannis Pirmettis a, Minas Papadopoulos a, Vassilis Psycharis b,*
PMCID: PMC6505602  PMID: 31110790

A structural trans effect study and the packing arrangement of a fac-tricarbonyl ReI ‘2 + 1’ mixed-ligand complex are reported.

Keywords: crystal structure, tricarbonyl rhenium (I), mixed ligand complex, 2-(4′-amino­phen­yl)benzo­thia­zole, trans effect, Hirshfeld surface analysis

Abstract

In the title compound, fac-[Re(C19H13N3S)(CO)3(H2O)]PF6·CH3OH, the coordination environment of the ReI atom is octa­hedral with a C3N2O coordination set. In this mol­ecule, the N,N′ bidentate ligand, (E)-4-(benzo[d]thia­zol-2-yl)-N-(pyridin-2-yl­methyl­idene)aniline, and the monodentate aqua ligand occupy the three available coordination sites of the [Re(CO)3]+ core, generating a ‘2 + 1’ mixed-ligand complex. In this complex, the Re—C bonds of the carbonyl ligands trans to the coordinating N,N′ atoms of the bidentate ligand are longer than the Re—C bond of the carbonyl group trans to the aqua ligand, in accordance with the intensity of their trans effects. The complex is positively charged with PF6 as the counter-ion. In the structure, the complexes form dimers through π–π inter­molecular inter­actions. O—H⋯O and O—H⋯N hydrogen bonds lead to the formation of stacks parallel to the a axis, which further extend into layers parallel to (0Inline graphic1). Through O—H⋯F hydrogen bonds between the complexes and the PF6 counter-anions, a three-dimensional network is established.

Chemical context  

‘2 + 1’ mixed-ligand complexes of general formula fac-[M(CO)3 L 1 L 2], where M is Re or 99mTc, L 1 is a bidentate ligand (bi­pyridine, 2-picolinic acid, acetyl­acetone, etc) and L 2 is a monodentate ligand (aqua, imidazole, phosphine or isocyanide), have been studied extensively for the development of novel radiopharmaceuticals for diagnosis (M = 99mTc) or radiotherapy (M = 186/188Re) (Knopf et al., 2017; Mundwiler et al., 2004; Papagiannopoulou et al., 2014; Tri­antis et al., 2013; Shegani et al., 2017). Furthermore, recent studies have revealed the potential of such fac-[Re(CO)3 L 1 L 2] complexes as anti­cancer agents (Leonidova & Gasser, 2014). According to the ‘2 + 1’ strategy, the inter­mediate aqua complex fac-[Re(CO)3(L 2)(H2O)] plays a crucial role. The labile water ligand can readily be substituted by a monodentate ligand L 2 (typically heterocyclic aromatic amines, isocyanides, phosphines), generating the final fac-[Re(CO)3 L 2 L 1] product in high yield. The ‘2 + 1’ complexes are characterized by kinetic stability and structural variability that facilitates the tuning of physicochemical properties and tethering of pharmacophores of inter­est towards the generation of targeted multifunctional compounds.graphic file with name e-75-00580-scheme1.jpg

As part of our ongoing research in the field of Re/Tc coordination chemistry, we report herein the structure of the ‘2 + 1’ tricarbonyl rhenium(I) complex fac-[Re(CO)3(NNbz)(H2O)]PF6·CH3OH where the bidentate NNbz ligand is (E)-4-(benzo[d]thia­zol-2-yl)-N-(pyridin-2-yl­methyl­idene)aniline. The NNbz ligand carries the 2-(4′-amino­phen­yl)benzo­thia­zole scaffold, which also exhibits inter­esting biol­ogical properties against a variety of targets and presents great potential for diagnostic/therapeutic applications (Keri et al., 2015; Kiritsis et al., 2017; Bradshaw & Westwell, 2004).

Structural commentary  

The asymmetric unit of the title compound comprises one fac-aqua­tricarbonyl-(E)-4-(benzo[d]thia­zol-2-yl)-N-(pyridin-2-yl­methyl­idene)aniline–rhenium(I) complex mol­ecule, one PF6 counter-anion and one methanol solvent mol­ecule (Fig. 1). Within the complex, the ReI atom presents a distorted octa­hedral C3N2O coordination set with the three tricarbonyl ligands in facial and the bidentate di­imine (NNbz) and the monodentate water ligands in a cis arrangement (Fig. 1). The two coordinating nitro­gen atoms N1 and N2 of the bidentate NNbz ligand together with two carbonyl carbon atoms define the equatorial plane with almost perfect planarity (deviation from the least-squares plane = 0.006 Å). The Re—N1 and Re—N2 distances are 2.177 (2) and 2.194 (2) Å, respectively. The oxygen atom of the water mol­ecule [Re—O1W = 2.189 (2) Å] and the carbon atom from the third carbonyl ligand define the axial direction of the octa­hedron. Both the Re—N and the Re—O distances fall in the range of observed values in complexes with a di­imine, aqua or tricarbonyl core (Mella et al., 2016; Connick et al., 1999; Schutte et al. 2011; Salignac et al., 2003; Knopf et al., 2017; Rillema et al., 2007; Barbazán et al., 2009; Carrington et al., 2016; Tzeng et al., 2011; Grewe et al., 2003). The NNbz ligand deviates from planarity as the dihedral angle between the central phenyl ring and the benzo­thia­zole group is 20.48 (8)°, while the dihedral angle between the phenyl ring and the pyridine ring is 39.13 (8)°.

Figure 1.

Figure 1

Mol­ecular structure and labeling scheme for the title ReI complex, the methanol solvent mol­ecule and the PF6 counter-anion. Displacement ellipsoids are drawn at the 50% probability level. Cyan and dark-green dashed lines indicate the O1W—H101⋯O1M and O1W—H102⋯F1 hydrogen bonds, respectively.

Supra­molecular features  

The counter-anion and the methanol solvent mol­ecules form O1W—H102⋯F1 and O1W—H101⋯O1M hydrogen bonds with the aqua ligand (Fig. 1, Table 1). Neighbouring complexes present a π–π overlap between their coordinating NNbz ligands, forming dimers (Fig. 2). More specifically, the mol­ecules are centrosymetrically related and thus exhibit parallel phenyl rings of the NNbz ligand at a distance of 3.50 (1) Å. In addition, both the pyridine rings and the phenyl rings of the benzo­thia­zole parts of neighbouring centrosymmetrically related NNbz ligands overlap with each other, with their respective centroids Cg1 and Cg2 lying at a distance of 3.8525 (1) Å and forming an angle of 18.67 (6)° [Cg1 and Cg2′ are the centroids of the N1, C4–C8 and C17′–C22′ rings; symmetry code: (′) 1 − x, 1 − y, 1 − z; Fig. 2]. The dimers are stacked along the a-axis direction. Methanol solvent mol­ecules are inter­leaved between adjacent dimers within the stacked mol­ecules and are linked through inter­molecular O1W—H101⋯O1M and O1M—H201⋯N3 inter­actions (Fig. 3). These stacks are extended into layers parallel to (0Inline graphic1) through C5—H5⋯O2 hydrogen bonds and further O1W—H102⋯F1, C9—H9⋯F3ii (Table 1) hydrogen bonds between the counter-anions and the coordinating ligands result in the formation of a three-dimensional network structure (Fig. 4).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.91 (4) 2.59 (4) 3.439 (4) 156 (3)
C9—H9⋯F3ii 0.94 (3) 2.47 (3) 3.390 (3) 166 (2)
O1W—H101⋯O1M 0.91 (4) 1.67 (4) 2.558 (3) 165 (4)
O1W—H102⋯F1 0.72 (4) 2.36 (4) 3.059 (5) 164 (4)
O1M—H201⋯N3iii 0.88 (5) 2.01 (5) 2.842 (3) 158 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Dimers of complexes formed through π–π overlap between their coordinating NNbz ligands and inter­molecular inter­actions between dimers with methanol solvent mol­ecules and PF6 counter-anions. Colour code as in Fig. 1 with the additional O1M—H201⋯N3 inter­actions indicated by orange dashed lines. [Symmetry codes: (′) 1 − x, 1 − y, 1 − z; (′′) 2 − x, 1 − y, 1 − z; (′′′) −1 + x, y, z.]

Figure 3.

Figure 3

Layers of complexes parallel to (0Inline graphic1). C5—H5⋯O2 hydrogen bonds are indicated by yellow dashed lines. For the atoms and the rest of the bonds, the colour code is as in Fig. 2.

Figure 4.

Figure 4

Three-dimensional arrangement of layers. C9—H9⋯F3ii hydrogen bonds are indicated by black dashed lines. For the atoms and the rest of the bonds, the colour code is as in previous figures. The cyan arrows indicate the position of the layers within the structure and the orange ones the areas where the complexes inter­act through π–π inter­actions.

Hirshfeld surface study  

The view of the Hirshfeld surface mapped with d norm (Fig. 5 a) reveals almost all of the hydrogen-bonding inter­actions discussed above as intense red areas. The same view of the surface mapped with the curvedness property reveals the contact areas of the tricarbonyl part of the complex with the benzo­thia­zole end of the coordinating ligand, as indicated by patches of the same shape (circled areas in Fig. 5 b). Finally, the plot of the surface mapped with the shape-index property (Fig. 5 c) gives clear evidence that this part of the mol­ecule inter­acts with a centrosymmetrically related neighbour, as the shape of the patterns on the surface are related centrosymmetrically. The rhombic and triangular shapes with the complementary red(hollows)/blue(bumps) colours are characteristic of π–π inter­actions. The asymmetric distribution of points in the fingerprint plot for the complex shown in Fig. 5 d is indicative that there are contributions from different mol­ecules. The relative contributions for the H⋯H, O⋯H, H⋯F, C⋯H and C⋯C inter­actions are 23.2, 20.2, 16.2, 9.7 and 8.2%, respectively, which, in total, amount to 96.4%. The rest of the inter­molecular inter­actions include O⋯S (3.1%), H⋯N (2.3%), C⋯S (2.4%) and C⋯N (1.5%), as well as other inter­actions with <1% contribution.

Figure 5.

Figure 5

Views of the Hirshfeld surfaces mapped over (a) d norm, (b) curvedness and (c) shape-index, and (d) the fingerprint plot for the title complex. The red circles in (b) indicate patches of the same shape corresponding to contact areas of neighbouring complexes. The central ellipse in (c) indicates the π–π overlap of the central phenyl rings, and the two circles at both ends of the surface the overlap of the pyridine ring and the phenyl ring of the benzo­thia­zol part of neighbouring centrosymmetrically related NNbz ligands. In (d), d e and d i are the distances to the nearest atom centre exterior and inter­ior to the surface. A1 and A4 stand for the acceptor atoms in O1W—H201⋯N3 and C⋯H inter­actions. A2, B2 indicate the acceptor atom and the H-donated atom in the C5—H5⋯O2 inter­action, B1 the H101 atom in the O1W—H101⋯O1M inter­action, and B3, C and D the H⋯F, H⋯H and C⋯C inter­actions, respectively.

Database survey  

A search of the Cambridge Structural Database (Version 5.39, update of August 2918; Groom et al., 2016) revealed twelve fac-aqua­tricarbonyl ReI complexes with different N,N′-bidentate ligands. A thirteenth structure, FIWQUX-2 (Schutte et al., 2011), consists of two symmetry-independent complexes. The Re—N bond lengths observed in the present study (Table 2) are longer than those in most of the previously studied complexes, and close to the longer ones observed in the SEHGUK structure (Knopf et al., 2017) with the 4,7-diphenyl-1,10-phenanthroline bidentate ligand. As can be seen in Table 2, the Re—N bond lengths fall in the range 2.142–2.210 Å. The corresponding range for the Re—O1W bond is 2.143–2.214 Å, with the value observed in the present study falling in the middle of this range. The values of the Re—C bond lengths are also given. In all cases, the Re—C bonds trans to water mol­ecule are shorter than the Re—C bonds trans to N atoms, in accordance with the intensity of the trans effect of the coordinating ligands.

Table 2. Characteristic bond lengths (Å) for a series of ReI complexes with a fac-aqua tricarbonyl di­imine octa­hedral core.

  Re—N1 Re—C1 Re—N2 Re—C2 Re—O1W Re—C3
Present work 2.177 (2) 1.925 (3) 2.194 (2) 1.920 (3) 2.189 (2) 1.899 (3)
ENAJAGa 2.156 (7) 1.935 (11) 2.165 (7) 1.884 (10) 2.176 (7) 1.886 (11)
ENAJEKa 2.173 (5) 1.911 (7) 2.178 (5) 1.921 (7) 2.191 (5) 1.879 (7)
FIWQUX-1b 2.168 (7) 1.91 (1) 2.180 (5) 1.914 (8) 2.215 (6) 1.88 (1)
FIWQUX-2b 2.164 (7) 1.902 (10) 2.178 (7) 1.909 (10) 2.210 (6) 1.868 (10)
KAWLOL c 2.168 (4) 1.914 (6) 2.175 (4) 1.929 (7) 2.162 (3) 1.893 (5)
UHUNOAd 2.161 (5) 1.938 (7) 2.183 (5) 1.931 (7) 2.181 (5) 1.898 (7)
  2.160 (5) 1.928 (6) 2.174 (4) 1.926 (9) 2.196 (6) 1.915 (7)
SEHGUKe 2.210 (3) 1.928 (4) 2.200 (3) 1.929 (4) 2.196 (2) 1.896 (4)
PIDYILff 2.167 (2) 1.918 (3) 2.167 (2) 1.918 (3) 2.143 (3) 1.912 (4)
UHUNUGd 2.161 (6) 1.901 (9) 2.165 (6) 1.914 (10) 2.190 (5) 1.882 (10)
  2.165 (6) 1.901 (9) 2.161 (6) 1.91 (1) 2.190 (5) 1.88 (1)
VUDWATg 2.185 (4) 1.888 (7) 2.175 (6) 1.925 (8) 2.165 (5) 1.853 (9)
ETEDEOh 2.186 (5) 1.933 (6) 2.178 (5) 1.902 (7) 2.155 (5) 1.896 (7)
IZORIZ i 2.203 (3) 1.912 (4) 2.142 (3) 1.922 (4) 2.173 (3) 1.904 (4)
TUTDANj 2.168 (6) 1.925 (8) 2.175 (6) 1.913 (9) 2.175 (6) 1.89 (1)

Notes: (a) 1,10-Phenanthroline (Connick et al., 1999); (b) 1,10-phenanthroline (Schutte et al., 2011); (c) 1,10-phenanthroline (Schutte et al., 2011); (d) 1,10-phenanthroline (Salignac et al., 2003); (e) 4,7-diphenyl-1,10-phenanthroline (Knopf et al., 2017); (f) 2,2′-bi­pyrazine (Rillema et al., 2007); (g) 2-hy­droxy­benzoic acid hydrazide, (Barbazán et al., 2009); (h) 2-(2′-pyrid­yl)benzo­thia­zole (Carrington et al., 2016); (i) 2-(2′-pyrid­yl)benzimidazole (Tzeng et al., 2011); (j) acetyl­pyridine benzoyl­hydrazone (Grewe et al., 2003).

Synthesis and crystallization  

A mixture of Re(CO)5Br (81 mg, 0.2 mmol) and the NNbz ligand (69 mg, 0.22 mmol) was suspended in 7 ml toluene and refluxed under an N2 atmosphere for 4 h. The red suspension was then allowed to cool to room temperature. The red solid that formed was dissolved in aceto­nitrile (25 ml) and a batch of AgPF6 (55 mg, 0.22 mmol) was added. The reaction mixture was refluxed for 18 h under an N2 atmosphere. The round flask was covered with aluminium foil to avoid exposure to any ambient light. The reaction mixture was allowed to cool for 1 h to 273 K, and then the precipitate (AgBr) was filtered off through celite. The yellow–orange filtrate was evaporated to dryness under reduced pressure, and the residue was recrystallized from aceto­nitrile/water to obtain 67 mg (45% yield) of the aqua complex. Analysis calculated (%) for C22H15F6N3O4PReS: C, 35.30; H, 2.02; N, 5.61; found: C: 35.43, H: 2.05, N: 5.52. IR (cm−1): 2034, 1941, 1914 cm−1 (vibration tension of the C≡O bond), 832, 556 cm−1 (due to the counter-ion PF6 ). 1H NMR (DMSO-d 6), δ (ppm): 9.58, 9.15, 8.49, 8.45, 8.37, 8.21, 8.12, 7.98, 7.83, 7.78, 7.60, 7.52. Red–brown crystals suitable for X-ray analysis were obtained by slow evaporation from a methanol/water solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were freely refined.

Table 3. Experimental details.

Crystal data
Chemical formula [Re(C19H13N3S)(CO)3(H2O)]PF6·CH4O
M r 780.64
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 160
a, b, c (Å) 10.0447 (3), 10.7580 (3), 13.6263 (4)
α, β, γ (°) 74.335 (1), 76.285 (1), 68.874 (1)
V3) 1306.38 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.88
Crystal size (mm) 0.48 × 0.26 × 0.04
 
Data collection
Diffractometer Rigaku R-AXIS SPIDER IPDS
Absorption correction Numerical (CrystalClear; Rigaku, 2005)
T min, T max 0.496, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25647, 5694, 5416
R int 0.027
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.020, 0.045, 1.06
No. of reflections 5694
No. of parameters 437
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.97, −0.53

Computer programs: CrystalClear (Rigaku, 2005), SHELXS (Sheldrick, 2015a ), SHELXL2014/6 (Sheldrick, 2015b ), DIAMOND (Crystal Impact, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004298/wm5494sup1.cif

e-75-00580-sup1.cif (890.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004298/wm5494Isup2.hkl

e-75-00580-Isup2.hkl (452.8KB, hkl)

CCDC reference: 1906503

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Re(C19H13N3S)(CO)3(H2O)]PF6·CH4O Z = 2
Mr = 780.64 F(000) = 756
Triclinic, P1 Dx = 1.985 Mg m3
a = 10.0447 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.7580 (3) Å Cell parameters from 23889 reflections
c = 13.6263 (4) Å θ = 3.2–27.5°
α = 74.335 (1)° µ = 4.88 mm1
β = 76.285 (1)° T = 160 K
γ = 68.874 (1)° Parallelepiped, red brown
V = 1306.38 (7) Å3 0.48 × 0.26 × 0.04 mm

Data collection

Rigaku R-AXIS SPIDER IPDS diffractometer 5416 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.027
θ scans θmax = 27.0°, θmin = 3.1°
Absorption correction: numerical (CrystalClear; Rigaku, 2005) h = −12→12
Tmin = 0.496, Tmax = 1.000 k = −13→13
25647 measured reflections l = −17→16
5694 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 All H-atom parameters refined
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0212P)2 + 1.3806P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.002
5694 reflections Δρmax = 0.97 e Å3
437 parameters Δρmin = −0.53 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Re1 0.60782 (2) 0.80579 (2) 0.72803 (2) 0.02076 (4)
O1W 0.7342 (2) 0.6297 (2) 0.82936 (19) 0.0305 (4)
C1 0.7598 (3) 0.7903 (3) 0.6110 (2) 0.0278 (6)
O1 0.8494 (2) 0.7844 (2) 0.54080 (17) 0.0378 (5)
C2 0.6724 (3) 0.9386 (3) 0.7560 (2) 0.0274 (6)
O2 0.7081 (2) 1.0222 (2) 0.76923 (17) 0.0368 (5)
C3 0.4873 (3) 0.9562 (3) 0.6452 (2) 0.0270 (6)
O3 0.4169 (2) 1.0526 (2) 0.59636 (17) 0.0384 (5)
N1 0.4410 (2) 0.7968 (2) 0.86255 (17) 0.0235 (5)
N2 0.5265 (2) 0.6456 (2) 0.71983 (17) 0.0225 (4)
N3 0.8451 (2) 0.3276 (2) 0.34299 (18) 0.0255 (5)
S1 0.76531 (10) 0.12865 (8) 0.46521 (7) 0.0419 (2)
C4 0.3971 (3) 0.8740 (3) 0.9337 (2) 0.0286 (6)
C5 0.3005 (3) 0.8508 (3) 1.0224 (2) 0.0327 (6)
C6 0.2477 (4) 0.7445 (3) 1.0389 (2) 0.0362 (7)
C7 0.2894 (3) 0.6653 (3) 0.9652 (2) 0.0323 (6)
C8 0.3849 (3) 0.6940 (3) 0.8781 (2) 0.0256 (5)
C9 0.4331 (3) 0.6167 (3) 0.7970 (2) 0.0258 (6)
C10 0.5866 (3) 0.5565 (3) 0.6476 (2) 0.0230 (5)
C11 0.6169 (3) 0.4165 (3) 0.6826 (2) 0.0265 (6)
C12 0.6798 (3) 0.3310 (3) 0.6132 (2) 0.0286 (6)
C13 0.7123 (3) 0.3835 (3) 0.5087 (2) 0.0244 (5)
C14 0.6791 (3) 0.5242 (3) 0.4738 (2) 0.0249 (5)
C15 0.6175 (3) 0.6105 (3) 0.5431 (2) 0.0233 (5)
C16 0.7791 (3) 0.2926 (3) 0.4342 (2) 0.0257 (6)
C17 0.8562 (3) 0.1046 (3) 0.3433 (2) 0.0330 (7)
C18 0.8893 (4) −0.0061 (3) 0.2976 (3) 0.0441 (8)
C19 0.9563 (4) 0.0040 (3) 0.1968 (3) 0.0415 (8)
C20 0.9923 (3) 0.1196 (3) 0.1420 (3) 0.0368 (7)
C21 0.9609 (3) 0.2297 (3) 0.1873 (2) 0.0328 (6)
C22 0.8905 (3) 0.2234 (3) 0.2887 (2) 0.0272 (6)
C1M 0.9995 (5) 0.3997 (5) 0.6743 (4) 0.0528 (10)
O1M 0.9675 (3) 0.5110 (2) 0.7203 (2) 0.0505 (7)
P1 0.72699 (9) 0.71646 (8) 1.09118 (6) 0.03265 (17)
F1 0.8471 (3) 0.6216 (3) 1.0214 (3) 0.0957 (10)
F2 0.8364 (4) 0.7745 (3) 1.1108 (2) 0.0963 (11)
F3 0.7504 (3) 0.5986 (2) 1.19014 (18) 0.0677 (7)
F4 0.6144 (3) 0.6560 (2) 1.0673 (2) 0.0683 (7)
F5 0.6990 (3) 0.8341 (2) 0.99029 (18) 0.0631 (6)
F6 0.5955 (4) 0.8096 (3) 1.1538 (3) 0.1039 (12)
H4 0.432 (3) 0.942 (3) 0.920 (3) 0.033 (9)*
H5 0.276 (4) 0.906 (4) 1.069 (3) 0.042 (10)*
H6 0.186 (4) 0.731 (3) 1.094 (3) 0.031 (8)*
H7 0.257 (4) 0.596 (4) 0.970 (3) 0.044 (10)*
H9 0.398 (3) 0.546 (3) 0.801 (2) 0.028 (8)*
H11 0.598 (3) 0.384 (3) 0.750 (2) 0.023 (7)*
H12 0.704 (3) 0.237 (3) 0.634 (3) 0.034 (8)*
H14 0.696 (3) 0.560 (3) 0.406 (3) 0.026 (8)*
H15 0.592 (3) 0.702 (3) 0.517 (2) 0.016 (7)*
H18 0.868 (4) −0.083 (4) 0.334 (3) 0.043 (10)*
H19 0.976 (4) −0.070 (4) 0.170 (3) 0.045 (10)*
H20 1.038 (4) 0.127 (3) 0.071 (3) 0.036 (9)*
H21 0.984 (3) 0.311 (3) 0.149 (3) 0.031 (8)*
H101 0.823 (5) 0.581 (4) 0.801 (3) 0.051 (11)*
H102 0.749 (4) 0.641 (4) 0.874 (3) 0.044 (12)*
H201 1.041 (5) 0.541 (5) 0.709 (4) 0.073 (14)*
H202 1.091 (6) 0.323 (5) 0.698 (4) 0.099 (18)*
H203 0.915 (6) 0.364 (5) 0.702 (4) 0.095 (17)*
H204 1.008 (6) 0.427 (6) 0.607 (5) 0.10 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Re1 0.02758 (6) 0.01809 (5) 0.01851 (6) −0.01022 (4) −0.00178 (4) −0.00422 (4)
O1W 0.0366 (12) 0.0287 (10) 0.0275 (12) −0.0099 (9) −0.0071 (10) −0.0065 (9)
C1 0.0326 (14) 0.0231 (13) 0.0306 (15) −0.0109 (11) −0.0065 (13) −0.0058 (11)
O1 0.0379 (12) 0.0408 (12) 0.0309 (12) −0.0142 (10) 0.0052 (10) −0.0079 (10)
C2 0.0333 (14) 0.0257 (13) 0.0225 (14) −0.0106 (11) −0.0041 (11) −0.0020 (11)
O2 0.0531 (13) 0.0295 (10) 0.0382 (12) −0.0228 (10) −0.0122 (10) −0.0056 (9)
C3 0.0338 (14) 0.0258 (13) 0.0227 (14) −0.0134 (12) 0.0003 (11) −0.0057 (11)
O3 0.0427 (12) 0.0308 (11) 0.0359 (12) −0.0098 (10) −0.0094 (10) 0.0028 (10)
N1 0.0271 (11) 0.0211 (10) 0.0220 (11) −0.0069 (9) −0.0025 (9) −0.0059 (9)
N2 0.0285 (11) 0.0186 (10) 0.0227 (11) −0.0089 (9) −0.0038 (9) −0.0062 (9)
N3 0.0274 (11) 0.0236 (11) 0.0270 (12) −0.0093 (9) −0.0015 (9) −0.0084 (9)
S1 0.0606 (5) 0.0262 (3) 0.0392 (4) −0.0243 (4) 0.0199 (4) −0.0164 (3)
C4 0.0339 (15) 0.0248 (13) 0.0285 (15) −0.0084 (12) −0.0040 (12) −0.0101 (11)
C5 0.0376 (16) 0.0338 (15) 0.0259 (15) −0.0066 (13) −0.0031 (12) −0.0130 (13)
C6 0.0394 (17) 0.0394 (16) 0.0242 (15) −0.0125 (14) 0.0069 (13) −0.0080 (13)
C7 0.0364 (16) 0.0297 (14) 0.0309 (16) −0.0155 (13) 0.0034 (13) −0.0069 (12)
C8 0.0309 (14) 0.0218 (12) 0.0245 (14) −0.0101 (11) −0.0021 (11) −0.0049 (11)
C9 0.0326 (14) 0.0231 (13) 0.0251 (14) −0.0148 (11) 0.0003 (11) −0.0061 (11)
C10 0.0261 (13) 0.0222 (12) 0.0238 (13) −0.0106 (10) −0.0014 (10) −0.0078 (10)
C11 0.0385 (15) 0.0224 (13) 0.0186 (13) −0.0126 (11) −0.0013 (11) −0.0026 (11)
C12 0.0397 (15) 0.0183 (12) 0.0286 (15) −0.0118 (11) −0.0028 (12) −0.0045 (11)
C13 0.0269 (13) 0.0241 (12) 0.0251 (14) −0.0120 (10) 0.0008 (11) −0.0084 (11)
C14 0.0308 (14) 0.0239 (13) 0.0217 (14) −0.0118 (11) −0.0019 (11) −0.0053 (11)
C15 0.0293 (13) 0.0186 (12) 0.0233 (13) −0.0099 (10) −0.0037 (11) −0.0035 (10)
C16 0.0294 (13) 0.0202 (12) 0.0290 (14) −0.0099 (10) −0.0018 (11) −0.0072 (11)
C17 0.0374 (15) 0.0282 (14) 0.0351 (16) −0.0153 (12) 0.0090 (13) −0.0152 (12)
C18 0.0501 (19) 0.0326 (16) 0.052 (2) −0.0214 (15) 0.0175 (16) −0.0228 (15)
C19 0.0375 (17) 0.0401 (17) 0.052 (2) −0.0133 (14) 0.0089 (15) −0.0310 (16)
C20 0.0329 (15) 0.0462 (18) 0.0336 (17) −0.0127 (14) 0.0054 (13) −0.0205 (14)
C21 0.0349 (15) 0.0338 (15) 0.0311 (16) −0.0139 (13) 0.0009 (13) −0.0098 (13)
C22 0.0255 (13) 0.0274 (13) 0.0316 (15) −0.0104 (11) −0.0004 (11) −0.0112 (12)
C1M 0.049 (2) 0.058 (2) 0.066 (3) −0.0270 (19) −0.001 (2) −0.029 (2)
O1M 0.0334 (12) 0.0402 (13) 0.081 (2) −0.0137 (10) 0.0051 (12) −0.0265 (13)
P1 0.0454 (4) 0.0270 (4) 0.0253 (4) −0.0160 (3) −0.0040 (3) −0.0003 (3)
F1 0.088 (2) 0.0651 (16) 0.104 (2) −0.0127 (15) 0.0385 (17) −0.0299 (16)
F2 0.147 (3) 0.108 (2) 0.0777 (19) −0.102 (2) −0.0657 (19) 0.0366 (17)
F3 0.0950 (18) 0.0641 (14) 0.0560 (14) −0.0505 (14) −0.0404 (13) 0.0284 (12)
F4 0.0874 (17) 0.0592 (14) 0.0723 (16) −0.0459 (13) −0.0405 (14) 0.0199 (12)
F5 0.0817 (16) 0.0568 (13) 0.0504 (13) −0.0385 (12) −0.0226 (12) 0.0233 (11)
F6 0.130 (3) 0.0520 (15) 0.096 (2) −0.0228 (16) 0.052 (2) −0.0301 (15)

Geometric parameters (Å, º)

Re1—C3 1.899 (3) C11—C12 1.380 (4)
Re1—C2 1.920 (3) C11—H11 0.89 (3)
Re1—C1 1.925 (3) C12—C13 1.389 (4)
Re1—N1 2.177 (2) C12—H12 0.93 (3)
Re1—O1W 2.189 (2) C13—C14 1.397 (4)
Re1—N2 2.194 (2) C13—C16 1.475 (4)
O1W—H101 0.91 (4) C14—C15 1.386 (4)
O1W—H102 0.72 (4) C14—H14 0.90 (3)
C1—O1 1.146 (4) C15—H15 0.92 (3)
C2—O2 1.150 (3) C17—C18 1.390 (4)
C3—O3 1.158 (3) C17—C22 1.410 (4)
N1—C4 1.339 (3) C18—C19 1.373 (5)
N1—C8 1.361 (3) C18—H18 0.92 (4)
N2—C9 1.284 (3) C19—C20 1.389 (5)
N2—C10 1.436 (3) C19—H19 0.90 (4)
N3—C16 1.289 (4) C20—C21 1.384 (4)
N3—C22 1.390 (3) C20—H20 0.96 (3)
S1—C17 1.733 (3) C21—C22 1.390 (4)
S1—C16 1.748 (3) C21—H21 0.96 (3)
C4—C5 1.385 (4) C1M—O1M 1.401 (4)
C4—H4 0.89 (3) C1M—H202 1.04 (6)
C5—C6 1.372 (4) C1M—H203 1.01 (6)
C5—H5 0.91 (4) C1M—H204 0.87 (6)
C6—C7 1.385 (4) O1M—H201 0.88 (5)
C6—H6 0.87 (3) P1—F2 1.547 (2)
C7—C8 1.378 (4) P1—F6 1.565 (3)
C7—H7 0.89 (4) P1—F1 1.579 (3)
C8—C9 1.450 (4) P1—F3 1.579 (2)
C9—H9 0.94 (3) P1—F5 1.600 (2)
C10—C15 1.392 (4) P1—F4 1.621 (2)
C10—C11 1.393 (4)
C3—Re1—C2 85.26 (12) C11—C12—H12 122 (2)
C3—Re1—C1 89.26 (12) C13—C12—H12 118 (2)
C2—Re1—C1 87.63 (12) C12—C13—C14 119.5 (2)
C3—Re1—N1 95.27 (10) C12—C13—C16 120.8 (2)
C2—Re1—N1 98.04 (10) C14—C13—C16 119.7 (2)
C1—Re1—N1 173.00 (9) C15—C14—C13 120.2 (3)
C3—Re1—O1W 176.33 (10) C15—C14—H14 119.4 (19)
C2—Re1—O1W 96.59 (10) C13—C14—H14 120.3 (19)
C1—Re1—O1W 93.97 (10) C14—C15—C10 119.7 (2)
N1—Re1—O1W 81.35 (8) C14—C15—H15 118.1 (18)
C3—Re1—N2 99.29 (10) C10—C15—H15 122.0 (18)
C2—Re1—N2 171.90 (10) N3—C16—C13 124.0 (2)
C1—Re1—N2 99.07 (10) N3—C16—S1 115.7 (2)
N1—Re1—N2 74.96 (8) C13—C16—S1 120.2 (2)
O1W—Re1—N2 78.50 (8) C18—C17—C22 121.5 (3)
Re1—O1W—H101 118 (2) C18—C17—S1 129.6 (2)
Re1—O1W—H102 117 (3) C22—C17—S1 108.8 (2)
H101—O1W—H102 102 (4) C19—C18—C17 117.7 (3)
O1—C1—Re1 178.4 (2) C19—C18—H18 122 (2)
O2—C2—Re1 177.0 (2) C17—C18—H18 121 (2)
O3—C3—Re1 176.2 (2) C18—C19—C20 121.6 (3)
C4—N1—C8 117.9 (2) C18—C19—H19 115 (2)
C4—N1—Re1 127.09 (19) C20—C19—H19 123 (2)
C8—N1—Re1 114.86 (17) C21—C20—C19 120.9 (3)
C9—N2—C10 118.0 (2) C21—C20—H20 117 (2)
C9—N2—Re1 115.25 (18) C19—C20—H20 122 (2)
C10—N2—Re1 125.69 (16) C20—C21—C22 118.7 (3)
C16—N3—C22 111.1 (2) C20—C21—H21 121.0 (19)
C17—S1—C16 89.41 (13) C22—C21—H21 120.2 (19)
N1—C4—C5 122.5 (3) N3—C22—C21 125.6 (3)
N1—C4—H4 116 (2) N3—C22—C17 114.9 (2)
C5—C4—H4 122 (2) C21—C22—C17 119.4 (3)
C6—C5—C4 119.2 (3) O1M—C1M—H202 111 (3)
C6—C5—H5 122 (2) O1M—C1M—H203 105 (3)
C4—C5—H5 119 (2) H202—C1M—H203 108 (4)
C5—C6—C7 119.1 (3) O1M—C1M—H204 109 (4)
C5—C6—H6 119 (2) H202—C1M—H204 113 (5)
C7—C6—H6 122 (2) H203—C1M—H204 111 (5)
C8—C7—C6 119.0 (3) C1M—O1M—H201 112 (3)
C8—C7—H7 117 (2) F2—P1—F6 93.4 (2)
C6—C7—H7 124 (2) F2—P1—F1 92.4 (2)
N1—C8—C7 122.2 (3) F6—P1—F1 173.6 (2)
N1—C8—C9 115.3 (2) F2—P1—F3 92.81 (13)
C7—C8—C9 122.4 (2) F6—P1—F3 91.03 (17)
N2—C9—C8 119.2 (2) F1—P1—F3 91.27 (16)
N2—C9—H9 120.4 (19) F2—P1—F5 89.19 (13)
C8—C9—H9 120.4 (19) F6—P1—F5 88.71 (16)
C15—C10—C11 120.3 (2) F1—P1—F5 88.78 (16)
C15—C10—N2 119.7 (2) F3—P1—F5 177.99 (13)
C11—C10—N2 120.0 (2) F2—P1—F4 178.45 (17)
C12—C11—C10 119.7 (3) F6—P1—F4 87.72 (18)
C12—C11—H11 121.4 (19) F1—P1—F4 86.42 (17)
C10—C11—H11 118.8 (19) F3—P1—F4 88.27 (12)
C11—C12—C13 120.6 (2) F5—P1—F4 89.73 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O2i 0.91 (4) 2.59 (4) 3.439 (4) 156 (3)
C9—H9···F3ii 0.94 (3) 2.47 (3) 3.390 (3) 166 (2)
O1W—H101···O1M 0.91 (4) 1.67 (4) 2.558 (3) 165 (4)
O1W—H102···F1 0.72 (4) 2.36 (4) 3.059 (5) 164 (4)
O1M—H201···N3iii 0.88 (5) 2.01 (5) 2.842 (3) 158 (4)

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+1, −y+1, −z+2; (iii) −x+2, −y+1, −z+1.

Funding Statement

This work was funded by Hellenic Foundation for Research and Innovation grant 14500 to Ioanna Roupa. General Secretariat for Research and Technology grant 14500 to Ioanna Roupa. NCSR Demokritos grant ELKE #10 813 to Vassilis Psycharis.

References

  1. Barbazán, P., Carballo, R., Prieto, I., Turnes, M. & Vázquez-López, E. M. (2009). J. Organomet. Chem. 694, 3102–3111.
  2. Bradshaw, T. D. & Westwell, A. D. (2004). Curr. Med. Chem. 11, 1241–1253. [DOI] [PubMed]
  3. Carrington, S. J., Chakraborty, I., Bernard, J. M. L. & Mascharak, P. K. (2016). Inorg. Chem. 55, 7852–7858. [DOI] [PubMed]
  4. Connick, W. B., Di Bilio, A. J., Schaeffer, W. P. & Gray, H. B. (1999). Acta Cryst. C55, 913–916. [DOI] [PubMed]
  5. Crystal Impact (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Grewe, J., Hagenbach, A., Stromburg, B., Alberto, R., Vazquez-Lopez, E. & Abram, U. (2003). Z. Anorg. Allg. Chem. 629, 303–311.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Keri, R. S., Patil, M. R., Patil, S. A. & Budagumpi, S. (2015). Eur. J. Med. Chem. 89, 207–251. [DOI] [PubMed]
  9. Kiritsis, C., Mavroidi, B., Shegani, A., Palamaris, E., Loudos, G., Sagnou, M., Pirmettis, I., Papadopoulos, M. & Pelecanou, M. (2017). ACS Med. Chem. Lett. 8, 1089–1092. [DOI] [PMC free article] [PubMed]
  10. Knopf, K., Murphy, B., MacMillan, S., Baskin, J., Barr, M., Boros, E. & Wilson, J. J. (2017). J. Am. Chem. Soc. 139, 14302–14314. [DOI] [PMC free article] [PubMed]
  11. Leonidova, A. & Gasser, G. (2014). Chem. Biol. 9, 2180–2193. [DOI] [PubMed]
  12. Mella, P., Cabezas, K., Cerda, C., Cepeda-Plaza, M., Günther, G., Pizarro, N. & Vega, A. (2016). New J. Chem. 40, 6451–6459.
  13. Mundwiler, S., Kündig, M., Ortner, K. & Alberto, R. A. (2004). Dalton Trans. pp. 1320–1328. [DOI] [PubMed]
  14. Papagiannopoulou, D., Triantis, C., Vassileiadis, V., Raptopoulou, C. P., Psycharis, V., Terzis, A., Pirmettis, I. & Papadopoulos, M. S. (2014). Polyhedron, 68, 46–52.
  15. Rigaku (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.
  16. Rillema, D. P., Kirgan, R. A., Smucker, B. & Moore, C. (2007). Acta Cryst. E63, m1404–m1405.
  17. Salignac, B., Grundler, P. V., Cayemittes, S., Frey, U., Scopelliti, R., Merbach, A. E., Hedinger, R., Hegetschweiler, K., Alberto, R., Prinz, U., Raabe, G., Kölle, U. & Hall, S. (2003). Inorg. Chem. 42, 3516–3526. [DOI] [PubMed]
  18. Schutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). Inorg. Chem. 50, 12486–12498. [DOI] [PubMed]
  19. Shegani, A., Triantis, C., Nock, B. A., Maina, T., Kiritsis, C., Psycharis, V., Raptopoulou, C., Pirmettis, I., Tisato, F. & Papadopoulos, M. S. (2017). Inorg. Chem. 56, 8175–8186. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Triantis, C., Tsotakos, T., Tsoukalas, C., Sagnou, M., Raptopoulou, C., Terzis, A., Psycharis, V., Pelecanou, M., Pirmettis, I. & Papadopoulos, M. (2013). Inorg. Chem. 52, 12995–13003. [DOI] [PubMed]
  23. Tzeng, B.-C., Chen, B.-S., Chen, C.-K., Chang, Y.-P., Tzeng, W.-C., Lin, T.-Y., Lee, G.-H., Chou, P.-T., Fu, Y. J. & Chang, A. H.-H. (2011). Inorg. Chem. 50, 5379–5388. [DOI] [PubMed]
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004298/wm5494sup1.cif

e-75-00580-sup1.cif (890.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004298/wm5494Isup2.hkl

e-75-00580-Isup2.hkl (452.8KB, hkl)

CCDC reference: 1906503

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES