Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 5;75(Pt 5):571–575. doi: 10.1107/S2056989019004444

(E)-2-(2-Hy­droxy-3-methyl­benzyl­idene)-N-methyl­hydrazine-1-carbo­thio­amide: supra­molecular assemblies in two-dimensions mediated by N—H⋯S and C—H⋯π inter­actions

Md Azharul Arafath a,*, Huey Chong Kwong b, Farook Adam b,*
PMCID: PMC6505611  PMID: 31110788

The character of the methyl­hydrazine carbo­thio­amide moiety in the title compound is a thio­semicarbazone Schiff base was confirmed by its bond lengths and bond angles. In the crystal, mol­ecules of the title compound are mediated into sheets parallel to the ab plane by N—H⋯S hydrogen bonds and C—H⋯π inter­actions.

Keywords: crystal structure, hydrazine carbo­thio­amide, Schiff base, inter­molecular inter­action

Abstract

In the title compound, C10H13N3OS, the azomethine C=N double bond has an E configuration. The phenyl ring and methyl­hydrazine carbo­thio­amide moiety [maximum deviation = 0.008 (2) Å] are twisted slightly with a dihedral angle of 14.88 (10)°. In the crystal, mol­ecules are linked into sheets parallel to the ab plane via N—H⋯S hydrogen bonds and C—H⋯π inter­actions.

Chemical context  

Schiff base compounds are very important and can be used for multidisciplinary applications. They are widely used in the food and dye industries and exhibit many types of biological activity (Gaur, 2000) such as anti­bacterial, anti­fungal, and anti­malarial (Annapoorani & Krishnan, 2013). The azomethine C=N group of Schiff bases plays an important role in the biological activity. Metal complexes of thio­semicarbazones have also received much attention. The metal chelation typically improves the lipophilicity of the ligand and facilitates the penetration of the complexes into bacterial membranes (Lobana et al., 2009; Rogolino et al., 2017). Thio­semi­carbazones have multi-donor characteristics because of the presence of nitro­gen and sulfur atoms in their mol­ecular backbone. This results in a variety of coordination modes and many different physiochemical properties (Sharma et al., 2016). As part of our ongoing studies on thio­semicarbazone Schiff bases (Arafath et al., 2018a ), we report herein the synthesis and structural determination of the title compound.graphic file with name e-75-00571-scheme1.jpg

Structural commentary  

The title compound (I) crystallizes in the non-centrosymmetric ortho­rhom­bic space group Iba2 and exhibits an E configuration with respect to the azomethine C=N double bond (Fig. 1). The C8=N1 and C9=S1 bond lengths of 1.288 (3) and 1.689 (2) Å, respectively, confirm the presence of the double bonds while the C6—C8, N2—C9 and C9—N3 bond lengths of 1.452 (3), 1.354 (3) and 1.321 (3) Å, respectively, confirm their single-bond character. The C6—C8—N1 and N2—C9—N3 angles are 122.5 (2) and 117.8 (2)°, respectively, and are consistent with an sp 2-hybridized character for atom C8 and C9 (Arafath et al., 2018b ; Khalaji et al., 2012). The unique mol­ecular conformation of (I) can be characterized by four torsion angles, viz. τ 1 (C5—C6—C8—N1), τ 2 (C8—N1—N2—C9), τ 3 (N1—N2—C9—N3) and τ 4 (N2—C9—N3—C10), respectively (Fig. 2). The torsion angles τ 3 and τ 4 are 0.4 (3) and 179.9 (2)°, signifying the planarity of the methyl­hydrazine carbo­thio­amide moiety [N1—N2—(C9=S1)—N3—C10; mean deviation σ = 0.002 Å, maximum deviation = 0.008 (2) Å for atom C9]. τ 1 and τ 2 are slightly twisted [τ 1 = −4.2 (3) and τ 2 = 170.4 (2)°, respectively], and the C1–C6 phenyl ring and the methyl­hydrazine carbo­thio­amide moiety subtend a dihedral angle of 14.88 (10)°. In the mol­ecule, the hy­droxy group acts as a hydrogen-bond donor for the adjacent hydrazine group, forming a intra­molecular hydrogen bond with an S(6) ring motif (Fig. 1, Table 1).

Figure 1.

Figure 1

The atom labelling scheme and displacement ellipsoids of the mol­ecular structure at the 50% probability level.

Figure 2.

Figure 2

General chemical diagram showing torsion angles, τ1, τ2, τ3 and τ4 in the title compound.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.84 (4) 1.94 (4) 2.681 (3) 147 (4)
N2—H1N2⋯S1i 0.89 (3) 2.51 (3) 3.387 (2) 173 (3)
C10—H10ACg1ii 0.96 2.70 3.577 (4) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal, mol­ecules are linked into dimers with an Inline graphic(8) ring motif via N2—H1N2⋯S1 hydrogen bonds (Fig. 3 a, Table 1). The dimers are connected into sheets parallel to the ab plane through C—H⋯π inter­actions (Fig. 3 b, Table 1).

Figure 3.

Figure 3

(a) A view of a dimer of C10H13N3OS with N2—H1N2⋯S1 hydrogen bonds shown as cyan dotted lines. (b) A view of a dimeric sheet with C10—H10ACg1 inter­actions shown as green dotted lines. Hydrogen atoms not involved in with these inter­actions are omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (CSD version 5.39, last update February 2018; Groom et al., 2016) using (E)-2-(2-hy­droxy­benzyl­idene)-N-(λ1-meth­yl)hydrazine-1-carbo­thio­amide as reference moiety found 44 structures containing the 2-(2-hy­droxy­benzyl­idene)hydrazinecarbo­thio­amide moiety with different substituents. The basic structural motif (E)-2-(2-hy­droxy­benzyl­idene)-N-(λ1-meth­yl)hydrazine-1-carbo­thio­amide is shown in Fig. 2 and the different substit­uents (R 1 and R 2) together with the torsion angles of the C—CH=N—NH—C(=S)—NH—C backbone are summarized in Table 2. In these structures, the torsion angle τ1 exists in either the syn-periplanar (range from 0 to 12°) or anti-periplanar (range from 167 to 179°) conformation. As for the torsion angle τ2, all structures adopt an anti-periplanar conformation (169–179°). Similar to the title compound, torsion angles τ3 and τ4 for most of the structures are syn-periplanar (0–16°) and anti-periplanar (171-180°), respectively. However, there are two outliers (YOCJOR and YOCJUX; (Chumakov et al., 2014)) where the 2-(2-hy­droxy­benzyl­idene) hydrazinecarbo­thio­amide is substituted with a pyridine ring. In contrast to most of the structures, torsion angles τ3 and τ4 for YOCJOR and YOCJUX are anti-periplanar (178 and 177°, respectively) and syn-periplanar (1 and 3°, respectively).

Table 2. Torsion angles τ1, τ2, τ3 and τ4 (°).

Compound R 1 R 2 τ1 τ2 τ3 τ4
(I) 2-hy­droxy-3-methyl­benzyl­iden­yl meth­yl 4 170 0 180
AWAZOP (Hussein & Guan, 2015) 5-bromo-2-hy­droxy­benzyl­iden­yl meth­yl 1 175 12 179
AWEBEL (Hussein & Guan, 2015) 3-eth­oxy-2-hy­droxy­benzyl­iden­yl meth­yl 176 174 4 180
CIVZAK (Hussein et al., 2014b ) 5-(tert-but­yl)-2-hy­droxy­benzyl­iden­yl eth­yl 2 174 15 180
CIWBAN (Hussein et al., 2014b ) 5-allyl-3-ethyl-2-hy­droxy­benzyl­iden­yl meth­yl 169 173 5 178
DAGVOZ (Arafath et al., 2017b ) 2-hy­droxy-5-meth­oxy-3-nitro­benzyl­iden­yl meth­yl 177 176 7 179
EFUPAX (Rubčić et al., 2008) 2-hy­droxy-4-meth­oxy­benzyl­iden­yl phen­yl 2 173 4 174
EROVIR (Lo & Ng, 2011) 5-chloro-2-hy­droxy­benzyl­iden­yl eth­yl 8 172 14 176
GOZQIX (Hussein et al., 2015a ) 2-hy­droxy-5-meth­oxy­benzyl­iden­yl meth­yl 3 175 14 180
GOZQIX01 (Salam et al., 2016) 2-hy­droxy-5-meth­oxy­benzyl­iden­yl meth­yl 3 175 15 180
GOZQIX02 (Subhashree et al., 2017) 2-hy­droxy-5-meth­oxy­benzyl­iden­yl meth­yl 2 175 13 180
HABDEW (Hussein et al., 2015c ) 3-eth­oxy-2-hy­droxy­benzyl­iden­yl eth­yl 177 176 5 180
HABFEY (Hussein et al., 2015c ) 5-allyl-2-hy­droxy-3-meth­oxy­benzyl­iden­yl eth­yl 173, 173 176, 179 6, 8 178, 177
HAXROO (Vrdoljak et al., 2005) 2-hy­droxy­benzyl­iden­yl meth­yl 1 176 11 178
HAXROO01 (Liu, 2015) 2-hy­droxy­benzyl­iden­yl meth­yl 2 175 11 178
HAXSAB (Vrdoljak et al., 2005) 2-hy­droxy-3-meth­oxy­benzyl­iden­yl meth­yl 177 174 5 178
IBAZUJ (Haque et al., 2015) 2,3-di­hydroxy­benzyl­iden meth­yl 1 170 1 175
IBEDOL (Haque et al., 2015) 2-hy­droxy-5-methyl­benzyl­iden­yl meth­yl 3, 2 175, 173 16, 16 175, 175
IFUXEN (Tan et al., 2008b ) 2,4-di­hydroxy­benzyl­iden­yl eth­yl 2 179 0 176
IFUXEN01 (Hussein et al., 2014b ) 2,4-di­hydroxy­benzyl­iden­yl eth­yl 2 179 0 176
IFUXEN02 (Ramaiyer & Frank, 2015) 2,4-di­hydroxy­benzyl­iden­yl eth­yl 1 175 4 179
IFUXEN03 (Ramaiyer & Frank, 2015) 2,4-di­hydroxy­benzyl­iden­yl eth­yl 5 171 6 178
IGALUY (Tan et al., 2008c ) 2,4-di­hydroxy­benzyl­iden­yl meth­yl 5 174 9 176
IGALUY01 (Salam et al., 2015) 2,4-di­hydroxy­benzyl­iden­yl meth­yl 2 177 16 178
IMAFIN (El-Asmy et al., 2016) 2-hy­droxy­benzyl­iden­yl eth­yl 1 177 13 177
JAJHUA (Li et al., 2016) 5-bromo-2-hy­droxy­benzyl­iden­yl meth­yl 1 175 12 179
JOFHIW (Tan et al., 2008a ) 2,5-di­hydroxy­benzyl­iden meth­yl 1 175 11 178
KOCLIY (Đilović et al., 2008) 4-(di­ethyl­amino)-2-hy­droxy­benzyl­iden­yl phen­yl 2 172 12 174
LAQCIR (Jacob & Kurup, 2012) 5-bromo-2-hy­droxy-3-meth­oxy­benzyl­iden­yl cyclo­hex­yl 172 177 4 179
NUQNAP (Shawish et al., 2010) 2,3,4-tri­hydroxy­benzyl­iden­yl eth­yl 167 176 8 174
OBOLOJ (Arafath et al., 2017a ) 5-chloro-2-hy­droxy­benzyl­iden­yl cyclo­hex­yl 175 176 6 177
PAXCAU (Jacob et al., 2012) 5-bromo-2-hy­droxy-3-meth­oxy­benzyl­iden­yl phen­yl 177 180 6 177
RIVFAE (Seena et al., 2008) 2-hy­droxy­benzyl­iden­yl phen­yl 2, 5, 2 179, 175, 178 12, 9, 2 171, 177, 180
RIVFAE01 (Rubcic et al., 2008) 2-hy­droxy­benzyl­iden­yl phen­yl 11, 3 177, 171 2, 2 175, 170
SUKQOG (Hussein et al., 2015d ) 5-allyl-2-hy­droxy-3-meth­oxy­benzyl­iden­yl phen­yl 168 172 4 179
WEXDAG (Orysyk et al., 2013) 2-hy­droxy­benzyl­iden­yl all­yl 4 170 7 173
XOTPED (Hussein et al., 2015b ) 2-hy­droxy-3-methyl­benzyl­iden­yl eth­yl 2 179 7 179
YOCJOR (Chumakov et al., 2014) 5-bromo-2-hy­droxy­benzyl­iden­yl pyridin-2-yl 0 179 178 1
YOCJUX (Chumakov et al., 2014) 2-hy­droxy-3-meth­oxy­benzyl­iden­yl pyridin-2-yl 3 178 177 3
YOPHUI (Hussein et al., 2014a ) 3-(tert-but­yl)-2-hy­droxy­benzyl­iden­yl eth­yl 4, 8 171, 169 4, 18 179, 180
YOPLIA (Hussein et al., 2014a ) 2-hy­droxy-5-methyl­benzyl­iden­yl eth­yl 4 171 10 180
YUKYOU (Salam & Haque, 2015) 3,5-di­chloro-2-hy­droxy­benzyl­iden­yl eth­yl 179 180 2 178
YUXJOS (Arafath et al., 2018a ) 3-(tert-but­yl)-2-hy­droxy­benzyl­iden­yl cyclo­hex­yl 12 170 12 176
ZIJKIO (Li & Sato, 2013) 5-bromo-2-hy­droxy­benzyl­iden­yl eth­yl 6 172 12 176
ZIJKIO02 (Hussein et al., 2015b ) 5-bromo-2-hy­droxy­benzyl­iden­yl eth­yl 7 173 13 177

Note: there is more than one torsion angle for compounds HABFEY, IBEDOL, RIVFAE, RIVFAE01 and YOPHUI because there are more than one independent mol­ecules in their asymmetric units.

Synthesis and crystallization  

2-Hy­droxy-3-methyl­benzaldehyde (0.68 g, 5.00 mmol) was dissolved in 20.0 mL of methanol. 0.20 mL of glacial acetic acid was added and the mixture was refluxed for 30 minutes. A solution of 0.52 g (5.00 mmol) of N-methyl hydrazinecarbo­thio­amide in 20.0 mL of methanol was added dropwise with stirring to the aldehyde solution (Fig. 4). The resulting colourless solution was heated under reflux for 4 h with stirring. The crude product was washed with 5.0 mL of n-hexane. The recovered product was dissolved in DMSO for purification and recrystallization. Light-yellow single crystals (m.p. 454–455 K; yield 94%) suitable for X-ray diffraction were obtained by slow evaporation of the solvent.

Figure 4.

Figure 4

Reaction scheme for the synthesis of C10H13N3OS.

Analysis calculated for C10H13N3OS (FW: 223.29 g mol−1); C, 53.74; H, 5.83; N, 18.81; found: C, 53.71; H, 5.79; N, 18.83%. 1H NMR (500 MHz, DMSO-d 6, Me4Si ppm): δ 11.38 (s, N—NH), δ 9.39 (s, OH), δ 8.34 (s, HC=N), δ 8.44 (q, CS–NH), δ 7.42–6.81 (multiplet, aromatic), δ 3.00 (d, J = 4.5 Hz, N—CH3), δ 2.20 (s, Ph—CH3). 13C NMR (DMSO-d 6, Me4Si ppm): δ 177.48 (C=S), δ 154.24 (C=N), δ 143.64–119.10 (C-aromatic), δ 31.05 (N—CH3), δ 15.91(Ph—CH3) ppm. IR (KBr pellets υmax/cm−1): 3418 υ(NH), 3133 υ(OH), 2983(NC—H3, sp3), 1618 υ(C=N), 1553 υ(C=C, aromatic), 1270 υ(C=S), 1251 υ(CH, bend., aromatic), 1085 υ(C—O). 1043 υ(C—N).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model with U iso(H) = 1.2 or 1.5 U eq(C). All N- and O-bound H atoms were located from a difference-Fourier map and freely refined.

Table 3. Experimental details.

Crystal data
Chemical formula C10H13N3OS
M r 223.29
Crystal system, space group Orthorhombic, I b a2
Temperature (K) 296
a, b, c (Å) 14.6474 (14), 17.522 (2), 8.9048 (8)
V3) 2285.4 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.46 × 0.26 × 0.16
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.853, 0.879
No. of measured, independent and observed [I > 2σ(I)] reflections 14825, 3359, 2949
R int 0.020
(sin θ/λ)max−1) 0.705
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.094, 1.06
No. of reflections 3359
No. of parameters 150
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.16
Absolute structure Flack parameter determined using 1222 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.04 (3)

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004444/nr2074sup1.cif

e-75-00571-sup1.cif (519.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004444/nr2074Isup2.hkl

e-75-00571-Isup2.hkl (268.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004444/nr2074Isup3.cml

CCDC reference: 1485713

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C10H13N3OS Dx = 1.298 Mg m3
Mr = 223.29 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Iba2 Cell parameters from 5563 reflections
a = 14.6474 (14) Å θ = 2.3–29.5°
b = 17.522 (2) Å µ = 0.26 mm1
c = 8.9048 (8) Å T = 296 K
V = 2285.4 (4) Å3 Block, yellow
Z = 8 0.46 × 0.26 × 0.16 mm
F(000) = 944

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 3359 independent reflections
Radiation source: fine-focus sealed tube 2949 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
φ and ω scans θmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −20→20
Tmin = 0.853, Tmax = 0.879 k = −23→24
14825 measured reflections l = −12→12

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.3888P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094 (Δ/σ)max = 0.001
S = 1.06 Δρmax = 0.17 e Å3
3359 reflections Δρmin = −0.15 e Å3
150 parameters Absolute structure: Flack parameter determined using 1222 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.04 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.35594 (4) 0.50006 (3) 0.20442 (10) 0.05018 (16)
O1 0.45729 (12) 0.77741 (11) 0.6162 (3) 0.0621 (6)
N1 0.48391 (12) 0.65142 (9) 0.4511 (3) 0.0414 (4)
N2 0.46275 (13) 0.59332 (10) 0.3526 (2) 0.0436 (4)
N3 0.31035 (13) 0.60707 (11) 0.4029 (2) 0.0459 (4)
C1 0.69785 (15) 0.72085 (14) 0.6081 (2) 0.0443 (5)
H1A 0.735599 0.683585 0.567182 0.053*
C2 0.73506 (15) 0.77658 (13) 0.6987 (3) 0.0493 (5)
H2A 0.797160 0.776261 0.720393 0.059*
C3 0.67936 (16) 0.83287 (14) 0.7568 (3) 0.0492 (5)
H3A 0.704945 0.871242 0.815398 0.059*
C4 0.58596 (16) 0.83349 (12) 0.7297 (3) 0.0479 (5)
C5 0.54896 (14) 0.77591 (12) 0.6405 (3) 0.0424 (4)
C6 0.60427 (14) 0.71939 (12) 0.5768 (2) 0.0380 (4)
C7 0.5255 (2) 0.89533 (18) 0.7931 (5) 0.0783 (10)
H7A 0.491901 0.918970 0.713173 0.117*
H7B 0.562565 0.932944 0.842504 0.117*
H7C 0.483746 0.873420 0.864103 0.117*
C8 0.56962 (15) 0.65960 (11) 0.4793 (3) 0.0410 (4)
H8A 0.610876 0.625925 0.435625 0.049*
C9 0.37548 (14) 0.57095 (11) 0.3289 (2) 0.0397 (4)
C10 0.21430 (16) 0.58990 (19) 0.3892 (4) 0.0647 (7)
H10A 0.179253 0.629791 0.435460 0.097*
H10B 0.201496 0.542285 0.438227 0.097*
H10C 0.198298 0.586205 0.284940 0.097*
H1N2 0.5065 (18) 0.5680 (16) 0.307 (4) 0.056 (8)*
H1N3 0.3243 (19) 0.6428 (16) 0.471 (4) 0.054 (7)*
H1O1 0.444 (3) 0.7429 (19) 0.555 (5) 0.076 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0523 (3) 0.0455 (3) 0.0527 (3) −0.0030 (2) −0.0095 (3) −0.0097 (2)
O1 0.0328 (8) 0.0601 (11) 0.0936 (16) −0.0015 (7) −0.0014 (8) −0.0230 (10)
N1 0.0439 (9) 0.0367 (7) 0.0436 (8) −0.0042 (6) −0.0024 (9) 0.0006 (9)
N2 0.0412 (9) 0.0404 (9) 0.0491 (10) 0.0001 (7) −0.0030 (8) −0.0060 (8)
N3 0.0409 (9) 0.0495 (10) 0.0475 (9) 0.0000 (8) −0.0055 (7) −0.0078 (8)
C1 0.0380 (10) 0.0490 (12) 0.0460 (11) 0.0012 (9) 0.0008 (9) 0.0009 (9)
C2 0.0379 (9) 0.0576 (12) 0.0525 (11) −0.0059 (9) −0.0058 (10) 0.0016 (12)
C3 0.0478 (12) 0.0485 (11) 0.0513 (11) −0.0119 (10) −0.0057 (10) −0.0017 (9)
C4 0.0446 (11) 0.0416 (10) 0.0575 (15) −0.0049 (9) 0.0020 (9) −0.0064 (9)
C5 0.0327 (10) 0.0401 (10) 0.0544 (12) −0.0048 (8) 0.0031 (8) 0.0002 (9)
C6 0.0357 (9) 0.0380 (10) 0.0401 (10) −0.0037 (8) 0.0010 (8) 0.0033 (8)
C7 0.0642 (17) 0.0641 (17) 0.107 (3) 0.0081 (14) −0.0021 (18) −0.0325 (17)
C8 0.0413 (10) 0.0387 (9) 0.0428 (11) −0.0008 (8) −0.0006 (8) 0.0020 (8)
C9 0.0439 (10) 0.0365 (9) 0.0387 (9) −0.0016 (8) −0.0064 (8) 0.0033 (8)
C10 0.0403 (12) 0.0802 (18) 0.0736 (17) −0.0043 (12) −0.0015 (12) −0.0148 (15)

Geometric parameters (Å, º)

S1—C9 1.689 (2) C2—H2A 0.9300
O1—C5 1.360 (3) C3—C4 1.389 (3)
O1—H1O1 0.84 (4) C3—H3A 0.9300
N1—C8 1.288 (3) C4—C5 1.393 (3)
N1—N2 1.379 (3) C4—C7 1.509 (4)
N2—C9 1.354 (3) C5—C6 1.400 (3)
N2—H1N2 0.88 (3) C6—C8 1.452 (3)
N3—C9 1.321 (3) C7—H7A 0.9600
N3—C10 1.444 (3) C7—H7B 0.9600
N3—H1N3 0.90 (3) C7—H7C 0.9600
C1—C2 1.379 (3) C8—H8A 0.9300
C1—C6 1.399 (3) C10—H10A 0.9600
C1—H1A 0.9300 C10—H10B 0.9600
C2—C3 1.381 (4) C10—H10C 0.9600
C5—O1—H1O1 108 (3) C4—C5—C6 121.21 (19)
C8—N1—N2 115.18 (18) C1—C6—C5 118.25 (19)
C9—N2—N1 121.68 (18) C1—C6—C8 118.35 (19)
C9—N2—H1N2 118.0 (19) C5—C6—C8 123.40 (18)
N1—N2—H1N2 120.2 (19) C4—C7—H7A 109.5
C9—N3—C10 124.2 (2) C4—C7—H7B 109.5
C9—N3—H1N3 120.5 (18) H7A—C7—H7B 109.5
C10—N3—H1N3 115.1 (18) C4—C7—H7C 109.5
C2—C1—C6 121.1 (2) H7A—C7—H7C 109.5
C2—C1—H1A 119.4 H7B—C7—H7C 109.5
C6—C1—H1A 119.4 N1—C8—C6 122.5 (2)
C1—C2—C3 119.4 (2) N1—C8—H8A 118.7
C1—C2—H2A 120.3 C6—C8—H8A 118.7
C3—C2—H2A 120.3 N3—C9—N2 117.8 (2)
C2—C3—C4 121.5 (2) N3—C9—S1 123.86 (17)
C2—C3—H3A 119.3 N2—C9—S1 118.37 (16)
C4—C3—H3A 119.3 N3—C10—H10A 109.5
C3—C4—C5 118.4 (2) N3—C10—H10B 109.5
C3—C4—C7 121.2 (2) H10A—C10—H10B 109.5
C5—C4—C7 120.3 (2) N3—C10—H10C 109.5
O1—C5—C4 117.4 (2) H10A—C10—H10C 109.5
O1—C5—C6 121.4 (2) H10B—C10—H10C 109.5
C8—N1—N2—C9 170.4 (2) O1—C5—C6—C1 −179.2 (2)
C6—C1—C2—C3 −1.4 (4) C4—C5—C6—C1 1.7 (3)
C1—C2—C3—C4 1.9 (4) O1—C5—C6—C8 1.1 (3)
C2—C3—C4—C5 −0.6 (3) C4—C5—C6—C8 −178.0 (2)
C2—C3—C4—C7 −179.8 (3) N2—N1—C8—C6 178.06 (19)
C3—C4—C5—O1 179.6 (2) C1—C6—C8—N1 176.1 (2)
C7—C4—C5—O1 −1.1 (4) C5—C6—C8—N1 −4.2 (3)
C3—C4—C5—C6 −1.2 (3) C10—N3—C9—N2 179.9 (2)
C7—C4—C5—C6 178.0 (3) C10—N3—C9—S1 1.2 (3)
C2—C1—C6—C5 −0.3 (3) N1—N2—C9—N3 0.4 (3)
C2—C1—C6—C8 179.4 (2) N1—N2—C9—S1 179.17 (16)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 phenyl ring.

D—H···A D—H H···A D···A D—H···A
O1—H1O1···N1 0.84 (4) 1.94 (4) 2.681 (3) 147 (4)
N2—H1N2···S1i 0.89 (3) 2.51 (3) 3.387 (2) 173 (3)
C10—H10A···Cg1ii 0.96 2.70 3.577 (4) 152

Symmetry codes: (i) −x+1, −y+1, z; (ii) −x, y+2, z+1/2.

Funding Statement

This work was funded by Universiti Sains Malaysia grants 1001/PKIMIA/811269 and USM-TWAS fellowship. The World Academy of Sciences grant USM-TWAS fellowship to Md. Azharul Arafath. Malaysian Government grant MyBrain15 to Huey Chong Kwong.

References

  1. Annapoorani, S. & Krishnan, C. (2013). Synthesis, 5, 180–185.
  2. Arafath, M. A., Adam, F. & Razali, M. R. (2017a). IUCrData, 2, x161997.
  3. Arafath, M. A., Adam, F., Razali, M. R., Ahmed Hassan, L. E., Ahamed, M. B. K. & Majid, A. M. S. A. (2017b). J. Mol. Struct. 1130, 791–798.
  4. Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018a). Acta Cryst. E74, 687–690. [DOI] [PMC free article] [PubMed]
  5. Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018b). Acta Cryst. E74, 1460–1462. [DOI] [PMC free article] [PubMed]
  6. Bruker (2012). Bruker AXS Inc., Madison. Wisconsin, USA.
  7. Chumakov, Y. M., Petrenko, P. A., Codita, T. B., Tsapkov, V. I., Poirier, D. & Gulea, A. P. (2014). Crystallogr. Rep. 59, 207–212.
  8. Đilović, I., Rubčić, M., Vrdoljak, V., Pavelić, S. K., Kralj, M., Piantanida, I. & Cindrić, M. (2008). Bioorg. Med. Chem. 16, 5189–5198. [DOI] [PubMed]
  9. El-Asmy, A. A., Jeragh, B. & Ali, M. S. (2016). Private communication (Refcode CCDC 1478956. CCDC, Cambridge, England.
  10. Gaur, S. (2000). Asian J. Chem. 43, 250–254.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Haque, R. A., Salam, M. A. & Arafath, M. A. (2015). J. Coord. Chem. 68, 2953–2967.
  13. Hussein, M. A. & Guan, T. S. (2015). Eur. J. Chem. 6, 451–460.
  14. Hussein, M. A., Guan, T. S., Haque, R. A., Ahamed, M. B. K. & Majid, A. M. S. A. (2015a). Polyhedron, 85, 93–103.
  15. Hussein, M. A., Guan, T. S., Haque, R. A., Khadeer Ahamed, M. B. & Abdul Majid, A. M. S. (2014a). Inorg. Chim. Acta, 421, 270–283.
  16. Hussein, M. A., Guan, T. S., Haque, R. A., Khadeer Ahamed, M. B. & Abdul Majid, A. M. S. (2015b). Spectrochim. Acta A, 136, 1335–1348. [DOI] [PubMed]
  17. Hussein, M. A., Iqbal, M. A., Asif, M., Haque, R. A., Ahamed, M. B. K., Majid, A. M. S. A. & Guan, T. S. (2015c). Phosphorus Sulfur Silicon, 190, 1498–1508.
  18. Hussein, M. A., Iqbal, M. A., Umar, M. I., Haque, R. A. & Guan, T. S. (2015d). Arab. J. Chem. In the Press.
  19. Hussein, M. A., Guan, T. S., Haque, R. A., Ahamed, M. B. K. & Majid, A. M. S. A. (2014b). J. Coord. Chem. 67, 714–727.
  20. Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837. [DOI] [PMC free article] [PubMed]
  21. Jacob, J. M., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o1871–o1872. [DOI] [PMC free article] [PubMed]
  22. Khalaji, A. D., Fejfarova, K. & Dusek, M. (2012). J. Chem. Crystallogr. 42, 263–266.
  23. Li, Z. & Sato, O. (2013). Acta Cryst. E69, o762. [DOI] [PMC free article] [PubMed]
  24. Li, Z.-Y., Ohtsu, H., Kojima, T., Dai, J.-W., Yoshida, T., Breedlove, B. K., Zhang, W.-X., Iguchi, H., Sato, O., Kawano, M. & Yamashita, M. (2016). Angew. Chem. Int. Ed. 55, 5184–5189. [DOI] [PubMed]
  25. Liu, Z.-X. (2015). J. Struct. Chem. 56, 1420–1425.
  26. Lo, K. M. & Ng, S. W. (2011). Acta Cryst. E67, o1453. [DOI] [PMC free article] [PubMed]
  27. Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
  28. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  29. Orysyk, S. I., Bon, V. V., Zholob, O. O., Pekhnyo, V. I., Orysyk, V. V., Zborovskii, Y. L. & Vovk, M. V. (2013). Polyhedron, 51, 211–221.
  30. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  31. Ramaiyer, V. & Frank, R. (2015). Private communication (Refcode CCDC 1058555. CCDC, Cambridge, England.
  32. Rogolino, D., Gatti, A., Carcelli, M., Pelosi, G., Bisceglie, F., Restivo, F. M., Degola, F., Buschini, A., Montalbano, S., Feretti, D. & Zani, C. (2017). Sci. Rep. 7, 11214. [DOI] [PMC free article] [PubMed]
  33. Rubčić, M., Đilović, I., Cindrić, M. & Matković-Čalogović, D. (2008). Acta Cryst. C64, o570–o573. [DOI] [PubMed]
  34. Salam, M. A. & Haque, R. A. (2015). Inorg. Chim. Acta, 435, 103–108.
  35. Salam, M. A., Hussein, M. A., Ramli, I. & Islam, M. S. (2016). J. Organomet. Chem. 813, 71–77.
  36. Salam, M. A., Hussein, M. A. & Tiekink, E. R. T. (2015). Acta Cryst. E71, 58–61. [DOI] [PMC free article] [PubMed]
  37. Seena, E. B., Prathapachandra Kurup, M. R. & Suresh, E. (2008). J. Chem. Crystallogr. 38, 93–96.
  38. Sharma, R., Lobana, T. S., Kaur, M., Thathai, N., Hundal, G., Jasinski, J. P. & Butcher, R. J. (2016). J. Chem. Sci. 128, 1103–1112.
  39. Shawish, H. B., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o1151. [DOI] [PMC free article] [PubMed]
  40. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  41. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  42. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  43. Subhashree, G. R., Haribabu, J., Saranya, S., Yuvaraj, P., Anantha Krishnan, D., Karvembu, R. & Gayathri, D. (2017). J. Mol. Struct. 1145, 160–169.
  44. Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008a). Acta Cryst. E64, o1344. [DOI] [PMC free article] [PubMed]
  45. Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008b). Acta Cryst. E64, o2123. [DOI] [PMC free article] [PubMed]
  46. Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008c). Acta Cryst. E64, o2224. [DOI] [PMC free article] [PubMed]
  47. Vrdoljak, V., Cindrić, M., Milić, D., Matković-Čalogović, D., Novak, P. & Kamenar, B. (2005). Polyhedron, 24, 1717–1726.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004444/nr2074sup1.cif

e-75-00571-sup1.cif (519.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004444/nr2074Isup2.hkl

e-75-00571-Isup2.hkl (268.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004444/nr2074Isup3.cml

CCDC reference: 1485713

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES