Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 2;75(Pt 5):547–551. doi: 10.1107/S2056989019004055

Chlorido­(2,2′-{[2-(1-methyl-1H-imidazol-2-yl-κN 3)imidazolidine-1,3-diyl-κN]bis­(methyl­ene)}bis­(1-methyl-1H-imidazole-κN 3))copper(II) perchlorate

Diego da Silva Padilha a, Marciela Scarpellini a,*
PMCID: PMC6505613  PMID: 31110783

The mol­ecular and crystal structure of a novel copper(II) complex bearing a new tetra­dentate 1-methyl-imidazole-containing imidazolidine ligand is described.

Keywords: crystal structure, copper complex, imidazolidine ligand

Abstract

In the crystal structure of the title complex, [CuCl(C17H24N8)]ClO4, the copper(II) metal exhibits an N4Cl penta­coordinate environment in a distorted square-pyramidal geometry. Coordination to the metal centre occurs through the three 1-methyl­imidazole N atoms from the pendant groups, one amine N atom from the imidazolidine moiety and one chlorido anion. Inter­molecular inter­actions take place at two of the 1-methyl-­imidazole rings in the form of parallel-displaced π–π stacking inter­actions forming chains parallel to the a axis. Three O atoms of the perchlorate anion are rotationally disordered between two orientations with occupancies of 0.5.

Chemical context  

Copper ions play a key role in many natural processes, as they are found in the active site of enzymes involved in electron and O2 transfers, oxidation and reduction, being a target for the obtaining of biomimetic or bioinspired compounds (Stephanos & Addison, 2014). As a result of the redox characteristics of the copper ion, the versatility of ligands to which it coordinates, and the geometries it is capable of forming, copper complexes have attracted attention as catalysts for different transformations, mainly involving the activation and reduction of oxygen (Elwell et al., 2017). For the hydrogen evolution reaction (HER), the obtaining of homogeneous copper catalysts is limited by the dissociation of copper(II) because of the more negative potentials required for the reduction of protons (Zhang et al., 2014; Du et al., 2016). However, different copper complexes have been obtained and evaluated as catalysts for HER, showing promising results (Zhang et al., 2016; Haddad et al., 2017; Khusnutdinova et al., 2018). The use of bioinspired tripodal tetra­dentate ligands in the construction of metal complexes catalysts can provide a unique feature, the presence of cis-labile sites for substrate coordination that may be a requisite for its catalytic activity, facilitating electron/atom transfer processes.graphic file with name e-75-00547-scheme1.jpg

Herein, we report the mol­ecular and crystal structure of a novel mononuclear copper(II) complex bearing an imidazolidine tetra­dentate ligand, namely chlorido­(2,2′-{[2-(1-methyl-1H-imidazol-2-yl-κN 3)imidazolidine-1,3-diyl-κN]bis­(methylene)}bis­(1-methyl-1H-imidazole-κN 3)copper(II) perchlorate, [Cu(L)Cl]ClO4. Similar complexes obtained with penta­dentate ligands derived from the imidazolidine ring opening were previously reported (Cisnetti et al., 2007; Garcia et al., 2015), but to the best of our knowledge, this is the first example of a copper complex bearing an imidazolidine ligand with three 1-methyl-imidazole side arms.

Structural commentary  

The title complex crystallizes in the monoclinic system, space group P21/n. The asymmetric unit comprises one complex cation and one disordered perchlorate anion (Fig. 1). The copper(II) ion has an N4Cl penta­coordinated environment formed by one ligand mol­ecule and one chlorido ion. Coord­ination of the ligand to the metal centre occurs through the three 1-methyl-imidazole nitro­gen atoms (NMe-im) and one of the tertiary amine nitro­gen atoms from the imidazolidine moiety (Nam). A distorted square-pyramidal geometry is observed (τ = 0.39), with the basal plane composed of the chlorido ion, the amine nitro­gen and the two equivalent 1-methyl-imidazole nitro­gen atoms N11/N21. The third 1-methyl-­imidazole nitro­gen N31 occupies the apical position. Distortion of the geometry is evidenced by the bond angles in the coordin­ation sphere, ranging from 77.43 (11) to 113.64 (12)° and 147.65 (12) to 171.21 (8)° for the cis and trans angles, respectively. This highly distorted square-pyramidal geometry may arise from the formation of a seven-membered chelate ring (Cu1/N1/C5/N4/C7/C32/N31) that is less tensioned than the four or five-membered rings, allowing a more flexible arrangement. As a consequence of the geometry distortion, the copper(II) ion lies 0.2565 (13) Å above the Cl1/N21/N1/N11 basal plane towards the apical position. Square-pyramidal copper complexes exhibiting a smaller geometry distortion tends to show a slighter displacement of the metal centre from the basal plane. In the similar [Cu(bpqa)Cl]+ (τ = 0.16) and [Cu(tmqa)Cl]+ (τ = 0.06) complexes [bpqa = 1-(pyridin-2-yl)-N-(pyridin-2-ylmeth­yl)-N-(quinolin-2-ylmeth­yl)methan­amine; tmqa = tris­(quinolin-2-ylmeth­yl)amine; Wei et al., 1994], the copper(II) ion is 0.189 (2) and 0.045 (3) Å above the basal plane, respectively. For the complexes [Cu(L)(ONO)]+ (τ = 0.27; L = [bis­(2-methyl­imidazol-2-yl)meth­yl][2-(pyridyl-2-yl)eth­yl]amine; Scarpellini et al., 2004a ) and [Cu(Hhis-im2)Cl]+ {τ = 0.31; Hhis-im2 = 2-(1H-imidazol-4-yl)-N,N-bis­[(1-methyl-1H-imidazol-2-yl)meth­yl]ethanamine; Higa et al., 2007}, the copper-to-plane distances are 0.1761 (1) and 0.23918 (10) Å, respectively.

Figure 1.

Figure 1

The structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Only one component of the disordered oxygen atoms of the perchlorate anion is shown.

The Cu1—Cl1 bond length is 2.2698 (10) Å, being the longest in the coordination sphere. This value is in good agreement with the Cu—Cl bond lengths of 2.2742 (11) and 2.2690 (12) Å reported for the complexes [Cu(pmea)Cl]+ [pmea = 2-(pyridin-2-yl)-N,N-bis­(pyridin-2-ylmeth­yl)ethan­amine] and [Cu(pmap)Cl]+ [pmap = 2-(pyridin-2-yl)-N-(2-(pyridin-2-yl)eth­yl)-N-(pyridin-2-ylmeth­yl)ethanamine; Schatz et al., 2001]. For the complexes [Cu(hismimi)Cl2] and [Cu(hismima)Cl2] {hismimi = 2-(1H-imidazol-4-yl)-N-[(1-methyl-1H-imidazol-2-yl)methyl­ene]ethanamine; hismima = 2-(1H-imidazol-4-yl)-N-[(1-methyl-1H-imidazol-2-yl)meth­yl]ethanamine; Scarpellini et al., 2003}, the Cu—Cl bond lengths range from 2.2882 (11) to 2.2930 (11) Å for the Cl atoms in the basal plane and from 2.5705 (10) to 2.5789 (10) Å for the Cl atoms occupying the apical position.

The Cu—NMe-im bond lengths in the title compound range from 1.976 (3) to 2.173 (3) Å, the longest one being formed by the 1-methyl-­imidazole nitro­gen N11. For the Cu—Nam bond, a distance of 2.137 (3) Å was found. Similar values were reported for the 1-methyl-imidazole-containing complexes [Cu(Hhis-im2)Cl]+ (Higa et al., 2007), [Cu(hismima)(his)]+ {hismima = 2-(1H-imidazol-4-yl)-N-[(1-methyl-1H-imidazol-2-yl)meth­yl]ethanamine; his = histamine; Scarpellini et al., 2001}, [Cu2(hismima)2Cl2]2 2+ (Scarpellini et al., 2004b ), [Cu(pymimi)Cl2] and [Cu(pymima)Cl2] {pymimi = [2-(pyridyl-2-yl)eth­yl][(1-methyl­imidazol-2-yl)meth­yl]imine; pymima = [2-(pyridyl-2-yl)eth­yl][(1-methyl­imidazol-2-yl)meth­yl]amine; Ferre et al., 2017}.

Supra­molecular features  

Inter­molecular contacts in the title compound occur through π–π stacking inter­actions (Fig. 2) involving two 1-methyl-imidazole rings (N21/C22/N23/C25/C26 and N31/C32/N33/C35/C36), forming chains that propagate parallel to the a axis. The inter­centroid distances are 3.690 (2) and 3.761 (2) Å, the centroid-to-plane distances are 3.4719 (15) and 3.6240 (15) Å, and the parallel shifts are 1.250 (6) and 1.008 (7) Å.

Figure 2.

Figure 2

Crystal packing (viewed perpendicular to (100), top left, and (010), top right) and inter­molecular π–π stacking inter­actions (dashed lines, bottom) in the structure of the title compound.

Features of related complexes  

In penta­coordinated copper(II) complexes containing tripodal N4 donor ligands similar to the title compound, the Cu—Cl bond length seems to be directly related to the type and degree of geometry distortion around the metal centre. In complexes exhibiting a square-pyramidal geometry, as in the title compound, the Cu—Cl bond length has a range of 2.27–2.29 Å. For complexes in a trigonal–bipyramidal geometry, the Cu—Cl distance is around 2.23 Å (Karlin et al., 1982; Oberhausen et al., 1990; Wang et al., 1995). This difference may be related to the ligand spatial orientation, resulting from the geometric arrangements around the metal centre. The trigonal–bipyramidal geometry imposes a vertical positioning of the coordinated ligand rings parallel to the axial direction, which minimizes the repulsion between the electronic clouds of the chloride ion and the tripodal ligand. This arrangement allows a greater approach of the chloride ion to the metal centre and consequently a shorter bond distance. In the case of complexes in a square-pyramidal geometry, the coordinated rings are oriented parallel to the basal plane, increasing the chloride/ligand repulsion effect, which makes the Cu—Cl bond more elongated. Curiously, copper complexes in both geometries with tripodal ligands showing steric hindrance exhibit inter­mediate Cu—Cl bond distances among those found for complexes with non-hindered ligands on square-pyramidal and trigonal–bipyramidal geometries, indicating a balance of repulsive and stabilizing chloride/ligand inter­actions that is geometry independent (Wei et al., 1994; Jitsukawa et al., 2001).

Synthesis and crystallization  

2,2′-{[2-(1-Methyl-1 H -imidazol-2-yl)imidazolidine-1,3-di­yl]bis­(methyl­ene)}bis­(1-methyl-1 H -imidazole), L: The new ligand L was synthesized by condensation reaction between N 1,N 2-bis­[(1-methyl-1H-imidazol-2-yl)meth­yl]ethane-1,2-di­amine (Neves et al., 1997) (1.8939 g, 7.63 mmol) and 1-methyl-2-imidazole­carboxaldehyde (0.8401 g, 7.63 mmol) in ethano­lic media (40 ml). The reaction mixture was stirred for 24 h at room temperature, when the solvent was removed by rota-evaporation. To the resulting white solid, 40 ml of ethyl ether were added, and the mixture was stirred at room temperature for 24 h. After removal of the solvent under reduced pressure, the resulting white solid was recrystallized from acetone. Yield after recrystallization: 2.4 g (92%). 1H NMR (500 MHz, DMSO) δ 7.16 (d, J = 0.8 Hz, 1H), 7.01 (d, J = 1.1 Hz, 2H), 6.84 (d, J = 1.1 Hz, 1H), 6.73 (d, J = 1.2 Hz, 2H), 4.20 (s, 1H), 3.74 (s, 3H), 3.63 (d, J = 13.5 Hz, 2H), 3.43 (d, J = 13.5 Hz, 2H), 3.33 (s, 6H), 2.96–2.87 (m, 2H), 2.75–2.67 (m, 2H) p.p.m. 13C NMR (126 MHz, DMSO) δ 144.89, 144.45, 127.16, 126.75, 124.13, 122.18, 82.92, 50.45, 33.37, 32.19 p.p.m..

[Cu( L )Cl]ClO4: The synthesis was achieved by reacting CuCl2·2H2O (0.1708 g, 1 mmol) and the ligand L (0.3403 g, 1 mmol) in ethano­lic media, at room temperature. Recrystallization of the obtained amorphous green solid in aceto­nitrile solution at room temperature yielded 0.152 g (28%) of green single crystals after one day. IR (cm−1, KBr): 3460 (ν O—H), 3160–3130 (ν C—Harom), 2972–2854 (ν C—Hali), 1636–1419 (ν C=N/C=Cring), 1285 (ν C—Namine), 1096/623 (ν Cl—O), 771 (δ C—Harom), 502 (ν Cu—Namine), 291 (ν Cu—Cl).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. The perchlorate anion is rotationally disordered over two orientations sharing the O1 oxygen atom with site occupancy factors of 0.5. The two disordered positions were refined by applying SADI restraints on the Cl–O bond lengths and O⋯O separations. The U ij parameters of the Cl2 atom were restrained to an approximate isotropic behaviour.

Table 1. Experimental details.

Crystal data
Chemical formula [CuCl(C17H24N8)]ClO4
M r 538.88
Crystal system, space group Monoclinic, P21/n
Temperature (K) 288
a, b, c (Å) 10.2904 (4), 8.1336 (3), 26.317 (1)
β (°) 96.170 (1)
V3) 2189.92 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.29
Crystal size (mm) 0.25 × 0.16 × 0.09
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015)
T min, T max 0.656, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 41042, 4471, 3704
R int 0.069
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.102, 1.12
No. of reflections 4471
No. of parameters 319
No. of restraints 63
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.53

Computer programs: APEX2 (Bruker, 2015), SAINT (Bruker, 2015, SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004055/rz4029sup1.cif

e-75-00547-sup1.cif (967.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004055/rz4029Isup2.hkl

e-75-00547-Isup2.hkl (245.3KB, hkl)

CCDC reference: 1905520

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Laboratório Multiusuário de Difração de Raios X da Universidade Federal Fluminense (LDRX/UFF) for the use of laboratory facilities.

supplementary crystallographic information

Crystal data

[CuCl(C17H24N8)]ClO4 F(000) = 1108
Mr = 538.88 Dx = 1.634 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.2904 (4) Å Cell parameters from 117 reflections
b = 8.1336 (3) Å θ = 2.9–22.7°
c = 26.317 (1) Å µ = 1.29 mm1
β = 96.170 (1)° T = 288 K
V = 2189.92 (14) Å3 Block, clear light green
Z = 4 0.25 × 0.16 × 0.09 mm

Data collection

Bruker D8 Venture diffractometer 3704 reflections with I > 2σ(I)
φ and ω scans Rint = 0.069
Absorption correction: multi-scan (SADABS; Bruker, 2015) θmax = 26.4°, θmin = 2.2°
Tmin = 0.656, Tmax = 0.745 h = −12→12
41042 measured reflections k = −10→10
4471 independent reflections l = −32→32

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0274P)2 + 4.7286P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.001
4471 reflections Δρmax = 0.52 e Å3
319 parameters Δρmin = −0.53 e Å3
63 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All H atoms were placed geometrically and refined using a riding atom approximation, with C–H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.18398 (4) 0.35492 (5) 0.56226 (2) 0.02658 (12)
Cl2 0.61349 (10) 0.81015 (12) 0.66768 (4) 0.0394 (2)
Cl1 0.20109 (10) 0.10125 (11) 0.52765 (4) 0.0442 (3)
N21 0.2633 (3) 0.4598 (3) 0.50530 (11) 0.0276 (6)
N1 0.1935 (3) 0.6031 (3) 0.58904 (10) 0.0237 (6)
N31 0.0181 (3) 0.3032 (4) 0.59528 (11) 0.0298 (6)
N23 0.3807 (3) 0.6599 (4) 0.47829 (11) 0.0293 (6)
N11 0.3159 (3) 0.3367 (4) 0.63224 (12) 0.0324 (7)
N33 −0.1361 (3) 0.2601 (4) 0.64552 (11) 0.0332 (7)
N13 0.3635 (3) 0.4347 (4) 0.70991 (11) 0.0362 (7)
N4 0.0918 (3) 0.6184 (4) 0.66510 (11) 0.0331 (7)
C12 0.2988 (3) 0.4602 (4) 0.66327 (13) 0.0283 (7)
C26 0.2978 (3) 0.4181 (5) 0.45779 (13) 0.0319 (8)
H26 0.275354 0.321232 0.440245 0.038*
C22 0.3146 (3) 0.6059 (4) 0.51634 (12) 0.0241 (7)
C5 0.2183 (3) 0.6065 (4) 0.64627 (12) 0.0267 (7)
H5 0.268323 0.705847 0.656460 0.032*
C32 −0.0283 (3) 0.3493 (5) 0.63838 (13) 0.0307 (8)
C6 0.3044 (3) 0.6840 (4) 0.56629 (13) 0.0286 (8)
H6A 0.287929 0.800888 0.561970 0.034*
H6B 0.385168 0.669535 0.588489 0.034*
C36 −0.0650 (3) 0.1818 (4) 0.57440 (15) 0.0336 (8)
H36 −0.057209 0.127441 0.543794 0.040*
C25 0.3696 (4) 0.5416 (5) 0.44102 (14) 0.0341 (8)
H25 0.405045 0.545645 0.409984 0.041*
C35 −0.1586 (3) 0.1546 (5) 0.60512 (15) 0.0388 (9)
H35 −0.226056 0.078382 0.599912 0.047*
C7 0.0270 (4) 0.4682 (5) 0.67877 (14) 0.0388 (9)
H7A −0.044043 0.500341 0.698061 0.047*
H7B 0.089098 0.407663 0.702043 0.047*
C2 0.0650 (3) 0.6893 (4) 0.57597 (14) 0.0328 (8)
H2A 0.003612 0.619174 0.555523 0.039*
H2B 0.076571 0.790207 0.557356 0.039*
C24 0.4503 (4) 0.8151 (5) 0.47750 (16) 0.0414 (10)
H24A 0.390577 0.904225 0.480668 0.062*
H24B 0.488065 0.825186 0.445837 0.062*
H24C 0.518329 0.818347 0.505466 0.062*
C16 0.3943 (4) 0.2272 (5) 0.66066 (16) 0.0407 (9)
H16 0.422015 0.126906 0.648747 0.049*
C3 0.0176 (4) 0.7253 (5) 0.62797 (15) 0.0437 (10)
H3A 0.032731 0.839800 0.637102 0.052*
H3B −0.075173 0.702826 0.626991 0.052*
C15 0.4254 (4) 0.2850 (5) 0.70806 (16) 0.0458 (10)
H15 0.478094 0.234306 0.734412 0.055*
C34 −0.2202 (4) 0.2733 (6) 0.68726 (17) 0.0541 (12)
H34A −0.169792 0.249093 0.719228 0.081*
H34B −0.291094 0.196567 0.681554 0.081*
H34C −0.254383 0.382966 0.688193 0.081*
C14 0.3707 (5) 0.5456 (6) 0.75403 (16) 0.0577 (12)
H14A 0.380595 0.656728 0.742796 0.087*
H14B 0.444214 0.516161 0.777864 0.087*
H14C 0.291865 0.536478 0.770330 0.087*
O1 0.5896 (4) 0.8829 (4) 0.61817 (11) 0.0659 (10)
O2 0.551 (2) 0.904 (3) 0.7022 (7) 0.089 (6) 0.5
O3 0.5625 (15) 0.6503 (12) 0.6636 (6) 0.074 (4) 0.5
O4 0.7476 (8) 0.803 (3) 0.6829 (7) 0.093 (6) 0.5
O4' 0.7405 (11) 0.851 (3) 0.6894 (7) 0.109 (7) 0.5
O3' 0.604 (2) 0.6372 (13) 0.6674 (8) 0.124 (8) 0.5
O2' 0.526 (2) 0.870 (3) 0.7006 (9) 0.094 (7) 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0292 (2) 0.0192 (2) 0.0325 (2) −0.00422 (17) 0.00912 (17) −0.00224 (18)
Cl2 0.0445 (5) 0.0387 (5) 0.0368 (5) −0.0036 (4) 0.0122 (4) −0.0021 (4)
Cl1 0.0441 (5) 0.0221 (4) 0.0698 (7) −0.0053 (4) 0.0219 (5) −0.0113 (4)
N21 0.0282 (15) 0.0246 (15) 0.0307 (16) −0.0030 (12) 0.0062 (12) −0.0021 (12)
N1 0.0239 (14) 0.0234 (14) 0.0240 (14) 0.0002 (11) 0.0038 (11) 0.0010 (11)
N31 0.0260 (15) 0.0310 (16) 0.0329 (16) −0.0058 (12) 0.0058 (12) −0.0013 (13)
N23 0.0258 (14) 0.0281 (15) 0.0350 (16) 0.0026 (12) 0.0077 (12) 0.0080 (13)
N11 0.0320 (16) 0.0256 (15) 0.0397 (17) 0.0030 (13) 0.0041 (13) 0.0037 (14)
N33 0.0213 (15) 0.0458 (19) 0.0336 (17) −0.0043 (13) 0.0073 (12) 0.0035 (15)
N13 0.0349 (17) 0.0458 (19) 0.0278 (16) −0.0012 (14) 0.0028 (13) 0.0076 (14)
N4 0.0322 (16) 0.0355 (17) 0.0328 (16) 0.0020 (13) 0.0090 (13) −0.0078 (14)
C12 0.0237 (17) 0.0317 (19) 0.0296 (19) −0.0019 (14) 0.0034 (14) 0.0039 (15)
C26 0.0322 (19) 0.0334 (19) 0.0302 (19) −0.0010 (15) 0.0036 (15) −0.0064 (16)
C22 0.0238 (16) 0.0204 (16) 0.0279 (17) −0.0002 (13) 0.0024 (13) 0.0020 (13)
C5 0.0280 (17) 0.0263 (18) 0.0256 (17) −0.0013 (14) 0.0016 (14) −0.0033 (14)
C32 0.0244 (17) 0.038 (2) 0.0307 (18) −0.0017 (15) 0.0057 (14) 0.0013 (16)
C6 0.0309 (18) 0.0213 (17) 0.0339 (19) −0.0068 (14) 0.0055 (15) −0.0012 (14)
C36 0.0274 (18) 0.034 (2) 0.040 (2) −0.0056 (15) 0.0046 (15) −0.0016 (16)
C25 0.0341 (19) 0.042 (2) 0.0278 (19) 0.0046 (16) 0.0088 (15) 0.0031 (17)
C35 0.0263 (18) 0.044 (2) 0.045 (2) −0.0093 (17) −0.0015 (16) 0.0039 (19)
C7 0.034 (2) 0.052 (2) 0.033 (2) −0.0089 (18) 0.0145 (16) −0.0053 (18)
C2 0.0327 (19) 0.0305 (19) 0.034 (2) 0.0044 (15) −0.0007 (15) 0.0015 (16)
C24 0.036 (2) 0.036 (2) 0.054 (3) −0.0064 (17) 0.0154 (18) 0.0106 (19)
C16 0.038 (2) 0.034 (2) 0.050 (2) 0.0086 (17) 0.0088 (18) 0.0113 (19)
C3 0.040 (2) 0.047 (2) 0.044 (2) 0.0149 (19) 0.0039 (18) −0.009 (2)
C15 0.037 (2) 0.056 (3) 0.044 (2) 0.011 (2) 0.0034 (18) 0.024 (2)
C34 0.034 (2) 0.082 (3) 0.050 (3) −0.011 (2) 0.0230 (19) −0.001 (2)
C14 0.067 (3) 0.074 (3) 0.030 (2) 0.003 (3) −0.003 (2) −0.002 (2)
O1 0.088 (3) 0.072 (2) 0.0390 (17) −0.0155 (19) 0.0133 (16) 0.0106 (16)
O2 0.141 (15) 0.087 (9) 0.041 (7) 0.065 (10) 0.020 (8) −0.001 (6)
O3 0.093 (7) 0.060 (8) 0.066 (7) −0.046 (6) −0.006 (5) 0.026 (6)
O4 0.023 (5) 0.143 (13) 0.112 (11) 0.011 (6) 0.010 (5) −0.008 (8)
O4' 0.098 (11) 0.158 (16) 0.066 (8) −0.059 (10) −0.012 (7) 0.035 (9)
O3' 0.23 (2) 0.041 (7) 0.106 (12) 0.035 (8) 0.036 (13) −0.011 (6)
O2' 0.097 (9) 0.111 (14) 0.085 (12) 0.045 (9) 0.065 (9) 0.029 (8)

Geometric parameters (Å, º)

Cu1—Cl1 2.2698 (10) N4—C3 1.461 (5)
Cu1—N21 1.976 (3) C12—C5 1.491 (5)
Cu1—N1 2.137 (3) C26—H26 0.9300
Cu1—N31 2.041 (3) C26—C25 1.349 (5)
Cu1—N11 2.173 (3) C22—C6 1.474 (5)
Cl2—O1 1.428 (3) C5—H5 0.9800
Cl2—O2 1.395 (10) C32—C7 1.503 (5)
Cl2—O3 1.402 (8) C6—H6A 0.9700
Cl2—O4 1.396 (9) C6—H6B 0.9700
Cl2—O4' 1.410 (11) C36—H36 0.9300
Cl2—O3' 1.410 (10) C36—C35 1.341 (5)
Cl2—O2' 1.405 (10) C25—H25 0.9300
N21—C26 1.378 (4) C35—H35 0.9300
N21—C22 1.320 (4) C7—H7A 0.9700
N1—C5 1.501 (4) C7—H7B 0.9700
N1—C6 1.497 (4) C2—H2A 0.9700
N1—C2 1.503 (4) C2—H2B 0.9700
N31—C32 1.331 (4) C2—C3 1.530 (5)
N31—C36 1.381 (4) C24—H24A 0.9600
N23—C22 1.343 (4) C24—H24B 0.9600
N23—C25 1.370 (5) C24—H24C 0.9600
N23—C24 1.452 (5) C16—H16 0.9300
N11—C12 1.318 (5) C16—C15 1.339 (6)
N11—C16 1.368 (5) C3—H3A 0.9700
N33—C32 1.355 (4) C3—H3B 0.9700
N33—C35 1.366 (5) C15—H15 0.9300
N33—C34 1.473 (4) C34—H34A 0.9600
N13—C12 1.348 (4) C34—H34B 0.9600
N13—C15 1.377 (5) C34—H34C 0.9600
N13—C14 1.466 (5) C14—H14A 0.9600
N4—C5 1.445 (4) C14—H14B 0.9600
N4—C7 1.455 (5) C14—H14C 0.9600
N21—Cu1—Cl1 91.82 (9) N1—C5—H5 108.5
N21—Cu1—N1 80.47 (11) N4—C5—N1 106.5 (3)
N21—Cu1—N31 147.65 (12) N4—C5—C12 116.3 (3)
N21—Cu1—N11 113.64 (12) N4—C5—H5 108.5
N1—Cu1—Cl1 171.21 (8) C12—C5—N1 108.4 (3)
N1—Cu1—N11 77.43 (11) C12—C5—H5 108.5
N31—Cu1—Cl1 95.04 (9) N31—C32—N33 110.0 (3)
N31—Cu1—N1 93.74 (11) N31—C32—C7 129.8 (3)
N31—Cu1—N11 95.74 (11) N33—C32—C7 120.0 (3)
N11—Cu1—Cl1 102.11 (8) N1—C6—H6A 110.3
O2—Cl2—O1 108.7 (10) N1—C6—H6B 110.3
O2—Cl2—O3 111.3 (11) C22—C6—N1 107.3 (3)
O2—Cl2—O4 110.3 (11) C22—C6—H6A 110.3
O2—Cl2—O4' 94.5 (15) C22—C6—H6B 110.3
O2—Cl2—O3' 120.9 (15) H6A—C6—H6B 108.5
O2—Cl2—O2' 16 (2) N31—C36—H36 125.3
O3—Cl2—O1 106.8 (7) C35—C36—N31 109.4 (3)
O3—Cl2—O4' 125.1 (12) C35—C36—H36 125.3
O3—Cl2—O3' 18.1 (13) N23—C25—H25 126.4
O3—Cl2—O2' 96.2 (15) C26—C25—N23 107.1 (3)
O4—Cl2—O1 110.3 (9) C26—C25—H25 126.4
O4—Cl2—O3 109.3 (10) N33—C35—H35 126.5
O4—Cl2—O4' 18.1 (16) C36—C35—N33 107.0 (3)
O4—Cl2—O3' 91.3 (13) C36—C35—H35 126.5
O4—Cl2—O2' 121.4 (15) N4—C7—C32 120.9 (3)
O4'—Cl2—O1 109.4 (7) N4—C7—H7A 107.1
O3'—Cl2—O1 113.8 (9) N4—C7—H7B 107.1
O3'—Cl2—O4' 107.5 (11) C32—C7—H7A 107.1
O2'—Cl2—O1 111.1 (12) C32—C7—H7B 107.1
O2'—Cl2—O4' 107.4 (12) H7A—C7—H7B 106.8
O2'—Cl2—O3' 107.5 (12) N1—C2—H2A 111.0
C26—N21—Cu1 138.6 (2) N1—C2—H2B 111.0
C22—N21—Cu1 114.2 (2) N1—C2—C3 104.0 (3)
C22—N21—C26 106.5 (3) H2A—C2—H2B 109.0
C5—N1—Cu1 110.19 (19) C3—C2—H2A 111.0
C5—N1—C2 105.7 (2) C3—C2—H2B 111.0
C6—N1—Cu1 107.06 (19) N23—C24—H24A 109.5
C6—N1—C5 109.8 (2) N23—C24—H24B 109.5
C6—N1—C2 113.2 (3) N23—C24—H24C 109.5
C2—N1—Cu1 110.9 (2) H24A—C24—H24B 109.5
C32—N31—Cu1 134.3 (2) H24A—C24—H24C 109.5
C32—N31—C36 106.1 (3) H24B—C24—H24C 109.5
C36—N31—Cu1 119.2 (2) N11—C16—H16 124.8
C22—N23—C25 107.1 (3) C15—C16—N11 110.4 (4)
C22—N23—C24 125.8 (3) C15—C16—H16 124.8
C25—N23—C24 127.1 (3) N4—C3—C2 106.9 (3)
C12—N11—Cu1 111.1 (2) N4—C3—H3A 110.3
C12—N11—C16 105.5 (3) N4—C3—H3B 110.3
C16—N11—Cu1 141.8 (3) C2—C3—H3A 110.3
C32—N33—C35 107.5 (3) C2—C3—H3B 110.3
C32—N33—C34 128.3 (3) H3A—C3—H3B 108.6
C35—N33—C34 124.2 (3) N13—C15—H15 126.9
C12—N13—C15 106.8 (3) C16—C15—N13 106.2 (3)
C12—N13—C14 127.2 (3) C16—C15—H15 126.9
C15—N13—C14 126.0 (3) N33—C34—H34A 109.5
C5—N4—C7 118.8 (3) N33—C34—H34B 109.5
C5—N4—C3 103.6 (3) N33—C34—H34C 109.5
C7—N4—C3 116.4 (3) H34A—C34—H34B 109.5
N11—C12—N13 111.2 (3) H34A—C34—H34C 109.5
N11—C12—C5 122.0 (3) H34B—C34—H34C 109.5
N13—C12—C5 126.9 (3) N13—C14—H14A 109.5
N21—C26—H26 125.7 N13—C14—H14B 109.5
C25—C26—N21 108.5 (3) N13—C14—H14C 109.5
C25—C26—H26 125.7 H14A—C14—H14B 109.5
N21—C22—N23 110.7 (3) H14A—C14—H14C 109.5
N21—C22—C6 121.3 (3) H14B—C14—H14C 109.5
N23—C22—C6 127.9 (3)
Cu1—N21—C26—C25 −169.6 (3) C5—N4—C3—C2 33.7 (4)
Cu1—N21—C22—N23 172.2 (2) C32—N31—C36—C35 −0.9 (4)
Cu1—N21—C22—C6 −3.5 (4) C32—N33—C35—C36 −0.1 (4)
Cu1—N1—C5—N4 −94.3 (2) C6—N1—C5—N4 148.0 (3)
Cu1—N1—C5—C12 31.5 (3) C6—N1—C5—C12 −86.2 (3)
Cu1—N1—C6—C22 30.9 (3) C6—N1—C2—C3 −124.7 (3)
Cu1—N1—C2—C3 114.9 (3) C36—N31—C32—N33 0.8 (4)
Cu1—N31—C32—N33 −171.5 (2) C36—N31—C32—C7 175.2 (4)
Cu1—N31—C32—C7 3.0 (6) C25—N23—C22—N21 0.4 (4)
Cu1—N31—C36—C35 172.8 (3) C25—N23—C22—C6 175.8 (3)
Cu1—N11—C12—N13 169.3 (2) C35—N33—C32—N31 −0.4 (4)
Cu1—N11—C12—C5 −11.4 (4) C35—N33—C32—C7 −175.5 (3)
Cu1—N11—C16—C15 −163.7 (3) C7—N4—C5—N1 94.3 (3)
N21—C26—C25—N23 0.4 (4) C7—N4—C5—C12 −26.5 (4)
N21—C22—C6—N1 −20.1 (4) C7—N4—C3—C2 −98.7 (4)
N1—C2—C3—N4 −17.7 (4) C2—N1—C5—N4 25.6 (3)
N31—C32—C7—N4 38.0 (6) C2—N1—C5—C12 151.4 (3)
N31—C36—C35—N33 0.6 (4) C2—N1—C6—C22 −91.6 (3)
N23—C22—C6—N1 165.0 (3) C24—N23—C22—N21 −179.5 (3)
N11—C12—C5—N1 −13.4 (4) C24—N23—C22—C6 −4.2 (5)
N11—C12—C5—N4 106.4 (4) C24—N23—C25—C26 179.4 (3)
N11—C16—C15—N13 0.8 (4) C16—N11—C12—N13 0.5 (4)
N33—C32—C7—N4 −148.0 (3) C16—N11—C12—C5 179.8 (3)
N13—C12—C5—N1 165.8 (3) C3—N4—C5—N1 −36.7 (3)
N13—C12—C5—N4 −74.4 (4) C3—N4—C5—C12 −157.5 (3)
C12—N11—C16—C15 −0.8 (4) C3—N4—C7—C32 54.2 (5)
C12—N13—C15—C16 −0.5 (4) C15—N13—C12—N11 0.0 (4)
C26—N21—C22—N23 −0.1 (4) C15—N13—C12—C5 −179.3 (3)
C26—N21—C22—C6 −175.9 (3) C34—N33—C32—N31 −178.2 (4)
C22—N21—C26—C25 −0.2 (4) C34—N33—C32—C7 6.7 (6)
C22—N23—C25—C26 −0.5 (4) C34—N33—C35—C36 177.8 (4)
C5—N1—C6—C22 150.5 (3) C14—N13—C12—N11 178.4 (4)
C5—N1—C2—C3 −4.5 (4) C14—N13—C12—C5 −0.9 (6)
C5—N4—C7—C32 −70.9 (5) C14—N13—C15—C16 −178.9 (4)

Funding Statement

This work was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico grant 141341/2013–0 to D. da Silva Padilha. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grant Financial Code 001. Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro grants E-26/111.177/2011 and E-26/110.157/2014.

References

  1. Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cisnetti, F., Lefèvre, A. S., Guillot, R., Lambert, F., Blain, G., Anxolabéhère-Mallart, E. & Policar, C. (2007). Eur. J. Inorg. Chem. pp. 4472–4480.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Du, J., Wang, J., Ji, L., Xu, X. & Chen, Z. (2016). Appl. Mater. Interfaces, 8, 30205–30211. [DOI] [PubMed]
  5. Elwell, C. E., Gagnon, N. L., Neisen, B. D., Dhar, D., Spaeth, A. D., Yee, G. M. & Tolman, W. B. (2017). Chem. Rev. 117, 2059–2107. [DOI] [PMC free article] [PubMed]
  6. Ferre, F. T., Resende, J. A. L. C., Schultz, J., Mangrich, A. S., Faria, R. B., Rocha, A. B. & Scarpellini, M. (2017). Polyhedron, 123, 293–304.
  7. Garcia, L., Cisnetti, F., Gillet, N., Guillot, R., Aumont-Nicaise, M., Piquemal, J. P., Desmadril, M., Lambert, F. & Policar, C. (2015). J. Am. Chem. Soc. 137, 1141–1146. [DOI] [PubMed]
  8. Haddad, A. Z., Cronin, S. P., Mashuta, M. S., Buchanan, R. M. & Grapperhaus, C. A. (2017). Inorg. Chem. 56, 11254–11265. [DOI] [PubMed]
  9. Higa, T., Moriya, M., Shimazaki, Y., Yajima, T., Tani, F., Karasawa, S., Nakano, M., Naruta, Y. & Yamauchi, O. (2007). Inorg. Chim. Acta, 360, 3304–3313.
  10. Jitsukawa, K., Harata, M., Arii, H., Sakurai, H. & Masuda, H. (2001). Inorg. Chim. Acta, 324, 108–116.
  11. Karlin, K. D., Hayes, J. C., Juen, S., Hutchinson, J. P. & Zubieta, J. (1982). Inorg. Chem. 21, 4106–4108.
  12. Khusnutdinova, D., Wadsworth, B. L., Flores, M., Beiler, A. M., Reyes Cruz, E. A., Zenkov, Y. & Moore, G. F. (2018). ACS Catal. 8, 9888–9898.
  13. Neves, A., Tamanini, M., Correia, V. R. & Vencato, I. (1997). J. Braz. Chem. Soc. 8, 519–522.
  14. Oberhausen, K. J., O’brien, R. J., Richardson, J. F. & Buchanan, R. M. (1990). Inorg. Chim. Acta, 173, 145–154.
  15. Scarpellini, M., Neves, A., Bortoluzzi, A. J. & Joussef, A. C. (2001). Acta Cryst. C57, 356–358. [DOI] [PubMed]
  16. Scarpellini, M., Neves, A., Castellano, E. E., de Almeida Neves, E. F. & Franco, D. W. (2004a). Polyhedron, 23, 511–518.
  17. Scarpellini, M., Neves, A., Castellano, E. E. & Franco, D. W. (2004b). J. Mol. Struct. 694, 193–198.
  18. Scarpellini, M., Neves, A., Hörner, R., Bortoluzzi, A. J., Szpoganics, B., Zucco, C., Nome Silva, R. A., Drago, V., Mangrich, A. S., Ortiz, W. A., Passos, W. A. C., de Oliveira, M. C. B. & Terenzi, H. (2003). Inorg. Chem. 42, 8353–8365. [DOI] [PubMed]
  19. Schatz, M., Becker, M., Thaler, F., Hampel, F., Schindler, S., Jacobson, R. R., Tyeklár, Z., Murthy, N. N., Ghosh, P., Chen, Q., Zubieta, J. & Karlin, K. D. (2001). Inorg. Chem. 40, 2312–2322. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Stephanos, J. J. & Addison, A. W. (2014). Chemistry of Metalloproteins: Problems and Solutions in Bioinorganic Chemistry, pp. 95–146. Hoboken, New Jersey: John Wiley & Sons, Inc.
  23. Wang, J., Mashuta, M. S., Richardson, J. F. & Buchanan, R. M. (1995). Acta Cryst. C51, 50–52.
  24. Wei, N., Murthy, N. N. & Karlin, K. D. (1994). Inorg. Chem. 33, 6093–6100.
  25. Zhang, P., Wang, M., Chen, H., Liang, Y., Sun, J. & Sun, L. (2016). Adv. Energy Mater. 6, 1–9.
  26. Zhang, P., Wang, M., Yang, Y., Yao, T. & Sun, L. (2014). Angew. Chem. Int. Ed. 53, 13803–13807. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004055/rz4029sup1.cif

e-75-00547-sup1.cif (967.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004055/rz4029Isup2.hkl

e-75-00547-Isup2.hkl (245.3KB, hkl)

CCDC reference: 1905520

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES