Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 2;75(Pt 5):562–564. doi: 10.1107/S2056989019004109

Crystal structure of 4,5,6,7,8,8-hexa­chloro-2-(3,4-di­meth­oxy­pheneth­yl)-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione [+solvent]

R Manohar a,, M Harikrishna b, S Harikrishna Etti c, C Ramanathan b, K Gunasekaran a,*
PMCID: PMC6505607  PMID: 31110786

In the title compound, the pyrrolidine ring makes a dihedral angle of 14.83 (12)° with the 3,4-di­meth­oxy­phenyl ring, which are attached to each other by an extended N—CH2—CH2—Car bridge.

Keywords: crystal structure, norbornene, hexa­chloro, iso­indolene, hydrogen bonding, offset π–π inter­action, C—Cl⋯π inter­action

Abstract

In the title compound, C19H15Cl6NO4 [+solvent], the six-membered ring of the norbornene moiety adopts a boat conformation and the two five-membered rings have envelope conformations. The pyrrolidine ring makes a dihedral angle of 14.83 (12)° with the 3,4-di­meth­oxy­phenyl ring, which are attached to each other by an extended N—CH2—CH2—Car bridge. In the crystal, the structure features C—H⋯O inter­molecular hydrogen bonds, an offset π–π inter­action [inter­centroid distance = 3.564 (1) Å] and a C—Cl⋯π inter­action. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] of PLATON. The solvent contribution was not included in the reported mol­ecular weight and density.

Chemical context  

One of the fundamental objectives of organic and medicinal chemistry is the design and synthesis of mol­ecules having value as human therapeutic agents (Patil & Rajput, 2014). Succinimide derivatives are significant compounds found in various natural products, and have outstanding biological and pharmaceutical activity (Ahire & Mhaske, 2017). Cyclic imides and their derivatives contain an imide ring and the general structure –CO–-N(R)—CO–, and can cross biological membranes in vivo (Hargreaves et al., 1970). The variety of biological activities and pharmaceutical uses of compounds containing a succinimide moiety is considerable. They include activities such as anti­fungal (Hazra et al., 2004), anti-tubercular (Isaka et al., 2006), CNS depressant (Aeberli et al., 1976), anti­spasmodic (Nunes et al., 1995), cytostatic (Crider et al., 1980), analgesic (Correa et al., 1997), anti­bacterial (Zentz et al., 2002), anti­cancer (Hall et al., 1995), anorectic (Rich & Gardner, 1983), hypotensive (Coram & Brezenoff, 1983), nerve conduction blocking (Kaczorowski et al., 2008), bacteriostatic (Piper et al., 1971), anti-convulsant (Kornet et al., 1977) and muscle relaxant (Musso et al., 2003).graphic file with name e-75-00562-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The six-membered ring of the norbornene moiety (C2/C3/C5/C7–C9) adopts a boat conformation [puckering parameters: amplitude Q = 0.939 (2) Å, θ = 90.00 (12)°, φ = 299.27 (14)°]. The two five-membered rings, A (C2/C3/C5–C7) and B (C5–C9), have envelope conformations with atom C6 as the flap: puckering parameters and the smallest displacement asymmetric parameters are Q 2 = 0.619 (2) Å, φ2 = 108.6 (2)° and Δs = 1.09° for ring A, and Q 2 = 0.582 (2) Å, φ2 = 215.5 (2)° and Δs = 0.74° for ring B. Atom C6 is displaced from the mean plane through the other four atoms by 0.908 (2) Å in ring A and 0.875 (2) Å in ring B. The dihedral angle between the pyrrolidine ring (N1/C1–C4) and the benzene ring (C12–C17) is 14.83 (12)°, with the torsion angle N1—C10—C11—C12 being 175.8 (3)°. The lengths of the C—Cl bonds involving the chlorine atoms attached to the C8=C9 double bond are 1.692 (2) Å for C8—Cl2 and 1.692 (2) Å for C9—Cl3. The lengths of the bonds to chlorine atoms attached to the single C—C bonds vary from 1.744 (2) to 1.768 (2) Å. These value are close to those found in similar compounds; see §4 Database survey.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at 30% probability level.

Supra­molecular features  

In the crystal, weak C19—H19A⋯O2i hydrogen bonds link the molecules to form a cyclic Inline graphic(48) ring motif (Table 1 and Fig. 2). The mol­ecules are stacked in layers held together by offset π–π inter­actions (Fig. 2), with an inter­centroid distance Cg1⋯Cg5iii of 3.564 (1) Å [Cg1 and Cg5 are the centroids of the pyrrolidine (N1/C1–C4) and benzene (C12–C17) rings, respectively, α = 9.80 (12)°, inter­planar distances are 3.448 (1) and 3.547 (1) Å, offset = 0.353 Å; symmetry code: (iii) −y + Inline graphic, x − Inline graphic, −z + Inline graphic]. There is also an inter­molecular C—Cl⋯π inter­action present, involving atom Cl6 and the centroid of the benzene ring (C12–C17); see Table 1.

Table 1. Hydrogen-bond geometry (Å, °).

Cg5 is the centroid of the C12–C17 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯O2i 0.96 2.57 3.408 (4) 146
C6—Cl6⋯Cg5ii 1.77 (1) 3.41 (1) 4.894 (2) 140 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view along the c axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds (thin black lines; Table 1) generate an Inline graphic(48) ring motif. The offset π–π inter­action is shown as a thin red line. For clarity, H atoms not involved in hydrogen bonding have been omitted.

Database survey  

A search of the Cambridge Structural Database (CSD, V 5.40, update February 2019; Groom et al., 2016) for the 4,5,6,7,8,8-hexa­chloro-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione skeleton yielded 17 hits (see supporting information). The majority of these compounds have thio­phene substituents. One compound, 1,7,8,9,10,10-hexa­chloro-4-(2-phenyl­eth­yl)-4-aza­tri­cyclo­[5.2.1.02,6]dec-8-ene-3,5-dione (CSD refcode EVEDIT; Manohar et al., 2011), closely resembles the title compound but has a 2-phenethyl substit­uent rather than the 2-(3,4-di­methyl­pheneth­yl) group in the title compound. Here, the aryl ring is inclined to the pyrrolidine ring by 7.43 (16)° compared to 14.83 (12)° in the title compound, and the N—C—C—Car torsion angle is −169.3 (3)° compared to 175.8 (3)° in the title compound.

In all 17 structures, the five-membered ring has envelope conformations and the six-membered ring a boat conformation. The bond lengths and bond angles are very similar to those reported here for the title compound. For example, the Csp 2—Cl bond lengths are shorter than the Csp 3—Cl bond lengths; the former vary from ca 1.681 to 1.717 Å, while the latter vary from ca 1.725 to 1.798 Å. In the title compound these bond lengths are 1.691 (2)–1.692 (2) Å and 1.744 (2)–1.768 (2) Å, respectively.

Synthesis and crystallization  

2-(3,4-Di­meth­oxy­phen­yl) ethanamine (1 equiv.) and 1,4,5,6,7,7-hexa­chloro-5- norbornene −2,3-di­carb­oxy­lic anhydride (1 equiv.) were stirred at room temperature in dry ethyl acetate for 30 min. The ethyl acetate was removed under reduced pressure and the resulting residue was dissolved in toluene. To this reaction mixture was added acetyl chloride (5 equiv.) and refluxed for 1 h. The reaction mixture was brought to room temperature and washed with aqueous Na2CO3 and dried over anhydrous Na2SO4. It was then filtered and the filtrate was concentrated under reduced pressure followed by silica gel column purification to afford the title compound in 82% yield. Colourless block-shaped crystals were obtained by slow evaporation of a solution in ethanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms were placed in calculated positions and refined using a riding model: C—H = 0.93–0.98 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms. The contribution of the disordered solvent to the scattering was removed using the SQUEEZE routine of PLATON (Spek, 2015). The solvent contribution was not included in the reported mol­ecular weight and density. Further details are given in the archived CIF.

Table 2. Experimental details.

Crystal data
Chemical formula C19H15Cl6NO4[+solvent]
M r 534.02
Crystal system, space group Tetragonal, I41/a
Temperature (K) 293
a, c (Å) 29.6250 (9), 10.2427 (4)
V3) 8989.4 (6)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.79
Crystal size (mm) 0.26 × 0.21 × 0.15
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.752, 0.863
No. of measured, independent and observed [I > 2σ(I)] reflections 10728, 5181, 3330
R int 0.021
(sin θ/λ)max−1) 0.687
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.101, 1.04
No. of reflections 5181
No. of parameters 273
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.21

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S2056989019004109/su5485sup1.cif

e-75-00562-sup1.cif (537KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004109/su5485Isup3.hkl

e-75-00562-Isup3.hkl (413.3KB, hkl)

CSD search S1. DOI: 10.1107/S2056989019004109/su5485sup4.pdf

e-75-00562-sup4.pdf (71.2KB, pdf)

Supporting information file. DOI: 10.1107/S2056989019004109/su5485Isup4.cml

CCDC reference: 1905872

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C19H15Cl6NO4[+solvent] Dx = 1.578 Mg m3
Mr = 534.02 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/a Cell parameters from 5181 reflections
a = 29.6250 (9) Å θ = 2.8–29.2°
c = 10.2427 (4) Å µ = 0.79 mm1
V = 8989.4 (6) Å3 T = 293 K
Z = 16 Block, colourless
F(000) = 4320 0.26 × 0.21 × 0.15 mm

Data collection

Bruker SMART APEXII area-detector diffractometer 3330 reflections with I > 2σ(I)
ω and φ scans Rint = 0.021
Absorption correction: multi-scan (SADABS; Bruker, 2008) θmax = 29.2°, θmin = 2.8°
Tmin = 0.752, Tmax = 0.863 h = −32→24
10728 measured reflections k = −40→24
5181 independent reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.046P)2 + 2.6033P] where P = (Fo2 + 2Fc2)/3
5181 reflections (Δ/σ)max = 0.001
273 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.64197 (3) 0.18131 (2) 0.50159 (7) 0.0609 (2)
Cl2 0.53878 (2) 0.16505 (2) 0.39238 (6) 0.05182 (19)
Cl3 0.51735 (2) 0.05095 (2) 0.39790 (6) 0.04926 (18)
Cl4 0.60427 (3) −0.00099 (2) 0.52552 (7) 0.0560 (2)
Cl5 0.68772 (2) 0.07881 (3) 0.59849 (7) 0.0604 (2)
Cl6 0.65299 (2) 0.08158 (2) 0.33757 (6) 0.05024 (19)
O1 0.55317 (7) 0.18699 (7) 0.73520 (19) 0.0638 (6)
O2 0.51935 (7) 0.03730 (7) 0.74848 (17) 0.0583 (5)
O3 0.29789 (7) 0.07109 (6) 0.78565 (19) 0.0606 (5)
O4 0.26332 (6) 0.14834 (6) 0.75279 (18) 0.0512 (5)
N1 0.52660 (7) 0.11436 (8) 0.74800 (18) 0.0436 (5)
C1 0.55897 (9) 0.14695 (10) 0.7253 (2) 0.0452 (6)
C2 0.60172 (8) 0.12358 (8) 0.6826 (2) 0.0374 (6)
H2 0.627206 0.131273 0.739349 0.045*
C3 0.59071 (7) 0.07269 (8) 0.6881 (2) 0.0345 (5)
H3 0.610647 0.056594 0.748616 0.041*
C4 0.54179 (9) 0.07055 (10) 0.7313 (2) 0.0419 (6)
C5 0.59788 (8) 0.05717 (7) 0.5446 (2) 0.0321 (5)
C6 0.63858 (7) 0.08698 (9) 0.5043 (2) 0.0359 (6)
C7 0.61330 (8) 0.13120 (8) 0.5366 (2) 0.0353 (5)
C8 0.57030 (7) 0.12315 (8) 0.45795 (19) 0.0304 (5)
C9 0.56157 (7) 0.07940 (8) 0.46217 (19) 0.0291 (5)
C10 0.47983 (9) 0.12501 (11) 0.7835 (2) 0.0561 (8)
H10A 0.478774 0.154042 0.827179 0.067*
H10B 0.468475 0.102335 0.843401 0.067*
C11 0.45025 (10) 0.12635 (15) 0.6621 (3) 0.0885 (13)
H11A 0.460751 0.150372 0.605383 0.106*
H11B 0.453546 0.098090 0.615245 0.106*
C12 0.40091 (10) 0.13382 (14) 0.6918 (3) 0.0630 (9)
C13 0.37364 (10) 0.09809 (11) 0.7279 (2) 0.0580 (8)
H13 0.386380 0.069607 0.737894 0.070*
C14 0.32777 (9) 0.10361 (9) 0.7495 (2) 0.0439 (6)
C15 0.30858 (8) 0.14660 (9) 0.7326 (2) 0.0396 (6)
C16 0.33546 (9) 0.18220 (10) 0.6993 (2) 0.0519 (7)
H16 0.322956 0.210806 0.689646 0.062*
C17 0.38163 (10) 0.17583 (13) 0.6796 (3) 0.0641 (9)
H17 0.399661 0.200407 0.657959 0.077*
C18 0.31333 (14) 0.02580 (11) 0.7890 (4) 0.0954 (13)
H18A 0.323689 0.017167 0.703745 0.143*
H18B 0.289057 0.006337 0.815147 0.143*
H18C 0.337711 0.023232 0.850281 0.143*
C19 0.24021 (10) 0.18878 (10) 0.7231 (3) 0.0670 (9)
H19A 0.249922 0.212192 0.781535 0.101*
H19B 0.208313 0.184150 0.732920 0.101*
H19C 0.246680 0.197481 0.634816 0.101*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0617 (5) 0.0460 (4) 0.0751 (5) −0.0269 (4) 0.0008 (4) 0.0089 (3)
Cl2 0.0569 (4) 0.0473 (4) 0.0512 (4) 0.0131 (3) −0.0095 (3) 0.0098 (3)
Cl3 0.0436 (4) 0.0551 (4) 0.0491 (4) −0.0167 (3) −0.0143 (3) −0.0023 (3)
Cl4 0.0691 (5) 0.0336 (3) 0.0652 (4) 0.0060 (3) 0.0037 (4) 0.0058 (3)
Cl5 0.0315 (3) 0.0879 (6) 0.0618 (4) 0.0052 (4) −0.0120 (3) 0.0078 (4)
Cl6 0.0448 (4) 0.0656 (5) 0.0404 (3) −0.0024 (3) 0.0122 (3) 0.0030 (3)
O1 0.0729 (15) 0.0533 (13) 0.0651 (13) 0.0064 (11) −0.0032 (11) −0.0172 (10)
O2 0.0576 (12) 0.0645 (13) 0.0527 (11) −0.0226 (11) 0.0096 (9) 0.0062 (10)
O3 0.0659 (13) 0.0456 (11) 0.0703 (13) 0.0102 (11) −0.0031 (11) 0.0087 (10)
O4 0.0419 (11) 0.0452 (10) 0.0664 (12) 0.0106 (9) −0.0006 (9) 0.0052 (9)
N1 0.0363 (12) 0.0636 (15) 0.0310 (10) −0.0031 (11) 0.0025 (9) −0.0060 (10)
C1 0.0504 (17) 0.0571 (17) 0.0282 (12) −0.0019 (15) −0.0080 (11) −0.0082 (12)
C2 0.0345 (13) 0.0465 (15) 0.0312 (12) −0.0078 (11) −0.0062 (10) −0.0023 (11)
C3 0.0310 (12) 0.0449 (14) 0.0275 (11) −0.0035 (11) −0.0047 (10) 0.0076 (10)
C4 0.0439 (15) 0.0561 (17) 0.0258 (12) −0.0064 (14) −0.0029 (11) 0.0023 (12)
C5 0.0362 (13) 0.0293 (12) 0.0309 (11) −0.0027 (10) −0.0018 (10) 0.0053 (10)
C6 0.0280 (12) 0.0471 (15) 0.0326 (12) −0.0034 (11) −0.0031 (10) 0.0063 (11)
C7 0.0341 (13) 0.0352 (13) 0.0366 (12) −0.0143 (11) −0.0020 (10) 0.0025 (11)
C8 0.0272 (12) 0.0397 (13) 0.0245 (10) −0.0003 (10) −0.0018 (9) 0.0029 (10)
C9 0.0261 (11) 0.0379 (13) 0.0234 (10) −0.0044 (10) −0.0026 (9) −0.0002 (10)
C10 0.0403 (15) 0.089 (2) 0.0392 (14) 0.0055 (15) 0.0103 (12) −0.0088 (14)
C11 0.0425 (17) 0.181 (4) 0.0419 (17) 0.017 (2) 0.0052 (14) −0.009 (2)
C12 0.0434 (17) 0.115 (3) 0.0300 (14) 0.006 (2) 0.0000 (12) −0.0106 (16)
C13 0.0549 (18) 0.086 (2) 0.0331 (14) 0.0287 (18) −0.0063 (13) −0.0089 (14)
C14 0.0463 (16) 0.0576 (17) 0.0278 (12) 0.0119 (14) −0.0041 (11) −0.0027 (12)
C15 0.0411 (15) 0.0490 (15) 0.0288 (12) 0.0042 (13) −0.0035 (11) −0.0023 (11)
C16 0.0534 (18) 0.0598 (18) 0.0426 (14) −0.0016 (15) 0.0002 (13) −0.0013 (14)
C17 0.0541 (19) 0.094 (3) 0.0438 (16) −0.0127 (19) 0.0066 (14) −0.0035 (17)
C18 0.114 (3) 0.056 (2) 0.116 (3) 0.029 (2) −0.003 (3) 0.021 (2)
C19 0.0515 (18) 0.0576 (19) 0.092 (2) 0.0157 (16) −0.0160 (17) 0.0047 (17)

Geometric parameters (Å, º)

Cl1—C7 1.748 (2) C6—C7 1.545 (3)
Cl2—C8 1.692 (2) C7—C8 1.526 (3)
Cl3—C9 1.691 (2) C8—C9 1.322 (3)
Cl4—C5 1.744 (2) C10—C11 1.522 (4)
Cl5—C6 1.763 (2) C10—H10A 0.9700
Cl6—C6 1.768 (2) C10—H10B 0.9700
O1—C1 1.203 (3) C11—C12 1.509 (4)
O2—C4 1.201 (3) C11—H11A 0.9700
O3—C14 1.360 (3) C11—H11B 0.9700
O3—C18 1.418 (3) C12—C17 1.375 (4)
O4—C15 1.358 (3) C12—C13 1.382 (4)
O4—C19 1.413 (3) C13—C14 1.386 (4)
N1—C1 1.380 (3) C13—H13 0.9300
N1—C4 1.384 (3) C14—C15 1.405 (4)
N1—C10 1.467 (3) C15—C16 1.365 (4)
C1—C2 1.508 (3) C16—C17 1.395 (4)
C2—C3 1.543 (3) C16—H16 0.9300
C2—C7 1.550 (3) C17—H17 0.9300
C2—H2 0.9800 C18—H18A 0.9600
C3—C4 1.516 (3) C18—H18B 0.9600
C3—C5 1.554 (3) C18—H18C 0.9600
C3—H3 0.9800 C19—H19A 0.9600
C5—C9 1.518 (3) C19—H19B 0.9600
C5—C6 1.551 (3) C19—H19C 0.9600
C14—O3—C18 117.8 (2) C8—C9—Cl3 128.85 (18)
C15—O4—C19 118.6 (2) C5—C9—Cl3 123.33 (17)
C1—N1—C4 114.1 (2) N1—C10—C11 110.3 (2)
C1—N1—C10 123.2 (2) N1—C10—H10A 109.6
C4—N1—C10 122.6 (2) C11—C10—H10A 109.6
O1—C1—N1 125.2 (3) N1—C10—H10B 109.6
O1—C1—C2 126.7 (3) C11—C10—H10B 109.6
N1—C1—C2 108.1 (2) H10A—C10—H10B 108.1
C1—C2—C3 105.1 (2) C12—C11—C10 113.4 (2)
C1—C2—C7 113.51 (19) C12—C11—H11A 108.9
C3—C2—C7 102.98 (18) C10—C11—H11A 108.9
C1—C2—H2 111.6 C12—C11—H11B 108.9
C3—C2—H2 111.6 C10—C11—H11B 108.9
C7—C2—H2 111.6 H11A—C11—H11B 107.7
C4—C3—C2 104.7 (2) C17—C12—C13 118.3 (3)
C4—C3—C5 113.19 (18) C17—C12—C11 121.1 (4)
C2—C3—C5 103.01 (17) C13—C12—C11 120.5 (3)
C4—C3—H3 111.8 C12—C13—C14 121.7 (3)
C2—C3—H3 111.8 C12—C13—H13 119.2
C5—C3—H3 111.8 C14—C13—H13 119.2
O2—C4—N1 124.8 (2) O3—C14—C13 126.7 (3)
O2—C4—C3 127.3 (3) O3—C14—C15 114.3 (2)
N1—C4—C3 107.9 (2) C13—C14—C15 118.9 (3)
C9—C5—C6 98.95 (17) O4—C15—C16 125.8 (2)
C9—C5—C3 107.51 (18) O4—C15—C14 114.5 (2)
C6—C5—C3 100.94 (17) C16—C15—C14 119.7 (3)
C9—C5—Cl4 116.28 (16) C15—C16—C17 120.2 (3)
C6—C5—Cl4 116.64 (17) C15—C16—H16 119.9
C3—C5—Cl4 114.41 (15) C17—C16—H16 119.9
C7—C6—C5 92.81 (17) C12—C17—C16 121.1 (3)
C7—C6—Cl5 113.55 (16) C12—C17—H17 119.4
C5—C6—Cl5 114.70 (15) C16—C17—H17 119.4
C7—C6—Cl6 113.64 (16) O3—C18—H18A 109.5
C5—C6—Cl6 113.18 (16) O3—C18—H18B 109.5
Cl5—C6—Cl6 108.47 (12) H18A—C18—H18B 109.5
C8—C7—C6 99.14 (18) O3—C18—H18C 109.5
C8—C7—C2 107.55 (17) H18A—C18—H18C 109.5
C6—C7—C2 100.98 (18) H18B—C18—H18C 109.5
C8—C7—Cl1 115.47 (16) O4—C19—H19A 109.5
C6—C7—Cl1 116.16 (16) O4—C19—H19B 109.5
C2—C7—Cl1 115.42 (16) H19A—C19—H19B 109.5
C9—C8—C7 107.41 (19) O4—C19—H19C 109.5
C9—C8—Cl2 128.61 (18) H19A—C19—H19C 109.5
C7—C8—Cl2 123.74 (17) H19B—C19—H19C 109.5
C8—C9—C5 107.74 (19)
C4—N1—C1—O1 −179.4 (2) C1—C2—C7—C8 −47.0 (3)
C10—N1—C1—O1 2.1 (4) C3—C2—C7—C8 66.0 (2)
C4—N1—C1—C2 2.3 (3) C1—C2—C7—C6 −150.4 (2)
C10—N1—C1—C2 −176.2 (2) C3—C2—C7—C6 −37.3 (2)
O1—C1—C2—C3 179.7 (2) C1—C2—C7—Cl1 83.5 (2)
N1—C1—C2—C3 −2.1 (2) C3—C2—C7—Cl1 −163.44 (16)
O1—C1—C2—C7 −68.6 (3) C6—C7—C8—C9 34.4 (2)
N1—C1—C2—C7 109.7 (2) C2—C7—C8—C9 −70.2 (2)
C1—C2—C3—C4 1.1 (2) Cl1—C7—C8—C9 159.29 (17)
C7—C2—C3—C4 −117.95 (19) C6—C7—C8—Cl2 −150.73 (16)
C1—C2—C3—C5 119.72 (18) C2—C7—C8—Cl2 104.6 (2)
C7—C2—C3—C5 0.6 (2) Cl1—C7—C8—Cl2 −25.9 (3)
C1—N1—C4—O2 178.5 (2) C7—C8—C9—C5 0.7 (2)
C10—N1—C4—O2 −3.0 (4) Cl2—C8—C9—C5 −173.78 (16)
C1—N1—C4—C3 −1.6 (3) C7—C8—C9—Cl3 177.45 (17)
C10—N1—C4—C3 176.95 (19) Cl2—C8—C9—Cl3 3.0 (3)
C2—C3—C4—O2 −180.0 (2) C6—C5—C9—C8 −35.4 (2)
C5—C3—C4—O2 68.6 (3) C3—C5—C9—C8 69.1 (2)
C2—C3—C4—N1 0.1 (2) Cl4—C5—C9—C8 −161.17 (16)
C5—C3—C4—N1 −111.3 (2) C6—C5—C9—Cl3 147.60 (17)
C4—C3—C5—C9 45.4 (3) C3—C5—C9—Cl3 −107.85 (19)
C2—C3—C5—C9 −67.1 (2) Cl4—C5—C9—Cl3 21.9 (2)
C4—C3—C5—C6 148.5 (2) C1—N1—C10—C11 94.0 (3)
C2—C3—C5—C6 36.1 (2) C4—N1—C10—C11 −84.4 (3)
C4—C3—C5—Cl4 −85.4 (2) N1—C10—C11—C12 175.8 (3)
C2—C3—C5—Cl4 162.17 (16) C10—C11—C12—C17 99.6 (4)
C9—C5—C6—C7 52.57 (18) C10—C11—C12—C13 −82.5 (4)
C3—C5—C6—C7 −57.35 (18) C17—C12—C13—C14 1.1 (4)
Cl4—C5—C6—C7 178.05 (15) C11—C12—C13—C14 −176.8 (2)
C9—C5—C6—Cl5 170.14 (16) C18—O3—C14—C13 −7.2 (4)
C3—C5—C6—Cl5 60.2 (2) C18—O3—C14—C15 172.3 (3)
Cl4—C5—C6—Cl5 −64.4 (2) C12—C13—C14—O3 −179.7 (2)
C9—C5—C6—Cl6 −64.7 (2) C12—C13—C14—C15 0.8 (4)
C3—C5—C6—Cl6 −174.59 (15) C19—O4—C15—C16 7.7 (4)
Cl4—C5—C6—Cl6 60.8 (2) C19—O4—C15—C14 −172.6 (2)
C5—C6—C7—C8 −52.15 (18) O3—C14—C15—O4 −1.2 (3)
Cl5—C6—C7—C8 −170.68 (14) C13—C14—C15—O4 178.4 (2)
Cl6—C6—C7—C8 64.71 (19) O3—C14—C15—C16 178.5 (2)
C5—C6—C7—C2 57.87 (18) C13—C14—C15—C16 −1.9 (3)
Cl5—C6—C7—C2 −60.66 (19) O4—C15—C16—C17 −179.2 (2)
Cl6—C6—C7—C2 174.73 (15) C14—C15—C16—C17 1.2 (4)
C5—C6—C7—Cl1 −176.50 (15) C13—C12—C17—C16 −1.9 (4)
Cl5—C6—C7—Cl1 65.0 (2) C11—C12—C17—C16 176.0 (2)
Cl6—C6—C7—Cl1 −59.6 (2) C15—C16—C17—C12 0.8 (4)

Hydrogen-bond geometry (Å, º)

Cg5 is the centroid of the C12–C17 benzene ring.

D—H···A D—H H···A D···A D—H···A
C19—H19A···O2i 0.96 2.57 3.408 (4) 146
C6—Cl6···Cg5ii 1.77 (1) 3.41 (1) 4.894 (2) 140 (1)

Symmetry codes: (i) y+1/4, −x+3/4, −z+7/4; (ii) −y+3/4, x−1/4, −z+3/4.

Funding Statement

This work was funded by University Grants Commission grant SRF fellowship to R. Manohar.

References

  1. Aeberli, P., Gogerty, J. H., Houlihan, W. J. & Iorio, L. C. (1976). J. Med. Chem. 19, 436–438. [DOI] [PubMed]
  2. Ahire, M. M. & Mhaske, S. B. (2017). ACS Omega, 2, 6598-6604. [DOI] [PMC free article] [PubMed]
  3. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Coram, W. M. & Brezenoff, H. E. (1983). Drug Dev. Res. 3, 503–516.
  5. Correa, R., Rosa, P. W., Pereira, C. I., Schlemper, V. & Nunes, R. J. (1997). Pharm. Pharm. Commun. 3, 67–71.
  6. Crider, A. M., Kolczynski, T. M. & Yates, K. M. (1980). J. Med. Chem. 23, 324–326. [DOI] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hall, I. H., Wong, O. T. & Scovill, J. P. (1995). Biomed. Pharmacother. 49, 251–258. [DOI] [PubMed]
  10. Hargreaves, M. K., Pritchard, J. G. & Dave, H. R. (1970). Chem. Rev. 70, 439–469.
  11. Hazra, B., Pore, V., Dey, S., Datta, S., Darokar, M., Saikia, D., Khanuja, S. P. S. & Thakur, A. (2004). Bioorg. Med. Chem. Lett. 14, 773–777. [DOI] [PubMed]
  12. Isaka, M., Prathumpai, W., Wongsa, P. & Tanticharoen, M. (2006). Org. Lett. 8, 2815–2817. [DOI] [PubMed]
  13. Kaczorowski, G. J., McManus, O. B., Priest, B. T. & Garcia, M. L. (2008). J. Gen. Physiol. 131, 399–405. [DOI] [PMC free article] [PubMed]
  14. Kornet, M. J., Crider, A. M. & Magarian, E. O. (1977). J. Med. Chem. 20, 405–409. [DOI] [PubMed]
  15. Manohar, R., Harikrishna, M., Ramanathan, C. R., SureshKumar, M. & Gunasekaran, K. (2011). Acta Cryst. E67, o1708. [DOI] [PMC free article] [PubMed]
  16. Musso, D. L., Cochran, F. R., Kelley, J. L., McLean, E. W., Selph, J. L., Rigdon, G. C., Orr, G. F., Davis, R. G., Cooper, B. R., Styles, V. L., Thompson, J. B. & Hall, W. R. (2003). J. Med. Chem. 46, 399–408. [DOI] [PubMed]
  17. Nunes, R., Calixto, J. B. & Yunes, R. A. (1995). Pharm. Pharmacol. Commun. 1, 399–401.
  18. Patil, M. M. & Rajput, S. S. (2014). Int. J. Pharm. Pharm. Sci. 6, 8–14.
  19. Piper, J. R., Stringfellow, C. R. & Johnston, T. P. (1971). J. Med. Chem. 14, 350–354. [DOI] [PubMed]
  20. Rich, D. H. & Gardner, J. H. (1983). Tetrahedron Lett. 24, 5305–5308.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  25. Zentz, F., Valla, A., Le Guillou, R., Labia, R., Mathot, A. G. & Sirot, D. (2002). II Farmaco, 57, 421–426. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S2056989019004109/su5485sup1.cif

e-75-00562-sup1.cif (537KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004109/su5485Isup3.hkl

e-75-00562-Isup3.hkl (413.3KB, hkl)

CSD search S1. DOI: 10.1107/S2056989019004109/su5485sup4.pdf

e-75-00562-sup4.pdf (71.2KB, pdf)

Supporting information file. DOI: 10.1107/S2056989019004109/su5485Isup4.cml

CCDC reference: 1905872

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES