ABSTRACT
A number of life‐threatening clinical disorders may be amenable to treatment with a drug that can stimulate respiratory drive. These include acute respiratory failure secondary to chronic obstructive pulmonary disease, post‐anesthetic respiratory depression, and apnea of prematurity. Doxapram has been available for over forty years for the treatment of these conditions and it has a low side effect profile compared to other available agents. Generally though, the use of doxapram has been limited to these clinical niches involving patients in the intensive care, post‐anesthesia care and neonatal intensive care units. Recent basic science studies have made considerable progress in understanding the molecular mechanism of doxapram's respiratory stimulant action. Although it is unlikely that doxapram will undergo a clinical renaissance based on this new understanding, it represents a significant advance in our knowledge of the control of breathing.
Keywords: Analeptics, Apnea, Doxapram, Respiratory depression, Respiratory stimulants
Full Text
The Full Text of this article is available as a PDF (115.6 KB).
REFERENCES
- 1. Albertson TE, Stark LG, Joy RM. The effects of doxapram, diazepam, phenobarbital and pentylenetetrazol on suprathreshold and threshold stimulations in amygdaloid kindled rats. Neuropharmacology 1983; 22:245–248. [DOI] [PubMed] [Google Scholar]
- 2. Angus RM, Ahmed AA, Fenwick LJ, Peacock AJ. Comparison of the acute effects on gas exchange of nasal ventilation and doxapram in exacerbations of chronic obstructive pulmonary disease. Thorax 1996; 51:1048–1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Baxter AD. Side effects of doxapram infusion. Eur J Intensive Care Med 1976; 2:87–88. [DOI] [PubMed] [Google Scholar]
- 4. Bayliss DA, Talley EM, Sirois JE, Lei Q. TASK‐1 is a highly modulated pH‐sensitive “leak” K+ channel expressed in brainstem respiratory neurons. Respir Physiol 2001; 129:159–174. [DOI] [PubMed] [Google Scholar]
- 5. Brown WJ, Buist NR, Gipson HT, et al Fatal benzyl alcohol poisoning in a neonatal intensive care unit. Lancet 1982; 1:1250. [DOI] [PubMed] [Google Scholar]
- 6. Bruce RB, Pitts JE, Pinchbeck F, Newman J. Excretion, distribution and metabolism of doxapram hydro‐chloride. J Med Chem 1965; 8:157–163. [DOI] [PubMed] [Google Scholar]
- 7. Buckler KJ, Williams BA, Honore E. An oxygen‐, acid‐ and anaesthetic‐sensitive TASK‐like background potassium channel in rat arterial chemoreceptor cells. J Physiol 2000; 525(Pt 1):135–142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Burki NK. Ventilatory effects of doxapram in conscious human subjects. Chest 1984; 85:600–604. [DOI] [PubMed] [Google Scholar]
- 9. Calverley PM, Robson RH, Wraith PK, et al The ventilatory effects of doxapram in normal man. Clin Sci (Lond) 1983; 65:65–69. [DOI] [PubMed] [Google Scholar]
- 10. Clements JA, Robson RH, Prescott LF. The disposition of intravenous doxapram in man. Eur J Clin Pharmacol 1979; 16:411–416. [DOI] [PubMed] [Google Scholar]
- 11. Cooper R, McCarthy G, Mirakhur RK, Maddineni VR. Effect of doxapram on the rate of recovery from atracurium and vecuronium neuromuscular block. Br J Anaesth 1992; 68:527–528. [DOI] [PubMed] [Google Scholar]
- 12. Cotten JF, Keshavaprasad B, Laster MJ, et al The ventilatory stimulant doxapram inhibits TASK tandem pore (K2P) potassium channel function but does not affect minimum alveolar anesthetic concentration. Anesth Analg 2006; 102:779–785. [DOI] [PubMed] [Google Scholar]
- 13. De Villiers GS, Walele A, Van der Merwe PL, Kalis NN. Second‐degree atrioventricular heart block after doxapram administration. J Pediatry 1998; 133:149–150. [DOI] [PubMed] [Google Scholar]
- 14. Downing JW, Jeal DE, Allen PJ, Buley R. I.V. doxapram hydrochloride and pulmonary complications after lower abdominal surgery. Br J Anaesth 1977; 49:473–477. [DOI] [PubMed] [Google Scholar]
- 15. Edwards G, Leszczynski SO. A double‐blind trial of five respiratory stimulants in patients with acute ventilatory failure. Lancet 1967; 1:226–229. [Google Scholar]
- 16. Feldman JL, Mitchell GS, Nattie EE. Breathing: Rhythmicity, plasticity, chemosensitivity. Ann Rev Neurosci 2003; 26:239–266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Fisher B, Rodarte A. Use of doxapram to increase respirations without a concomitant increase in intracranial pressure. Crit Care Med 1987; 15:1072–1073. [DOI] [PubMed] [Google Scholar]
- 18. Funderburk WH, Oliver KL, Ward JW. Electrophysiologic analysis of the site of action of doxapram hydro‐chloride. J Pharmacol Exp Ther 1966; 151:360–368. [PubMed] [Google Scholar]
- 19. Gawley TH, Dundee JW, Gupta PK, Jones CJ. Role of doxapram in reducing pulmonary complications after major surgery. Br Med J 1976; 1:122–124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N. Potassium leak channels and the KCNK family of two‐P‐domain subunits. Nat Rev Neurosci 2001; 2:175–184. [DOI] [PubMed] [Google Scholar]
- 21. Henderson‐Smart D, Steer P. Doxapram treatment for apnea in preterm infants. Cochrane Database Syst Rev 2004:CD000074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Hirsh K, Wang SC. Selective respiratory stimulating action of doxapram compared to pentylenetetrazaol. J Pharmacol Exp Ther 1974; 189:1–11. [PubMed] [Google Scholar]
- 23. Houser WC, Schlueter DP. Prolonged doxapram infusion in obesity‐hypoventilation syndrome. JAMA 1978; 239:340–341. [PubMed] [Google Scholar]
- 24. Huffington P, Craythorne NW. Effect of doxapram on heart rhythm during anesthesia in dog and man. Anesth Analg 1966; 45:558–563. [PubMed] [Google Scholar]
- 25. Kato H, Buckley JP. Possible sites of action of the respiratory stimulant effect of doxapram hydrochloride. J Pharmacol Exp Ther 1964; 144:260–264. [PubMed] [Google Scholar]
- 26. Kim SI, Winnie AP, Collins VJ, Shoemaker WC. Hemodynamic responses to doxapram in normovolemic and hypovolemic dogs. Anesth Analg 1971; 50:705–710. [DOI] [PubMed] [Google Scholar]
- 27. Knill RL, Gelb AW. Ventilatory responses to hypoxia and hypercapnia during halothane sedation and anesthesia in man. Anesthesiology 1978; 49:244–251. [DOI] [PubMed] [Google Scholar]
- 28. Komatsu R, Sengupta P, Cherynak G, et al Doxapram only slightly reduces the shivering threshold in healthy volunteers. Anesth Analg 2005; 101:1368–1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Laxenaire MC, Boileau S, Dagrenat P, et al Haemodynamic and respiratory effects of post‐operative doxapram and almitrine in patients following pneumonectomy. Eur J Anaesthesiol 1986; 3:259–271. [PubMed] [Google Scholar]
- 30. Lees NW, Howie HB, Mellon A, et al The influence of doxapram on postoperative pulmonary function in patients undergoing upper abdominal surgery. Br J Anaesth 1976; 48:1197–1200. [DOI] [PubMed] [Google Scholar]
- 31. MacDonald MG, Mullett MD, Seshia MM. Avery's Neonatalology: Pathophysiology and Management of the Newborn. Sixth Edition. Philadelphia : Lippincott, Williams and Wilkens, 2005. [Google Scholar]
- 32. Maillard C, Boutroy MJ, Fresson J, et al QT interval lengthening in premature infants treated with doxapram. Clin Pharmacol Ther 2001; 70:540–545. [DOI] [PubMed] [Google Scholar]
- 33. Meadows HJ, Randall AD. Functional characterisation of human TASK‐3, an acid‐sensitive two‐pore domain potassium channel. Neuropharmacology 2001; 40:551–559. [DOI] [PubMed] [Google Scholar]
- 34. Mitchell RA, Herbert DA. Potencies of doxapram and hypoxia in stimulating carotid‐body chemoreceptors and ventilation in anesthetized cats. Anesthesiology 1975; 42:559–566. [DOI] [PubMed] [Google Scholar]
- 35. Moser KM, Luchsinger PC, Adamson JS, et al Respiratory stimulation with intravenous doxapram in respiratory failure. A double‐blind co‐operative study. N Engl J Med 1973; 288:427–431. [DOI] [PubMed] [Google Scholar]
- 36. Nunn JF. Nunn's Applied Respiratory Physiology. Fourth Edition Oxford : Butterworth‐Heinemann, 1993. [Google Scholar]
- 37. Orlowski M, Pollard BJ. Effect of doxapram on neostigmine evoked antagonism of vecuronium neuromuscular block. Br J Anaesth 1992; 68:418–419. [DOI] [PubMed] [Google Scholar]
- 38. Patel AJ, Honore E, Lesage F, et al Inhalational anesthetics activate two‐pore‐domain background K+ channels. Nat Neurosci 1999; 2:422–426. [DOI] [PubMed] [Google Scholar]
- 39. Peers C. Effects of doxapram on ionic currents recorded in isolated type I cells of the neonatal rat carotid body. Brain Res 1991; 568:116–122. [DOI] [PubMed] [Google Scholar]
- 40. Pleuvry BJ. A study of the enhanced toxicity of doxapram in rodents treated with narcotic analgesics. Br J Anaesth 1978; 50:451–458. [DOI] [PubMed] [Google Scholar]
- 41. Polak A, Plum F. Comparison of new analeptics in barbiturate‐poisoned animals. J Pharmacol Exp Ther 1964; 145:27–33. [PubMed] [Google Scholar]
- 42. Pollard BJ, Randall NP, Pleuvry BJ. Doxapram and the neuromuscular junction. Br J Anaesth 1989; 62:664–668. [DOI] [PubMed] [Google Scholar]
- 43. Rappolt RT, Sr. , Gay GR, Decker WJ, Inaba DS. NAGD regimen for the coma of drug‐related overdose. Ann Emerg Med 1980; 9:357–363. [DOI] [PubMed] [Google Scholar]
- 44. Riddell PL, Robertson GS. Use of doxapram as an arousal agent in outpatient general anaesthesia. Br J Anaesth 1978; 50:921–924. [DOI] [PubMed] [Google Scholar]
- 45. Robson RH, Prescott LF. A pharmacokinetic study of doxapram in patients and volunteers. Br J Clin Pharmacol 1979; 7:81–87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46. Roy RC, Stullken EH. Electroencephalographic evidence of arousal in dogs from halothane after doxapram, physostigmine, or naloxone. Anesthesiology 1981; 55:392–397. [DOI] [PubMed] [Google Scholar]
- 47. Schmidt B, Roberts RS, Davis P, et al Caffeine therapy for apnea of prematurity. N Engl J Med 2006; 354:2112–2121. [DOI] [PubMed] [Google Scholar]
- 48. Singh P, Dimitriou V, Mahajan RP, Crossley AW. Double‐blind comparison between doxapram and pethidine in the treatment of postanaesthetic shivering. Br J Anaesth 1993; 71:685–688. [DOI] [PubMed] [Google Scholar]
- 49. Sreenan C, Etches PC, Demianczuk N, Robertson CM. Isolated mental developmental delay in very low birth weight infants: Association with prolonged doxapram therapy for apnea. J Pediatry 2001; 139:832–837. [DOI] [PubMed] [Google Scholar]
- 50. Stephen CR, Talton I. Effects of doxapram on the electrocardiogram during anesthesia. Anesth Analg 1966; 45:783–789. [PubMed] [Google Scholar]
- 51. Stephen CR, Talton I. Investigation of doxapram as a postanesthetic respiratory stimulant. Anesth Analg 1964; 43:628–640. [PubMed] [Google Scholar]
- 52. Takahashi T, Osanai S, Nakano H, et al Doxapram stimulates the carotid body via a different mechanism than hypoxic chemotransduction. Respir Physiol Neurobiol 2005; 147:1–9. [DOI] [PubMed] [Google Scholar]
- 53. Ward JW, Franko BV. A new centrally acting agent (AHR‐619) with marked respiratory stimulating, pressor, and “awakening” effects. Fed Proc 1962; 21:325. [Google Scholar]
- 54. Williams BA, Buckler KJ. Biophysical properties and metabolic regulation of a TASK‐like potassium channel in rat carotid body type 1 cells. Am J Physiol Lung Cell Mol Physiol 2004; 286:L221–230. [DOI] [PubMed] [Google Scholar]
- 55. Winnie AP, Collins VJ. The search for a pharmacologic ventilator. Acta Anaesthesiol Scand Suppl 1966; 23: 63–71. [DOI] [PubMed] [Google Scholar]
- 56. Yamamoto Y, Kummer W, Atoji Y, Suzuki Y. TASK‐1, TASK‐2, TASK‐3 and TRAAK immunoreactivities in the rat carotid body. Brain Res 2002; 950:304–307. [DOI] [PubMed] [Google Scholar]