Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Apr 18;75(Pt 5):650–654. doi: 10.1107/S2056989019005139

Crystal structure and Hirshfeld surface analysis of 4-(2,6-di­chloro­benz­yl)-6-phenyl­pyridazin-3(2H)-one

Fouad El Kali a,*, Sevgi Kansiz b,*, Said Daoui a, Rafik Saddik c, Necmi Dege b, Khalid Karrouchi d, Noureddine Benchat a
PMCID: PMC6505619  PMID: 31110805

In the crystal, the mol­ecules are linked by a pair of N—H⋯O hydrogen bonds, forming inversion dimers with an Inline graphic(8) ring motif. The dimers are linked by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane and by weak π–π inter­actions, forming layers parallel to the ab plane.

Keywords: crystal structure, pyridazin, hydrogen bonding, π–π inter­actions, Hirshfeld surface analysis

Abstract

The asymmetric unit of the title compound, C17H12Cl2N2O, contains one independent mol­ecule. The mol­ecule is not planar, the phenyl and pyridazine rings are twisted with respect to each other, making a dihedral angle of 29.96 (2)° and the di­chloro­phenyl ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 82.38 (11)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules to form inversion dimers with an R 2 2(8) ring motif. The dimers are linked by C—H⋯O inter­actions, forming layers parallel to the bc plane. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, and the mol­ecular electrostatic potential surface was also analysed. The Hirshfeld surface analysis of the title compound suggests that the most significant contributions to the crystal packing are by H⋯H (31.4%), Cl⋯H/H⋯Cl (19.9%) and C⋯H/H⋯C (19%) contacts.

Chemical context  

Pyridazinone derivatives are biologically active heterocyclic compounds (Akhtar et al., 2016). Diverse pyridazinone derivatives have been reported to possess a variety of biological activities (Thakur et al. 2010; Asif et al. 2015) such as anti­microbial (Sönmez et al. 2006), anti-inflammatory (Abouzid et al. 2008), analgesic (Gökçe et al. 2009), anti-HIV (Livermore et al. 1993), anti­hypertensive (Siddiqui et al. 2011), anti­convulsant (Sharma et al. 2014), cardiotonic (Wang et al. 2008), anti­histaminic (Tao et al. 2012), anti­depressant (Boukharsa et al. 2016), glucan synthase inhibitors (Zhou et al. 2011), phospho­diesterase (PDE) inhibitors (Ochiai et al. 2012) and herbicidal activity (Asif et al. 2013). We report herein the synthesis and the crystal and mol­ecular structures of the title compound, as well as an analysis of its Hirshfeld surfaces.graphic file with name e-75-00650-scheme1.jpg

Structural commentary  

As the mol­ecular structure of the title compound is illustrated in Fig. 1; the asymmetric unit contains one independent mol­ecule. The mol­ecule is not planar, the benzene ring (C12–C17) and the pyridazine ring are twisted relative to each other, making a dihedral angle of 29.96 (2)° and the phenyl ring (C1–C6) is nearly perpendicular to the pyridazine ring with a dihedral angle of 82.38 (11)° (Fig. 1). The C9=O1 bond length is 1.248 (4) Å while the C9—N1 and C11—N2 bond lengths are 1.360 (4) and 1.307 (4) Å, respectively.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

Supra­molecular features  

In the crystal, the mol­ecules are linked by a pair of N—H⋯O hydrogen bonds, forming inversion dimers with an Inline graphic(8) ring motif (Table 1 and Fig. 2). The dimers are linked by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane (Fig. 2) and by weak π–π [Cg1⋯Cg3 = 3.839 (2) Å; Cg1 and Cg3 are the centroids of the N1–N2/C9-C11 and C12–C17 rings, respectively] inter­actions, forming a three-dimensional structure (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.04 2.839 (4) 155
C2—H2⋯O1ii 0.93 2.66 3.581 (6) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A view along the a axis of the crystal packing of the title compound. Dashed lines denote the N—H⋯O hydrogen bonds (Table 1) forming an inversion dimer with an Inline graphic(8) ring motif. The C—H⋯O inter­actions are shown as blue dashed lines.

Figure 3.

Figure 3

A view along the a axis of the crystal packing of the title compound. The hydrogen bonds (Table 1) are shown as dashed lines and the π–π inter­actions as pink dashed lines.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016) for the 4-phenyl­pyridazin-3(2H)-one skeleton yielded two hits: 4-benzyl-6-p-tolyl­pyridazin-3(2H)-one (YOTVIN; Oubair et al., 2009) and ethyl 3-methyl-6-oxo-5-(3-(tri­fluoro­meth­yl)phen­yl)-1,6-di­hydro-1-pyridazine­acetate (QANVOR; Xu et al., 2005). In YOTVIN, the mol­ecules are connected two by two through N—H⋯O hydrogen bonds with an Inline graphic(8) graph-set motif, building a pseudo dimer arranged about the inversion center (Fig. 4). Weak C—H⋯O hydrogen bonds and weak offset π–π stacking inter­actions stabilize the packing. In QANVOR, the phenyl and pyridazinone rings are approximately coplanar with a dihedral angle of 4.84 (13)° and in the crystal, centrosymmetrically related mol­ecules form dimers through non-classical inter­molecular C—H⋯O hydrogen bonds (Fig. 5).

Figure 4.

Figure 4

The crystal packing of YOTVIN (Oubair et al., 2009). The N—H⋯O hydrogen bonds with an Inline graphic(8) graph set motif are shown as pink dashed lines.

Figure 5.

Figure 5

(a) A view of the dimers linked by C—H⋯O inter­actions forming layers parallel to the bc plane. (b) A view along the c axis of the crystal packing of QANVOR (Xu et al., 2005). Dashed lines denote the inter­molecular C—H⋯O hydrogen bonds forming centrosymmetric dimers.

Hirshfeld surface analysis  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). In Fig. 6, the mappings of dnorm, shape-index and curvedness for the title compound are shown. Fig. 7 illustrates the Hirshfeld surface of the mol­ecule in the crystal, with the evident hydrogen-bonding inter­actions indicated by intense red spots.

Figure 6.

Figure 6

The Hirshfeld surfaces of the title compound mapped over d norm, shape-index and curvedness.

Figure 7.

Figure 7

dnorm mapped on Hirshfeld surfaces for visualizing the inter­molecular inter­actions of the title compound.

Fig. 8 a shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. Two-dimensional fingerprint plots provide information about the major and minor percentage contributions of inter­atomic contacts in the compound. The blue colour refers to the frequency of occurrence of the (d i, d e) pair and the grey colour is the outline of the full fingerprint. The fingerprint plot in Fig. 8 b shows that the H⋯H contacts clearly make the most significant contribution to the Hirshfeld surface (31.4%). In addition, Cl⋯H/H⋯Cl, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts contribute 19.9%, 19%, 9.3% and 6.7%, respectively, to the Hirshfeld surface. In particular, the O⋯H/H⋯O contacts indicate the presence of inter­molecular N—H⋯O and C—H⋯O inter­actions. Much weaker Cl⋯C/C⋯Cl (6.1%) and C⋯C (3.7%) contacts also occur.

Figure 8.

Figure 8

Two-dimensional fingerprint plots for the title compound, with a dnorm view and the relative contribution of the atom pairs to the Hirshfeld surface.

A view of the mol­ecular electrostatic potential, in the range −0.0500 to 0.0500 a.u. using the 6-31G(d,p) basis set with DFT method, for the title compound is shown in Fig. 9, where the N—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

Figure 9.

Figure 9

A view of the mol­ecular electrostatic potential for the title compound in the range −0.0500 to 0.0500 a.u. using the 6–31 G(d,p) basis set by the DFT method.

Synthesis and crystallization  

To a solution (0.15 g, 1 mmol) of 6-phenyl-4,5-di­hydro­pyridazin-3(2H)-one and (0.18 g, 1 mmol) of 2,6-di­chloro­benzaldehyde in 30 ml of ethanol, sodium hydroxide 10% (0.5 g, 3.5 mmol) was added. The solvent evaporated under vacuum, the residue was purified through silica gel column chromatography using hexa­ne/ethyl acetate (7:3 v/v). Single crystals were obtained by slow evaporation at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The nitro­gen-bound H atom was located in a difference-Fourier map and refined subject to a DFIX restraint of N—H = 0.86 Å. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C17H12Cl2N2O
M r 331.19
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 5.8511 (6), 12.5544 (15), 21.069 (2)
β (°) 92.666 (8)
V3) 1546.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.74 × 0.29 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.844, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 8675, 2726, 1196
R int 0.103
(sin θ/λ)max−1) 0.596
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.056, 0.094, 0.88
No. of reflections 2726
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.20

Computer programs: X-AREA and X-RED (Stoe & Cie, 2002), SHELXT2017 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), WinGX (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019005139/dx2016sup1.cif

e-75-00650-sup1.cif (492.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019005139/dx2016Isup2.hkl

e-75-00650-Isup2.hkl (218.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019005139/dx2016Isup3.cml

CCDC reference: 1896404

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

C17H12Cl2N2O F(000) = 680
Mr = 331.19 Dx = 1.423 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 5.8511 (6) Å Cell parameters from 5578 reflections
b = 12.5544 (15) Å θ = 1.9–30.8°
c = 21.069 (2) Å µ = 0.42 mm1
β = 92.666 (8)° T = 296 K
V = 1546.0 (3) Å3 Stick, colorless
Z = 4 0.74 × 0.29 × 0.05 mm

Data collection

Stoe IPDS 2 diffractometer 2726 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 1196 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.103
Detector resolution: 6.67 pixels mm-1 θmax = 25.0°, θmin = 1.9°
rotation method scans h = −6→6
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −14→14
Tmin = 0.844, Tmax = 0.973 l = −25→25
8675 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0186P)2] where P = (Fo2 + 2Fc2)/3
S = 0.88 (Δ/σ)max < 0.001
2726 reflections Δρmax = 0.15 e Å3
199 parameters Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.0717 (2) 0.77603 (11) 0.74856 (7) 0.1004 (5)
Cl2 0.5870 (2) 0.47508 (11) 0.76181 (7) 0.1022 (5)
O1 −0.0083 (5) 0.4872 (2) 0.58329 (11) 0.0681 (9)
N1 0.2647 (5) 0.5706 (3) 0.52916 (14) 0.0543 (9)
H1 0.215035 0.536383 0.495963 0.065*
N2 0.4383 (5) 0.6397 (3) 0.52057 (14) 0.0497 (8)
C11 0.5192 (6) 0.6884 (3) 0.57161 (17) 0.0455 (10)
C9 0.1594 (7) 0.5487 (3) 0.58387 (18) 0.0502 (11)
C12 0.7076 (6) 0.7653 (3) 0.56287 (18) 0.0486 (10)
C8 0.2566 (7) 0.6008 (3) 0.63964 (16) 0.0481 (10)
C10 0.4302 (6) 0.6696 (3) 0.63241 (18) 0.0500 (10)
H10 0.492982 0.705353 0.667723 0.060*
C6 0.2580 (7) 0.6252 (4) 0.75974 (16) 0.0496 (10)
C13 0.8619 (7) 0.7518 (3) 0.51557 (18) 0.0547 (11)
H13 0.844994 0.694576 0.487703 0.066*
C1 0.1647 (7) 0.7164 (4) 0.78577 (18) 0.0552 (11)
C5 0.4515 (7) 0.5861 (3) 0.79161 (19) 0.0587 (11)
C7 0.1522 (7) 0.5726 (3) 0.70160 (16) 0.0644 (12)
H7A −0.008906 0.591153 0.698375 0.077*
H7B 0.162232 0.496083 0.707307 0.077*
C17 0.7339 (7) 0.8532 (4) 0.60200 (19) 0.0635 (12)
H17 0.627740 0.865436 0.632688 0.076*
C14 1.0395 (7) 0.8220 (4) 0.5094 (2) 0.0652 (13)
H14 1.141541 0.812120 0.477372 0.078*
C2 0.2559 (8) 0.7640 (4) 0.8395 (2) 0.0697 (13)
H2 0.188409 0.824841 0.855430 0.084*
C15 1.0671 (8) 0.9066 (4) 0.5503 (2) 0.0699 (13)
H15 1.189954 0.952831 0.546718 0.084*
C4 0.5475 (8) 0.6332 (5) 0.8459 (2) 0.0791 (15)
H4 0.678943 0.604863 0.865828 0.095*
C16 0.9128 (8) 0.9230 (4) 0.5967 (2) 0.0724 (13)
H16 0.929468 0.980734 0.624227 0.087*
C3 0.4477 (9) 0.7215 (5) 0.8698 (2) 0.0859 (16)
H3 0.509354 0.753135 0.906685 0.103*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0858 (9) 0.0865 (10) 0.1269 (11) 0.0090 (8) −0.0179 (8) 0.0212 (9)
Cl2 0.1090 (11) 0.0865 (10) 0.1149 (10) 0.0230 (9) 0.0478 (8) 0.0115 (9)
O1 0.083 (2) 0.074 (2) 0.0473 (16) −0.0306 (18) −0.0006 (15) −0.0049 (16)
N1 0.071 (2) 0.053 (2) 0.039 (2) −0.007 (2) −0.0005 (18) −0.0096 (17)
N2 0.055 (2) 0.052 (2) 0.0420 (19) −0.0023 (18) 0.0037 (16) −0.0009 (17)
C11 0.049 (2) 0.053 (3) 0.034 (2) 0.003 (2) −0.0035 (19) −0.002 (2)
C9 0.061 (3) 0.048 (3) 0.041 (2) −0.002 (2) 0.002 (2) 0.001 (2)
C12 0.053 (2) 0.050 (3) 0.043 (2) −0.004 (2) −0.001 (2) 0.005 (2)
C8 0.058 (2) 0.056 (3) 0.030 (2) −0.005 (2) −0.0010 (19) −0.003 (2)
C10 0.058 (3) 0.055 (3) 0.037 (2) −0.011 (2) −0.002 (2) −0.002 (2)
C6 0.058 (3) 0.061 (3) 0.031 (2) −0.016 (2) 0.008 (2) 0.000 (2)
C13 0.057 (2) 0.061 (3) 0.046 (2) −0.002 (2) 0.004 (2) 0.004 (2)
C1 0.063 (3) 0.061 (3) 0.042 (2) −0.012 (2) 0.004 (2) 0.003 (2)
C5 0.059 (3) 0.067 (3) 0.051 (3) −0.001 (2) 0.016 (2) 0.008 (2)
C7 0.082 (3) 0.066 (3) 0.046 (2) −0.022 (3) 0.010 (2) −0.004 (2)
C17 0.068 (3) 0.070 (3) 0.053 (3) −0.016 (3) 0.014 (2) −0.008 (3)
C14 0.055 (3) 0.076 (4) 0.066 (3) 0.007 (3) 0.016 (2) 0.015 (3)
C2 0.091 (3) 0.066 (3) 0.053 (3) −0.008 (3) 0.014 (3) −0.011 (3)
C15 0.066 (3) 0.071 (4) 0.073 (3) −0.014 (3) 0.010 (3) 0.008 (3)
C4 0.069 (3) 0.114 (5) 0.053 (3) −0.004 (3) −0.009 (3) 0.011 (3)
C16 0.082 (3) 0.068 (3) 0.068 (3) −0.019 (3) 0.012 (3) −0.008 (3)
C3 0.098 (4) 0.117 (5) 0.043 (3) −0.020 (4) 0.003 (3) −0.006 (3)

Geometric parameters (Å, º)

Cl1—C1 1.729 (4) C13—C14 1.373 (5)
Cl2—C5 1.735 (4) C13—H13 0.9300
O1—C9 1.248 (4) C1—C2 1.366 (5)
N1—N2 1.354 (4) C5—C4 1.383 (5)
N1—C9 1.360 (4) C7—H7A 0.9700
N1—H1 0.8600 C7—H7B 0.9700
N2—C11 1.307 (4) C17—C16 1.373 (5)
C11—C10 1.425 (5) C17—H17 0.9300
C11—C12 1.483 (5) C14—C15 1.373 (5)
C9—C8 1.438 (5) C14—H14 0.9300
C12—C17 1.382 (5) C2—C3 1.373 (6)
C12—C13 1.386 (5) C2—H2 0.9300
C8—C10 1.348 (5) C15—C16 1.377 (6)
C8—C7 1.509 (5) C15—H15 0.9300
C10—H10 0.9300 C4—C3 1.361 (6)
C6—C5 1.380 (5) C4—H4 0.9300
C6—C1 1.391 (5) C16—H16 0.9300
C6—C7 1.500 (5) C3—H3 0.9300
N2—N1—C9 128.0 (3) C6—C5—Cl2 119.2 (3)
N2—N1—H1 116.0 C4—C5—Cl2 117.9 (4)
C9—N1—H1 116.0 C6—C7—C8 115.8 (3)
C11—N2—N1 115.8 (3) C6—C7—H7A 108.3
N2—C11—C10 121.9 (4) C8—C7—H7A 108.3
N2—C11—C12 116.4 (4) C6—C7—H7B 108.3
C10—C11—C12 121.7 (3) C8—C7—H7B 108.3
O1—C9—N1 120.3 (3) H7A—C7—H7B 107.4
O1—C9—C8 124.7 (4) C16—C17—C12 121.7 (4)
N1—C9—C8 115.0 (4) C16—C17—H17 119.1
C17—C12—C13 117.9 (4) C12—C17—H17 119.1
C17—C12—C11 120.6 (4) C13—C14—C15 120.3 (4)
C13—C12—C11 121.5 (4) C13—C14—H14 119.9
C10—C8—C9 118.1 (4) C15—C14—H14 119.9
C10—C8—C7 125.8 (3) C1—C2—C3 119.7 (5)
C9—C8—C7 116.1 (4) C1—C2—H2 120.2
C8—C10—C11 121.2 (3) C3—C2—H2 120.2
C8—C10—H10 119.4 C14—C15—C16 120.0 (4)
C11—C10—H10 119.4 C14—C15—H15 120.0
C5—C6—C1 115.4 (3) C16—C15—H15 120.0
C5—C6—C7 122.6 (4) C3—C4—C5 119.3 (4)
C1—C6—C7 122.0 (4) C3—C4—H4 120.3
C14—C13—C12 120.7 (4) C5—C4—H4 120.3
C14—C13—H13 119.6 C17—C16—C15 119.3 (4)
C12—C13—H13 119.6 C17—C16—H16 120.4
C2—C1—C6 122.8 (4) C15—C16—H16 120.4
C2—C1—Cl1 117.4 (4) C4—C3—C2 120.0 (4)
C6—C1—Cl1 119.9 (3) C4—C3—H3 120.0
C6—C5—C4 122.8 (4) C2—C3—H3 120.0
C9—N1—N2—C11 2.6 (5) C7—C6—C1—Cl1 −3.3 (5)
N1—N2—C11—C10 0.1 (5) C1—C6—C5—C4 0.2 (6)
N1—N2—C11—C12 −179.3 (3) C7—C6—C5—C4 −178.8 (4)
N2—N1—C9—O1 175.7 (3) C1—C6—C5—Cl2 −178.0 (3)
N2—N1—C9—C8 −4.5 (6) C7—C6—C5—Cl2 2.9 (5)
N2—C11—C12—C17 149.5 (4) C5—C6—C7—C8 −83.4 (5)
C10—C11—C12—C17 −29.9 (5) C1—C6—C7—C8 97.5 (5)
N2—C11—C12—C13 −30.4 (5) C10—C8—C7—C6 −1.5 (6)
C10—C11—C12—C13 150.1 (4) C9—C8—C7—C6 178.6 (4)
O1—C9—C8—C10 −176.5 (4) C13—C12—C17—C16 −3.0 (6)
N1—C9—C8—C10 3.7 (5) C11—C12—C17—C16 177.1 (4)
O1—C9—C8—C7 3.5 (6) C12—C13—C14—C15 0.2 (6)
N1—C9—C8—C7 −176.4 (4) C6—C1—C2—C3 0.1 (6)
C9—C8—C10—C11 −1.5 (6) Cl1—C1—C2—C3 −178.1 (4)
C7—C8—C10—C11 178.5 (4) C13—C14—C15—C16 −1.7 (6)
N2—C11—C10—C8 −0.5 (6) C6—C5—C4—C3 0.6 (7)
C12—C11—C10—C8 179.0 (4) Cl2—C5—C4—C3 178.8 (4)
C17—C12—C13—C14 2.1 (6) C12—C17—C16—C15 1.6 (6)
C11—C12—C13—C14 −178.0 (3) C14—C15—C16—C17 0.9 (7)
C5—C6—C1—C2 −0.6 (6) C5—C4—C3—C2 −1.1 (7)
C7—C6—C1—C2 178.5 (4) C1—C2—C3—C4 0.8 (7)
C5—C6—C1—Cl1 177.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.04 2.839 (4) 155
C2—H2···O1ii 0.93 2.66 3.581 (6) 172

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y+1/2, −z+3/2.

References

  1. Abouzid, K. & Bekhit, S. A. (2008). Bioorg. Med. Chem. 16, 5547–5556. [DOI] [PubMed]
  2. Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281. [DOI] [PubMed]
  3. Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122.
  4. Asif, M. (2015). Mini Rev. Med. Chem. 14, 1093–1103. [DOI] [PubMed]
  5. Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764. [DOI] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784–3794. [DOI] [PubMed]
  10. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. [DOI] [PubMed]
  11. Ochiai, K., Takita, S., Eiraku, T., Kojima, A., Iwase, K., Kishi, T., Fukuchi, K., Yasue, T., Adams, D. R., Allcock, R. W., Jiang, Z. & Kohno, Y. (2012). Bioorg. Med. Chem. 20, 1644–1658. [DOI] [PubMed]
  12. Oubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350–o1351. [DOI] [PMC free article] [PubMed]
  13. Sharma, B., Verma, A., Sharma, U. K. & Prajapati, S. (2014). Med. Chem. Res. 23, 146–157.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026. [DOI] [PubMed]
  17. Sönmez, M., Berber, I. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101–105. [DOI] [PubMed]
  18. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  21. Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077. [DOI] [PubMed]
  22. Thakur, A. S., Verma, P. & Chandy, A. (2010). Asian J. Res. Chem, 3, 265–271.
  23. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  24. Wang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569–573. [DOI] [PubMed]
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  26. Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561–o1563.
  27. Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019005139/dx2016sup1.cif

e-75-00650-sup1.cif (492.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019005139/dx2016Isup2.hkl

e-75-00650-Isup2.hkl (218.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019005139/dx2016Isup3.cml

CCDC reference: 1896404

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES