Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Mar 29;75(Pt 4):512–515. doi: 10.1107/S2056989019004067

Crystal structure of 1-hepta­fluoro­tolyl-closo-1,2-dicarbadodeca­borane

James D Watson a, Amanda Benton a, Hugo Tricas a, Georgina M Rosair a, Alan J Welch a,*
PMCID: PMC6509674  PMID: 31161066

The title compound features an intra­molecular hydrogen bond involving the acidic H atom bound to the cage C atom and an ortho-F atom of the hepta­fluoro­tolyl substituent.

Keywords: crystal structure, carborane, intra­molecular F⋯H hydrogen-bond

Abstract

The mol­ecular structure of the title compound 1-(2′,3′,5′,6′-tetra­fluoro-4′-trifluoro­methyl­phen­yl)-closo-1,2-dicarbadodeca­borane, C9H11B10F7, features an intra­molecular ortho-F⋯H2 hydrogen bond [2.11 (2) Å], which is responsible for an orientation of the hepta­fluoro­tolyl substituent in which the plane of the aryl ring nearly eclipses the C1—C2 cage connectivity.

Chemical context  

Carborane chemistry continues to be an area of intense academic inter­est but also one that has both potential and real applications in a wide variety of fields, with a particular blossoming of such applications over the last two decades (Grimes, 2016). Two important factors driving studies into the synthesis and properties of novel carborane compounds for a vast array of applications are the high chemical and thermal stabilities of such species and the relative ease of their deriv­atization. Several years ago we described a family of doubly substituted closo-C2B10 carboranes bearing fluorinated aryl groups (Tricas et al., 2011). Our comprehensive (synthetic, spectroscopic, structural, electrochemical and computational) study focused primarily on the stabilization of the reduced form of the carboranes by the presence of the strongly electron-withdrawing fluoroaryl groups, and the study has attracted considerable attention from those working in the related field of carborane photophysics (e.g. Van Nghia et al., 2018; Marsh et al., 2018). Very recently we have reported the first examples of substituted carboranes as components of inter­molecular frustrated Lewis pairs (FLPs; Benton et al., 2018). In this field the ability to fine-tune the Lewis acidity or basicity of a functional group on a carborane support by the electron-withdrawing or electron-donating characteristics of a second substituent on the carborane is of potential importance in using these FLPs as catalysts. Herein we report the synthesis and crystal structure of [1-(4′-F3CC6F4)-closo-1,2-C2B10H11], a singly substituted fluoroaryl carborane with the potential for further derivatization.

Structural commentary  

H atoms bound to C in closo carboranes are protonic in nature (Grimes, 2016) and the strongly electron-withdrawing nature of the perfluoro­tolyl substituent on C1 renders the H atom on C2 in [1-(4′-F3CC6F4)-closo-1,2-C2B10H11] particularly protonic, as evidenced by its high-frequency 1H NMR chemical shift (δ 4.88 ppm). This makes the C1H1 unit a strong hydrogen-bond donor and results in the most striking feature of the structure (Fig. 1), the intra­molecular hydrogen bond between F12 and H2. Mol­ecular dimensions for the hydrogen bond are given in Table 1 and are complemented by the near-tetra­hedral angle C12—F12⋯H2 = 108.4 (6) °. This hydrogen bond is responsible for the orientation of the 4′-F3CC6F4 substituent with respect to the carborane in the solid state, defined by the torsion angle C2—C1—C11—C12 = 9.6 (2)°, in which the plane of the aryl ring almost eclipses the C1—C2 connectivity.graphic file with name e-75-00512-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of [1-(4′-F3CC6F4)-closo-1,2-C2B10H11] with key atoms labelled. Displacement ellipsoids are drawn at the 50% probability level, except for H atoms. The hydrogen bond between F12 and H2 is shown as a dotted line.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F12 0.91 (2) 2.11 (2) 2.7436 (19) 126 (2)

The only other [1-(ortho-F-ar­yl)-closo-1,2-C2B10H11] species to have been studied crystallographically is that with a 2′-fluoro-4′-(9′′-phenanthren­yl) substituent (Tu et al., 2017). In this species there is an inter­molecular F⋯CcageH hydrogen-bond, 2.091 (4) Å, between the two crystallographically independent mol­ecules in the asymmetric fraction of the unit cell, although the situation is somewhat complicated by partial disorder of both F atoms. The C1—C2 distance in [1-(4′-F3CC6F4)-closo-1,2-C2B10H11], 1.660 (2) Å, stands good comparison with that in [1-Ph-closo-1,2-C2B10H11] [α polymorph, 1.640 (5) Å, Brain et al., 1996; β polymorph, 1.649 (2) Å, Thomas et al., 1996]. Dimensions within the 4′-F3CC6F4 substituent are fully consistent with those in [1-(4′-F3CC6F4)-2-Ph-closo-1,2-C2B10H10], [1,2-(4′-F3CC6F4)2-closo-1,2-C2B10H10], [1,7-(4′-F3CC6F4)2-closo-1,7-C2B10H10] and [1,12-(4′-F3CC6F4)2-closo-1,12-C2B10H10] (Tricas et al., 2011).

Supra­molecular features  

Mol­ecules pack in ribbons parallel to the crystallographic a axis, but there are no significant inter­molecular contacts either within or between these ribbons. A view of the crystal packing along [100] is shown in Fig. 2.

Figure 2.

Figure 2

Unit cell of [1-(4′-F3CC6F4)-closo-1,2-C2B10H11] in a view along [100].

Database survey  

A search of the Cambridge Structural Database (CSD, 2019 release; Groom et al., 2016) yielded 384 examples of [C-aryl-closo-1,2-C2B10] carboranes. However, this number drops to 63 if the second cage C atom is not substituted, i.e. structures of the type [1-aryl-closo-1,2-C2B10H11]. Furthermore, there are only two reported structural studies of cases where the aryl ring is at least partially fluorinated, the aforementioned 2′-fluoro-4′-(9′′-phenanthren­yl) species (Tu et al., 2017) and [1-(4′-C6H4F)-closo-1,2-C2B10H11] (Clegg, 2016). Removing the condition that the second cage C atom is not substituted affords 19 further examples of fluoroaryl derivatives of [closo-1,2-C2B10H11]. There are only three examples where a 4′-F3CC6F4 substituent is attached to a [closo-1,2-C2B10] cage, two of which result from our laboratories (Tricas et al., 2011) and the other from Lee et al. (2017).

Synthesis and crystallization  

Under dry N2 and using anhydrous, degassed solvents, [closo-1,2-C2B10H12] (0.75 g, 5.2 mmol) was dissolved in a 1:1 mixture of toluene and diethyl ether (40 mL). The colourless solution was cooled to 273 K before n-BuLi (3.58 mL of a 1.6 M solution in hexa­nes, 5.73 mmol, 1.1 equiv.) was added dropwise over the course of 2 min. whilst stirring vigorously. The solution was warmed to room temperature and changed from colourless to yellow. After further stirring for 1 h the solution was cooled to 273 K, resulting in a white suspension. Whilst stirring vigorously, octa­fluoro­toluene (0.74 mL, 5.2 mmol, 1.0 equiv.) was added dropwise over the course of 1 min., causing the solution to turn from yellow to deep red. The solution was stirred for 4 h at room temperature and then quenched with saturated [NH4]Cl (aq., 20 mL). The organic layer was isolated and the aqueous phase extracted with Et2O (3 × 20 mL). The organic phases were combined and reduced in volume in vacuo to yield a brown residue. Products were isolated by column chromatography on silica eluting with 313–333 K petroleum ether to give both the target compound [1-(4′-F3CC6F4)-closo-1,2-C2B10H11] (R f = 0.27, 0.57 g, 30% yield) and the disubstituted species [1,2-(4′-F3CC6F4)2-closo-1,2-C2B10H10] (R f = 0.37, 0.33 g, 11% yield, Tricas et al., 2011) as colourless solids once evacuated to dryness.

C9H11B10F7 requires; C 30.0, H 3.08. Found; C 30.5, H 2.83%. 1H NMR (CDCl3, 400.1 MHz, 298 K, δ): 4.88 (br. s, 1H, CH cage). 11B{1H} NMR (CDCl3, 128.4 MHz, 298 K, δ): −0.32 (1B), −1.80 (1B), −8.06 (2B), −9.62 (2B), −11.17 (2B), −12.89 (2B). 19F NMR (CDCl3, 376.5 MHz, 298 K, δ): −56.72 (t, 3F, J FF = 21.3 Hz, CF 3), −135.17 (br. s, 2F, F ortho), −137.26 (m, 2F, F meta). Crystals of [1-(4′-F3CC6F4)-closo-1,2-C2B10H11] suitable for a single-crystal X-ray diffraction study were grown from the slow evaporation of a 313–333 K petroleum ether solution of the product.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The cage C atom (C2) not carrying the substituent was distinguished from B atoms by both the Vertex–Centroid Distance (McAnaw et al., 2013) and Boron–Hydrogen Distance (McAnaw et al., 2014) methods. Cage H atoms were located from difference-Fourier maps and allowed positional refinement, with U iso(H) = 1.2U eq(B or C). Five poorly fitting reflections were omitted which marginally decreased the R-factor and standard uncertainties from the previous refinement.

Table 2. Experimental details.

Crystal data
Chemical formula C9H11B10F7
M r 360.28
Crystal system, space group Orthorhombic, P212121
Temperature (K) 120
a, b, c (Å) 6.7872 (2), 11.6926 (3), 19.4863 (5)
V3) 1546.43 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.30 × 0.21 × 0.10
 
Data collection
Diffractometer Rigaku Oxford Diffreaction SuperNova
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.907, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 40258, 5615, 5190
R int 0.041
(sin θ/λ)max−1) 0.768
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.092, 1.15
No. of reflections 5615
No. of parameters 268
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.32, −0.24
Absolute structure Flack x determined using 1991 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.03 (14)

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004067/lh5894sup1.cif

e-75-00512-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004067/lh5894Isup2.hkl

e-75-00512-Isup2.hkl (446.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004067/lh5894Isup3.mol

CCDC reference: 1905663

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr G. Nicol (University of Edinburgh) for the data collection.

supplementary crystallographic information

Crystal data

C9H11B10F7 Dx = 1.547 Mg m3
Mr = 360.28 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 14204 reflections
a = 6.7872 (2) Å θ = 3.6–32.3°
b = 11.6926 (3) Å µ = 0.14 mm1
c = 19.4863 (5) Å T = 120 K
V = 1546.43 (7) Å3 Block, colourless
Z = 4 0.30 × 0.21 × 0.10 mm
F(000) = 712

Data collection

Rigaku Oxford Diffreaction SuperNova diffractometer 5615 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source 5190 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.041
Detector resolution: 5.1574 pixels mm-1 θmax = 33.1°, θmin = 3.2°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) k = −17→17
Tmin = 0.907, Tmax = 1.000 l = −28→29
40258 measured reflections

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full Only H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.2387P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092 (Δ/σ)max < 0.001
S = 1.15 Δρmax = 0.32 e Å3
5615 reflections Δρmin = −0.24 e Å3
268 parameters Absolute structure: Flack x determined using 1991 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: −0.03 (14)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4255 (2) 0.75630 (14) 0.63450 (7) 0.0127 (3)
C2 0.3379 (2) 0.84949 (14) 0.69108 (8) 0.0144 (3)
H2 0.239 (3) 0.825 (2) 0.7189 (11) 0.017*
B3 0.5657 (3) 0.79020 (16) 0.70696 (9) 0.0150 (3)
H3 0.569 (4) 0.731 (2) 0.7447 (11) 0.018*
B4 0.6746 (3) 0.78014 (17) 0.62414 (9) 0.0152 (3)
H4 0.760 (3) 0.7102 (19) 0.6185 (11) 0.018*
B5 0.4984 (3) 0.82791 (16) 0.56196 (9) 0.0157 (3)
H5 0.481 (3) 0.7834 (19) 0.5125 (11) 0.019*
B6 0.2792 (3) 0.86920 (16) 0.60596 (9) 0.0156 (3)
H6 0.137 (3) 0.848 (2) 0.5881 (11) 0.019*
B7 0.5140 (3) 0.93737 (17) 0.72239 (9) 0.0173 (3)
H7 0.498 (3) 0.960 (2) 0.7758 (11) 0.021*
B8 0.7317 (3) 0.89674 (17) 0.67875 (10) 0.0172 (3)
H8 0.868 (4) 0.904 (2) 0.7027 (11) 0.021*
B9 0.6915 (3) 0.92010 (17) 0.58946 (9) 0.0174 (3)
H9 0.810 (3) 0.940 (2) 0.5576 (11) 0.021*
B10 0.4473 (3) 0.97497 (17) 0.57793 (10) 0.0191 (3)
H10 0.411 (4) 1.030 (2) 0.5388 (11) 0.023*
C11 0.3333 (2) 0.63954 (14) 0.62898 (7) 0.0133 (3)
B11 0.3386 (3) 0.98580 (16) 0.66084 (10) 0.0178 (3)
H11 0.223 (4) 1.039 (2) 0.6735 (11) 0.021*
F12 0.06277 (15) 0.67898 (9) 0.70430 (5) 0.0194 (2)
C12 0.1573 (2) 0.60768 (14) 0.66176 (8) 0.0142 (3)
B12 0.5930 (3) 1.01793 (17) 0.65039 (10) 0.0185 (3)
H12 0.642 (4) 1.101 (2) 0.6567 (12) 0.022*
F13 −0.09989 (16) 0.48161 (9) 0.68394 (5) 0.0216 (2)
C13 0.0708 (3) 0.50228 (14) 0.65191 (8) 0.0160 (3)
C14 0.1543 (3) 0.41874 (14) 0.61068 (8) 0.0171 (3)
F15 0.4241 (2) 0.37422 (9) 0.53809 (6) 0.0269 (3)
C15 0.3300 (3) 0.44732 (14) 0.57878 (8) 0.0177 (3)
F16 0.58167 (16) 0.57283 (9) 0.55240 (5) 0.0215 (2)
C16 0.4149 (3) 0.55452 (14) 0.58724 (8) 0.0157 (3)
F17 −0.1264 (2) 0.31645 (11) 0.57675 (7) 0.0366 (3)
F18 0.0274 (2) 0.25723 (10) 0.66597 (6) 0.0341 (3)
F19 0.1512 (2) 0.23058 (11) 0.56619 (7) 0.0382 (3)
C141 0.0518 (3) 0.30462 (15) 0.60420 (9) 0.0227 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0121 (6) 0.0145 (7) 0.0115 (6) 0.0011 (5) 0.0001 (5) 0.0002 (5)
C2 0.0142 (6) 0.0147 (7) 0.0143 (6) −0.0005 (6) 0.0025 (6) −0.0028 (5)
B3 0.0150 (7) 0.0177 (8) 0.0125 (7) 0.0003 (6) −0.0021 (6) −0.0009 (6)
B4 0.0119 (7) 0.0192 (8) 0.0145 (7) 0.0015 (7) 0.0001 (6) −0.0002 (6)
B5 0.0157 (7) 0.0186 (8) 0.0128 (7) 0.0018 (7) −0.0001 (6) 0.0017 (6)
B6 0.0141 (8) 0.0162 (8) 0.0164 (8) 0.0034 (6) −0.0007 (6) 0.0001 (6)
B7 0.0176 (8) 0.0184 (8) 0.0158 (7) −0.0029 (7) 0.0014 (6) −0.0030 (6)
B8 0.0139 (8) 0.0199 (8) 0.0179 (8) −0.0027 (7) 0.0001 (6) −0.0021 (7)
B9 0.0153 (8) 0.0201 (8) 0.0167 (8) −0.0007 (7) 0.0025 (6) 0.0010 (6)
B10 0.0204 (8) 0.0186 (8) 0.0183 (8) 0.0024 (7) 0.0002 (7) 0.0040 (6)
C11 0.0138 (6) 0.0152 (7) 0.0111 (6) 0.0004 (6) −0.0010 (5) −0.0009 (5)
B11 0.0175 (8) 0.0150 (7) 0.0208 (8) 0.0016 (7) 0.0012 (7) −0.0014 (7)
F12 0.0153 (4) 0.0195 (5) 0.0234 (5) −0.0007 (4) 0.0064 (4) −0.0067 (4)
C12 0.0150 (7) 0.0159 (7) 0.0116 (6) 0.0012 (6) 0.0001 (5) −0.0020 (5)
B12 0.0171 (8) 0.0171 (8) 0.0213 (8) −0.0013 (7) 0.0020 (7) −0.0011 (7)
F13 0.0180 (5) 0.0231 (5) 0.0239 (5) −0.0056 (4) 0.0047 (4) −0.0001 (4)
C13 0.0164 (7) 0.0178 (7) 0.0137 (6) −0.0014 (6) 0.0002 (6) 0.0007 (5)
C14 0.0230 (8) 0.0152 (7) 0.0131 (6) −0.0013 (6) −0.0033 (6) −0.0001 (5)
F15 0.0349 (6) 0.0197 (5) 0.0262 (5) 0.0019 (5) 0.0096 (5) −0.0102 (4)
C15 0.0244 (8) 0.0156 (7) 0.0130 (6) 0.0021 (6) 0.0018 (6) −0.0028 (5)
F16 0.0204 (5) 0.0231 (5) 0.0211 (5) −0.0007 (4) 0.0087 (4) −0.0055 (4)
C16 0.0167 (7) 0.0169 (7) 0.0137 (6) 0.0007 (6) 0.0025 (6) −0.0005 (5)
F17 0.0359 (7) 0.0292 (6) 0.0447 (7) −0.0129 (5) −0.0165 (6) 0.0038 (6)
F18 0.0577 (9) 0.0216 (5) 0.0229 (5) −0.0110 (6) −0.0015 (6) 0.0062 (4)
F19 0.0506 (8) 0.0214 (6) 0.0425 (7) −0.0066 (6) 0.0098 (7) −0.0142 (5)
C141 0.0311 (10) 0.0181 (8) 0.0188 (7) −0.0056 (7) −0.0030 (7) 0.0000 (6)

Geometric parameters (Å, º)

C1—C2 1.660 (2) B7—B11 1.782 (3)
C1—B3 1.748 (2) B7—B12 1.773 (3)
C1—B4 1.726 (2) B8—H8 1.04 (2)
C1—B5 1.716 (2) B8—B9 1.782 (3)
C1—B6 1.743 (2) B8—B12 1.789 (3)
C1—C11 1.506 (2) B9—H9 1.04 (2)
C2—H2 0.91 (2) B9—B10 1.792 (3)
C2—B3 1.723 (3) B9—B12 1.779 (3)
C2—B6 1.721 (2) B10—H10 1.03 (2)
C2—B7 1.690 (2) B10—B11 1.781 (3)
C2—B11 1.699 (3) B10—B12 1.796 (3)
B3—H3 1.01 (2) C11—C12 1.405 (2)
B3—B4 1.779 (2) C11—C16 1.399 (2)
B3—B7 1.782 (3) B11—H11 1.03 (2)
B3—B8 1.767 (3) B11—B12 1.779 (3)
B4—H4 1.01 (2) F12—C12 1.3394 (18)
B4—B5 1.792 (3) C12—C13 1.378 (2)
B4—B8 1.772 (3) B12—H12 1.03 (2)
B4—B9 1.774 (3) F13—C13 1.338 (2)
B5—H5 1.10 (2) C13—C14 1.386 (2)
B5—B6 1.784 (3) C14—C15 1.386 (3)
B5—B9 1.780 (3) C14—C141 1.510 (2)
B5—B10 1.782 (3) F15—C15 1.3294 (19)
B6—H6 1.06 (2) C15—C16 1.389 (2)
B6—B10 1.769 (3) F16—C16 1.3372 (19)
B6—B11 1.779 (3) F17—C141 1.330 (2)
B7—H7 1.08 (2) F18—C141 1.335 (2)
B7—B8 1.770 (3) F19—C141 1.324 (2)
C2—C1—B3 60.65 (10) B12—B7—B3 108.66 (13)
C2—C1—B4 108.82 (13) B12—B7—H7 131.8 (13)
C2—C1—B5 109.28 (12) B12—B7—B11 60.04 (11)
C2—C1—B6 60.71 (10) B3—B8—B4 60.34 (10)
B4—C1—B3 61.60 (10) B3—B8—B7 60.50 (11)
B4—C1—B6 113.49 (12) B3—B8—H8 118.9 (13)
B5—C1—B3 113.44 (12) B3—B8—B9 108.31 (13)
B5—C1—B4 62.76 (10) B3—B8—B12 108.60 (14)
B5—C1—B6 62.08 (10) B4—B8—H8 121.7 (13)
B6—C1—B3 113.34 (12) B4—B8—B9 59.89 (10)
C11—C1—C2 119.58 (13) B4—B8—B12 107.99 (13)
C11—C1—B3 119.30 (12) B7—B8—B4 108.21 (13)
C11—C1—B4 123.05 (14) B7—B8—H8 120.4 (13)
C11—C1—B5 120.23 (12) B7—B8—B9 107.47 (13)
C11—C1—B6 115.29 (13) B7—B8—B12 59.76 (11)
C1—C2—H2 117.1 (15) B9—B8—H8 124.2 (13)
C1—C2—B3 62.21 (10) B9—B8—B12 59.77 (11)
C1—C2—B6 62.01 (9) B12—B8—H8 123.0 (13)
C1—C2—B7 112.67 (13) B4—B9—B5 60.56 (10)
C1—C2—B11 112.60 (12) B4—B9—B8 59.78 (11)
B3—C2—H2 115.4 (15) B4—B9—H9 118.6 (13)
B6—C2—H2 116.6 (14) B4—B9—B10 108.56 (13)
B6—C2—B3 115.76 (12) B4—B9—B12 108.33 (13)
B7—C2—H2 119.7 (14) B5—B9—B8 108.29 (13)
B7—C2—B3 62.93 (11) B5—B9—H9 121.5 (13)
B7—C2—B6 115.47 (13) B5—B9—B10 59.85 (11)
B7—C2—B11 63.45 (11) B8—B9—H9 119.8 (12)
B11—C2—H2 120.2 (15) B8—B9—B10 108.59 (13)
B11—C2—B3 115.93 (13) B10—B9—H9 124.2 (13)
B11—C2—B6 62.67 (10) B12—B9—B5 108.27 (13)
C1—B3—H3 116.6 (13) B12—B9—B8 60.30 (11)
C1—B3—B4 58.57 (9) B12—B9—H9 123.2 (13)
C1—B3—B7 104.36 (12) B12—B9—B10 60.38 (11)
C1—B3—B8 104.81 (12) B5—B10—B9 59.74 (11)
C2—B3—C1 57.14 (9) B5—B10—H10 121.3 (13)
C2—B3—H3 115.2 (14) B5—B10—B12 107.46 (13)
C2—B3—B4 103.69 (12) B6—B10—B5 60.31 (10)
C2—B3—B7 57.65 (10) B6—B10—B9 107.91 (13)
C2—B3—B8 103.45 (13) B6—B10—H10 120.6 (14)
B4—B3—H3 127.5 (13) B6—B10—B11 60.16 (11)
B4—B3—B7 107.38 (13) B6—B10—B12 107.93 (13)
B7—B3—H3 122.7 (13) B9—B10—H10 122.7 (14)
B8—B3—H3 134.0 (14) B9—B10—B12 59.47 (11)
B8—B3—B4 59.97 (11) B11—B10—B5 107.93 (13)
B8—B3—B7 59.82 (11) B11—B10—B9 107.16 (13)
C1—B4—B3 59.83 (10) B11—B10—H10 122.0 (13)
C1—B4—H4 116.4 (13) B11—B10—B12 59.65 (11)
C1—B4—B5 58.35 (10) B12—B10—H10 122.9 (14)
C1—B4—B8 105.56 (13) C12—C11—C1 124.15 (14)
C1—B4—B9 104.88 (12) C16—C11—C1 121.42 (14)
B3—B4—H4 113.0 (12) C16—C11—C12 114.37 (15)
B3—B4—B5 108.39 (13) C2—B11—B6 59.27 (10)
B5—B4—H4 124.2 (12) C2—B11—B7 58.03 (10)
B8—B4—B3 59.69 (10) C2—B11—B10 104.42 (13)
B8—B4—H4 124.3 (13) C2—B11—H11 119.0 (13)
B8—B4—B5 108.19 (14) C2—B11—B12 103.91 (13)
B8—B4—B9 60.34 (11) B6—B11—B7 108.20 (13)
B9—B4—B3 108.15 (13) B6—B11—B10 59.59 (11)
B9—B4—H4 132.0 (13) B6—B11—H11 116.0 (13)
B9—B4—B5 59.87 (11) B6—B11—B12 108.23 (13)
C1—B5—B4 58.89 (10) B7—B11—H11 122.5 (13)
C1—B5—H5 117.4 (12) B10—B11—B7 108.13 (13)
C1—B5—B6 59.70 (10) B10—B11—H11 125.1 (13)
C1—B5—B9 105.07 (12) B12—B11—B7 59.71 (11)
C1—B5—B10 105.72 (12) B12—B11—B10 60.59 (11)
B4—B5—H5 121.0 (12) B12—B11—H11 129.4 (13)
B6—B5—B4 108.42 (12) F12—C12—C11 121.58 (14)
B6—B5—H5 117.4 (12) F12—C12—C13 116.01 (14)
B9—B5—B4 59.57 (11) C13—C12—C11 122.40 (14)
B9—B5—H5 128.9 (12) B7—B12—B8 59.59 (11)
B9—B5—B6 107.79 (13) B7—B12—B9 107.47 (14)
B9—B5—B10 60.41 (11) B7—B12—B10 107.89 (14)
B10—B5—B4 108.22 (13) B7—B12—B11 60.24 (11)
B10—B5—H5 126.0 (12) B7—B12—H12 120.2 (13)
B10—B5—B6 59.49 (11) B8—B12—B10 108.13 (13)
C1—B6—B5 58.22 (9) B8—B12—H12 122.4 (14)
C1—B6—H6 116.7 (13) B9—B12—B8 59.94 (11)
C1—B6—B10 105.12 (13) B9—B12—B10 60.16 (11)
C1—B6—B11 105.05 (12) B9—B12—H12 124.1 (14)
C2—B6—C1 57.27 (9) B10—B12—H12 122.3 (13)
C2—B6—B5 103.54 (12) B11—B12—B8 107.95 (13)
C2—B6—H6 119.8 (12) B11—B12—B9 107.79 (13)
C2—B6—B10 104.01 (13) B11—B12—B10 59.76 (11)
C2—B6—B11 58.06 (10) B11—B12—H12 119.9 (14)
B5—B6—H6 122.8 (12) C12—C13—C14 122.48 (15)
B10—B6—B5 60.20 (11) F13—C13—C12 117.73 (14)
B10—B6—H6 130.7 (12) F13—C13—C14 119.80 (15)
B10—B6—B11 60.25 (11) C13—C14—C15 116.21 (15)
B11—B6—B5 107.92 (13) C13—C14—C141 118.91 (16)
B11—B6—H6 125.7 (13) C15—C14—C141 124.88 (16)
C2—B7—B3 59.42 (10) C14—C15—C16 121.42 (15)
C2—B7—H7 115.0 (13) F15—C15—C14 121.74 (16)
C2—B7—B8 104.70 (13) F15—C15—C16 116.84 (15)
C2—B7—B11 58.52 (11) C15—C16—C11 123.09 (15)
C2—B7—B12 104.55 (13) F16—C16—C11 121.11 (15)
B3—B7—H7 114.5 (13) F16—C16—C15 115.80 (14)
B3—B7—B11 108.96 (13) F17—C141—C14 111.14 (15)
B8—B7—B3 59.68 (11) F17—C141—F18 107.02 (17)
B8—B7—H7 127.8 (13) F18—C141—C14 110.39 (14)
B8—B7—B11 108.64 (13) F19—C141—C14 112.96 (16)
B8—B7—B12 60.65 (11) F19—C141—F17 107.84 (15)
B11—B7—H7 120.4 (13) F19—C141—F18 107.23 (16)
C1—C2—B3—B4 37.23 (11) B5—B6—B11—C2 −95.07 (13)
C1—C2—B3—B7 139.34 (13) B5—B6—B11—B7 −62.62 (16)
C1—C2—B3—B8 99.11 (12) B5—B6—B11—B10 38.15 (12)
C1—C2—B6—B5 −36.99 (11) B5—B6—B11—B12 0.60 (17)
C1—C2—B6—B10 −99.16 (13) B5—B9—B10—B6 37.70 (12)
C1—C2—B6—B11 −139.86 (13) B5—B9—B10—B11 101.12 (14)
C1—C2—B7—B3 −38.66 (12) B5—B9—B10—B12 138.37 (13)
C1—C2—B7—B8 1.77 (17) B5—B9—B12—B7 63.77 (16)
C1—C2—B7—B11 104.88 (14) B5—B9—B12—B8 101.08 (14)
C1—C2—B7—B12 64.68 (16) B5—B9—B12—B10 −37.22 (12)
C1—C2—B11—B6 38.07 (12) B5—B9—B12—B11 0.22 (17)
C1—C2—B11—B7 −104.99 (14) B5—B10—B11—C2 2.09 (18)
C1—C2—B11—B10 −2.38 (18) B5—B10—B11—B6 −38.21 (13)
C1—C2—B11—B12 −65.08 (16) B5—B10—B11—B7 62.68 (17)
C1—B3—B4—B5 33.61 (12) B5—B10—B11—B12 100.14 (15)
C1—B3—B4—B8 134.37 (13) B5—B10—B12—B7 −63.30 (16)
C1—B3—B4—B9 97.01 (13) B5—B10—B12—B8 −0.31 (17)
C1—B3—B7—C2 34.40 (11) B5—B10—B12—B9 36.98 (12)
C1—B3—B7—B8 −98.99 (13) B5—B10—B12—B11 −100.94 (14)
C1—B3—B7—B11 2.00 (16) B6—C1—C2—B3 −146.76 (13)
C1—B3—B7—B12 −61.82 (16) B6—C1—C2—B7 −107.80 (14)
C1—B3—B8—B4 −39.12 (11) B6—C1—C2—B11 −38.34 (13)
C1—B3—B8—B7 98.22 (13) B6—C1—B3—C2 31.37 (12)
C1—B3—B8—B9 −1.92 (17) B6—C1—B3—B4 −105.08 (14)
C1—B3—B8—B12 61.45 (15) B6—C1—B3—B7 −3.25 (17)
C1—B4—B5—B6 34.71 (12) B6—C1—B3—B8 −65.28 (16)
C1—B4—B5—B9 134.96 (13) B6—C1—B4—B3 104.84 (14)
C1—B4—B5—B10 97.73 (13) B6—C1—B4—B5 −37.07 (13)
C1—B4—B8—B3 39.91 (12) B6—C1—B4—B8 65.00 (15)
C1—B4—B8—B7 1.53 (17) B6—C1—B4—B9 2.23 (16)
C1—B4—B8—B9 −98.53 (13) B6—C1—B5—B4 141.27 (13)
C1—B4—B8—B12 −61.69 (15) B6—C1—B5—B9 102.08 (14)
C1—B4—B9—B5 −38.56 (11) B6—C1—B5—B10 39.17 (12)
C1—B4—B9—B8 99.67 (13) B6—C1—C11—C12 −59.64 (19)
C1—B4—B9—B10 −1.49 (16) B6—C1—C11—C16 117.44 (16)
C1—B4—B9—B12 62.52 (15) B6—C2—B3—C1 −32.51 (13)
C1—B5—B6—C2 36.54 (11) B6—C2—B3—B4 4.73 (18)
C1—B5—B6—B10 135.11 (13) B6—C2—B3—B7 106.83 (15)
C1—B5—B6—B11 96.93 (13) B6—C2—B3—B8 66.60 (15)
C1—B5—B9—B4 38.86 (12) B6—C2—B7—B3 −107.29 (14)
C1—B5—B9—B8 1.55 (17) B6—C2—B7—B8 −66.86 (17)
C1—B5—B9—B10 −99.78 (13) B6—C2—B7—B11 36.25 (13)
C1—B5—B9—B12 −62.32 (16) B6—C2—B7—B12 −3.95 (18)
C1—B5—B10—B6 −39.27 (12) B6—C2—B11—B7 −143.06 (13)
C1—B5—B10—B9 98.67 (13) B6—C2—B11—B10 −40.46 (12)
C1—B5—B10—B11 −1.13 (17) B6—C2—B11—B12 −103.15 (14)
C1—B5—B10—B12 61.81 (16) B6—B5—B9—B4 101.33 (13)
C1—B6—B10—B5 38.42 (11) B6—B5—B9—B8 64.01 (16)
C1—B6—B10—B9 0.97 (16) B6—B5—B9—B10 −37.31 (12)
C1—B6—B10—B11 −98.94 (13) B6—B5—B9—B12 0.15 (17)
C1—B6—B10—B12 −61.87 (16) B6—B5—B10—B9 137.94 (13)
C1—B6—B11—C2 −34.17 (11) B6—B5—B10—B11 38.14 (13)
C1—B6—B11—B7 −1.71 (17) B6—B5—B10—B12 101.08 (14)
C1—B6—B11—B10 99.06 (13) B6—B10—B11—C2 40.29 (12)
C1—B6—B11—B12 61.50 (15) B6—B10—B11—B7 100.88 (14)
C1—C11—C12—F12 −3.8 (2) B6—B10—B11—B12 138.35 (14)
C1—C11—C12—C13 175.70 (15) B6—B10—B12—B7 0.34 (18)
C1—C11—C16—C15 −177.46 (15) B6—B10—B12—B8 63.34 (16)
C1—C11—C16—F16 2.2 (2) B6—B10—B12—B9 100.62 (14)
C2—C1—B3—B4 −136.45 (13) B6—B10—B12—B11 −37.30 (12)
C2—C1—B3—B7 −34.62 (11) B6—B11—B12—B7 −100.86 (14)
C2—C1—B3—B8 −96.65 (13) B6—B11—B12—B8 −63.82 (16)
C2—C1—B4—B3 39.38 (12) B6—B11—B12—B9 −0.51 (17)
C2—C1—B4—B5 −102.53 (13) B6—B11—B12—B10 37.12 (12)
C2—C1—B4—B8 −0.46 (16) B7—C2—B3—C1 −139.34 (13)
C2—C1—B4—B9 −63.23 (14) B7—C2—B3—B4 −102.11 (13)
C2—C1—B5—B4 101.79 (14) B7—C2—B3—B8 −40.23 (12)
C2—C1—B5—B6 −39.48 (12) B7—C2—B6—C1 103.31 (15)
C2—C1—B5—B9 62.60 (15) B7—C2—B6—B5 66.33 (16)
C2—C1—B5—B10 −0.31 (17) B7—C2—B6—B10 4.15 (17)
C2—C1—B6—B5 136.52 (13) B7—C2—B6—B11 −36.54 (14)
C2—C1—B6—B10 97.15 (13) B7—C2—B11—B6 143.06 (13)
C2—C1—B6—B11 34.51 (12) B7—C2—B11—B10 102.61 (14)
C2—C1—C11—C12 9.6 (2) B7—C2—B11—B12 39.91 (12)
C2—C1—C11—C16 −173.29 (14) B7—B3—B4—C1 −96.50 (13)
C2—B3—B4—C1 −36.56 (11) B7—B3—B4—B5 −62.89 (16)
C2—B3—B4—B5 −2.95 (17) B7—B3—B4—B8 37.87 (12)
C2—B3—B4—B8 97.81 (13) B7—B3—B4—B9 0.51 (17)
C2—B3—B4—B9 60.45 (15) B7—B3—B8—B4 −137.34 (13)
C2—B3—B7—B8 −133.39 (13) B7—B3—B8—B9 −100.14 (14)
C2—B3—B7—B11 −32.40 (12) B7—B3—B8—B12 −36.78 (12)
C2—B3—B7—B12 −96.22 (14) B7—B8—B9—B4 −101.31 (14)
C2—B3—B8—B4 −98.20 (12) B7—B8—B9—B5 −63.66 (16)
C2—B3—B8—B7 39.14 (11) B7—B8—B9—B10 −0.21 (18)
C2—B3—B8—B9 −61.01 (15) B7—B8—B9—B12 37.39 (13)
C2—B3—B8—B12 2.36 (15) B7—B8—B12—B9 −137.90 (14)
C2—B6—B10—B5 97.77 (13) B7—B8—B12—B10 −100.52 (14)
C2—B6—B10—B9 60.32 (15) B7—B8—B12—B11 −37.33 (12)
C2—B6—B10—B11 −39.59 (12) B7—B11—B12—B8 37.04 (12)
C2—B6—B10—B12 −2.52 (16) B7—B11—B12—B9 100.35 (14)
C2—B6—B11—B7 32.45 (12) B7—B11—B12—B10 137.98 (14)
C2—B6—B11—B10 133.22 (14) B8—B3—B4—C1 −134.37 (13)
C2—B6—B11—B12 95.67 (14) B8—B3—B4—B5 −100.76 (15)
C2—B7—B8—B3 −40.30 (12) B8—B3—B4—B9 −37.35 (13)
C2—B7—B8—B4 −1.99 (17) B8—B3—B7—C2 133.39 (13)
C2—B7—B8—B9 61.26 (16) B8—B3—B7—B11 100.99 (14)
C2—B7—B8—B12 98.65 (14) B8—B3—B7—B12 37.17 (13)
C2—B7—B11—B6 −32.94 (12) B8—B4—B5—C1 −97.42 (13)
C2—B7—B11—B10 −96.00 (14) B8—B4—B5—B6 −62.71 (16)
C2—B7—B11—B12 −133.85 (13) B8—B4—B5—B9 37.53 (12)
C2—B7—B12—B8 −98.91 (14) B8—B4—B5—B10 0.31 (17)
C2—B7—B12—B9 −61.44 (16) B8—B4—B9—B5 −138.23 (13)
C2—B7—B12—B10 2.03 (17) B8—B4—B9—B10 −101.17 (14)
C2—B7—B12—B11 39.45 (12) B8—B4—B9—B12 −37.15 (13)
C2—B11—B12—B7 −39.07 (12) B8—B7—B11—C2 96.17 (14)
C2—B11—B12—B8 −2.03 (16) B8—B7—B11—B6 63.23 (16)
C2—B11—B12—B9 61.28 (15) B8—B7—B11—B10 0.17 (18)
C2—B11—B12—B10 98.91 (13) B8—B7—B11—B12 −37.68 (12)
B3—C1—C2—B6 146.76 (13) B8—B7—B12—B9 37.47 (13)
B3—C1—C2—B7 38.96 (13) B8—B7—B12—B10 100.94 (14)
B3—C1—C2—B11 108.42 (14) B8—B7—B12—B11 138.36 (13)
B3—C1—B4—B5 −141.90 (13) B8—B9—B10—B5 −100.80 (14)
B3—C1—B4—B8 −39.84 (12) B8—B9—B10—B6 −63.10 (17)
B3—C1—B4—B9 −102.61 (13) B8—B9—B10—B11 0.31 (18)
B3—C1—B5—B4 36.27 (13) B8—B9—B10—B12 37.56 (13)
B3—C1—B5—B6 −105.00 (14) B8—B9—B12—B7 −37.31 (13)
B3—C1—B5—B9 −2.92 (17) B8—B9—B12—B10 −138.30 (14)
B3—C1—B5—B10 −65.83 (16) B8—B9—B12—B11 −100.85 (14)
B3—C1—B6—C2 −31.35 (12) B9—B4—B5—C1 −134.96 (13)
B3—C1—B6—B5 105.17 (14) B9—B4—B5—B6 −100.25 (14)
B3—C1—B6—B10 65.80 (16) B9—B4—B5—B10 −37.23 (12)
B3—C1—B6—B11 3.16 (17) B9—B4—B8—B3 138.43 (13)
B3—C1—C11—C12 80.50 (19) B9—B4—B8—B7 100.05 (14)
B3—C1—C11—C16 −102.42 (17) B9—B4—B8—B12 36.83 (12)
B3—C2—B6—C1 32.57 (13) B9—B5—B6—C1 −97.39 (13)
B3—C2—B6—B5 −4.42 (17) B9—B5—B6—C2 −60.85 (15)
B3—C2—B6—B10 −66.59 (16) B9—B5—B6—B10 37.72 (12)
B3—C2—B6—B11 −107.29 (15) B9—B5—B6—B11 −0.46 (17)
B3—C2—B7—B8 40.43 (12) B9—B5—B10—B6 −137.94 (13)
B3—C2—B7—B11 143.54 (13) B9—B5—B10—B11 −99.80 (14)
B3—C2—B7—B12 103.34 (13) B9—B5—B10—B12 −36.86 (12)
B3—C2—B11—B6 107.02 (14) B9—B8—B12—B7 137.90 (14)
B3—C2—B11—B7 −36.04 (12) B9—B8—B12—B10 37.38 (12)
B3—C2—B11—B10 66.56 (16) B9—B8—B12—B11 100.58 (14)
B3—C2—B11—B12 3.86 (17) B9—B10—B11—C2 −60.88 (16)
B3—B4—B5—C1 −34.20 (12) B9—B10—B11—B6 −101.18 (14)
B3—B4—B5—B6 0.50 (17) B9—B10—B11—B7 −0.30 (18)
B3—B4—B5—B9 100.75 (14) B9—B10—B11—B12 37.17 (13)
B3—B4—B5—B10 63.53 (16) B9—B10—B12—B7 −100.28 (14)
B3—B4—B8—B7 −38.38 (12) B9—B10—B12—B8 −37.29 (12)
B3—B4—B8—B9 −138.43 (13) B9—B10—B12—B11 −137.92 (13)
B3—B4—B8—B12 −101.60 (14) B10—B5—B6—C1 −135.11 (13)
B3—B4—B9—B5 −101.17 (14) B10—B5—B6—C2 −98.57 (13)
B3—B4—B9—B8 37.07 (12) B10—B5—B6—B11 −38.18 (12)
B3—B4—B9—B10 −64.10 (16) B10—B5—B9—B4 138.64 (13)
B3—B4—B9—B12 −0.08 (17) B10—B5—B9—B8 101.33 (14)
B3—B7—B8—B4 38.31 (12) B10—B5—B9—B12 37.46 (12)
B3—B7—B8—B9 101.56 (14) B10—B6—B11—C2 −133.22 (14)
B3—B7—B8—B12 138.95 (13) B10—B6—B11—B7 −100.77 (14)
B3—B7—B11—C2 32.75 (12) B10—B6—B11—B12 −37.56 (13)
B3—B7—B11—B6 −0.19 (17) B10—B9—B12—B7 100.99 (14)
B3—B7—B11—B10 −63.25 (17) B10—B9—B12—B8 138.30 (14)
B3—B7—B11—B12 −101.10 (14) B10—B9—B12—B11 37.45 (12)
B3—B7—B12—B8 −36.76 (13) B10—B11—B12—B7 −137.98 (14)
B3—B7—B12—B9 0.71 (18) B10—B11—B12—B8 −100.94 (14)
B3—B7—B12—B10 64.18 (17) B10—B11—B12—B9 −37.62 (12)
B3—B7—B12—B11 101.60 (14) C11—C1—C2—B3 109.06 (15)
B3—B8—B9—B4 −37.40 (12) C11—C1—C2—B6 −104.18 (15)
B3—B8—B9—B5 0.26 (18) C11—C1—C2—B7 148.02 (14)
B3—B8—B9—B10 63.71 (17) C11—C1—C2—B11 −142.52 (14)
B3—B8—B9—B12 101.31 (15) C11—C1—B3—C2 −109.50 (15)
B3—B8—B12—B7 37.09 (12) C11—C1—B3—B4 114.05 (16)
B3—B8—B12—B9 −100.81 (14) C11—C1—B3—B7 −144.12 (14)
B3—B8—B12—B10 −63.42 (16) C11—C1—B3—B8 153.86 (14)
B3—B8—B12—B11 −0.23 (17) C11—C1—B4—B3 −108.18 (15)
B4—C1—C2—B3 −39.81 (12) C11—C1—B4—B5 109.92 (15)
B4—C1—C2—B6 106.95 (13) C11—C1—B4—B8 −148.02 (14)
B4—C1—C2—B7 −0.85 (17) C11—C1—B4—B9 149.21 (13)
B4—C1—C2—B11 68.61 (16) C11—C1—B5—B4 −114.20 (16)
B4—C1—B3—C2 136.45 (13) C11—C1—B5—B6 104.53 (15)
B4—C1—B3—B7 101.83 (14) C11—C1—B5—B9 −153.40 (14)
B4—C1—B3—B8 39.80 (12) C11—C1—B5—B10 143.70 (14)
B4—C1—B5—B6 −141.27 (13) C11—C1—B6—C2 111.15 (14)
B4—C1—B5—B9 −39.19 (12) C11—C1—B6—B5 −112.33 (14)
B4—C1—B5—B10 −102.10 (14) C11—C1—B6—B10 −151.70 (13)
B4—C1—B6—C2 −99.18 (14) C11—C1—B6—B11 145.66 (13)
B4—C1—B6—B5 37.34 (13) C11—C12—C13—F13 −178.03 (14)
B4—C1—B6—B10 −2.04 (17) C11—C12—C13—C14 2.1 (2)
B4—C1—B6—B11 −64.68 (16) B11—C2—B3—C1 −103.11 (14)
B4—C1—C11—C12 153.91 (15) B11—C2—B3—B4 −65.87 (16)
B4—C1—C11—C16 −29.0 (2) B11—C2—B3—B7 36.23 (13)
B4—B3—B7—C2 95.46 (13) B11—C2—B3—B8 −4.00 (16)
B4—B3—B7—B8 −37.93 (12) B11—C2—B6—C1 139.86 (13)
B4—B3—B7—B11 63.06 (16) B11—C2—B6—B5 102.87 (14)
B4—B3—B7—B12 −0.76 (17) B11—C2—B6—B10 40.70 (12)
B4—B3—B8—B7 137.34 (13) B11—C2—B7—B3 −143.54 (13)
B4—B3—B8—B9 37.20 (12) B11—C2—B7—B8 −103.11 (14)
B4—B3—B8—B12 100.56 (14) B11—C2—B7—B12 −40.20 (13)
B4—B5—B6—C1 −34.37 (12) B11—B6—B10—B5 137.36 (13)
B4—B5—B6—C2 2.17 (16) B11—B6—B10—B9 99.91 (14)
B4—B5—B6—B10 100.74 (14) B11—B6—B10—B12 37.08 (13)
B4—B5—B6—B11 62.56 (16) B11—B7—B8—B3 −101.53 (14)
B4—B5—B9—B8 −37.31 (13) B11—B7—B8—B4 −63.22 (17)
B4—B5—B9—B10 −138.64 (13) B11—B7—B8—B9 0.02 (17)
B4—B5—B9—B12 −101.18 (14) B11—B7—B8—B12 37.41 (13)
B4—B5—B10—B6 −101.08 (13) B11—B7—B12—B8 −138.36 (13)
B4—B5—B10—B9 36.86 (12) B11—B7—B12—B9 −100.89 (14)
B4—B5—B10—B11 −62.94 (17) B11—B7—B12—B10 −37.42 (13)
B4—B5—B10—B12 0.00 (17) B11—B10—B12—B7 37.64 (13)
B4—B8—B9—B5 37.66 (13) B11—B10—B12—B8 100.63 (14)
B4—B8—B9—B10 101.10 (14) B11—B10—B12—B9 137.92 (13)
B4—B8—B9—B12 138.70 (14) F12—C12—C13—F13 1.5 (2)
B4—B8—B12—B7 101.01 (14) F12—C12—C13—C14 −178.38 (14)
B4—B8—B12—B9 −36.89 (12) C12—C11—C16—C15 −0.1 (2)
B4—B8—B12—B10 0.50 (17) C12—C11—C16—F16 179.54 (14)
B4—B8—B12—B11 63.69 (16) C12—C13—C14—C15 −0.8 (2)
B4—B9—B10—B5 −37.37 (12) C12—C13—C14—C141 178.50 (15)
B4—B9—B10—B6 0.33 (17) B12—B7—B8—B3 −138.95 (13)
B4—B9—B10—B11 63.74 (17) B12—B7—B8—B4 −100.64 (14)
B4—B9—B10—B12 100.99 (14) B12—B7—B8—B9 −37.39 (13)
B4—B9—B12—B7 −0.39 (18) B12—B7—B11—C2 133.85 (13)
B4—B9—B12—B8 36.92 (12) B12—B7—B11—B6 100.91 (14)
B4—B9—B12—B10 −101.38 (14) B12—B7—B11—B10 37.85 (13)
B4—B9—B12—B11 −63.93 (16) B12—B8—B9—B4 −138.70 (14)
B5—C1—C2—B3 −106.66 (13) B12—B8—B9—B5 −101.05 (14)
B5—C1—C2—B6 40.10 (12) B12—B8—B9—B10 −37.60 (13)
B5—C1—C2—B7 −67.70 (16) B12—B9—B10—B5 −138.37 (13)
B5—C1—C2—B11 1.76 (17) B12—B9—B10—B6 −100.67 (14)
B5—C1—B3—C2 99.73 (14) B12—B9—B10—B11 −37.25 (13)
B5—C1—B3—B4 −36.72 (13) B12—B10—B11—C2 −98.05 (14)
B5—C1—B3—B7 65.11 (16) B12—B10—B11—B6 −138.35 (14)
B5—C1—B3—B8 3.09 (17) B12—B10—B11—B7 −37.46 (13)
B5—C1—B4—B3 141.90 (13) F13—C13—C14—C15 179.35 (14)
B5—C1—B4—B8 102.07 (14) F13—C13—C14—C141 −1.4 (2)
B5—C1—B4—B9 39.29 (12) C13—C14—C15—F15 179.88 (15)
B5—C1—B6—C2 −136.52 (13) C13—C14—C15—C16 −0.9 (2)
B5—C1—B6—B10 −39.37 (12) C13—C14—C141—F17 61.8 (2)
B5—C1—B6—B11 −102.01 (13) C13—C14—C141—F18 −56.8 (2)
B5—C1—C11—C12 −130.74 (16) C13—C14—C141—F19 −176.85 (15)
B5—C1—C11—C16 46.3 (2) C14—C15—C16—C11 1.4 (3)
B5—B4—B8—B3 101.10 (14) C14—C15—C16—F16 −178.31 (15)
B5—B4—B8—B7 62.72 (16) F15—C15—C16—C11 −179.38 (15)
B5—B4—B8—B9 −37.33 (12) F15—C15—C16—F16 1.0 (2)
B5—B4—B8—B12 −0.50 (17) C15—C14—C141—F17 −119.01 (19)
B5—B4—B9—B8 138.23 (13) C15—C14—C141—F18 122.40 (19)
B5—B4—B9—B10 37.07 (12) C15—C14—C141—F19 2.4 (2)
B5—B4—B9—B12 101.08 (14) C16—C11—C12—F12 178.93 (14)
B5—B6—B10—B9 −37.45 (12) C16—C11—C12—C13 −1.6 (2)
B5—B6—B10—B11 −137.36 (13) C141—C14—C15—F15 0.7 (3)
B5—B6—B10—B12 −100.28 (14) C141—C14—C15—C16 179.88 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···F12 0.91 (2) 2.11 (2) 2.7436 (19) 126 (2)

Funding Statement

This work was funded by Engineering and Physical Sciences Research Council grant .

References

  1. Benton, A., Copeland, Z., Mansell, S. M., Rosair, G. M. & Welch, A. J. (2018). Molecules, 23, 3099. [DOI] [PMC free article] [PubMed]
  2. Brain, P. T., Cowie, J., Donohoe, D. J., Hnyk, D., Rankin, D. W. H., Reed, D., Reid, B. D., Robertson, H. E., Welch, A. J., Hofmann, M. & Schleyer, P. von R. (1996). Inorg. Chem. 35, 1706–1708. [DOI] [PubMed]
  3. Clegg, W. (2016). Private Communication (refcode CCDC 1505580). CCDC, Cambridge, England.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Grimes, R. N. (2016). Carboranes, 3rd ed. Amsterdam: Elsevier.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Lee, Y. H., Lee, H. D., Ryu, J. Y., Lee, J. & Lee, M. H. (2017). J. Organomet. Chem. 846, 81–87.
  8. Marsh, A. V., Cheetham, N. J., Little, M., Dyson, M., White, A. J. P., Beavis, P., Warriner, C. N., Swain, A. C., Stavrinou, P. N. & Heeney, M. (2018). Angew. Chem. Int. Ed. 57, 10640–10645. [DOI] [PMC free article] [PubMed]
  9. McAnaw, A., Lopez, M. E., Ellis, D., Rosair, G. M. & Welch, A. J. (2014). Dalton Trans. 43, 5095–5105. [DOI] [PubMed]
  10. McAnaw, A., Scott, G., Elrick, L., Rosair, G. M. & Welch, A. J. (2013). Dalton Trans. 42, 645–664. [DOI] [PubMed]
  11. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  12. Rigaku OD (2018). CrysAlis PRO. Rigaku Corporation, Oxford, England.
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Thomas, Rh. Ll., Rosair, G. M. & Welch, A. J. (1996). Acta Cryst. C52, 1024–1026.
  16. Tricas, H., Colon, M., Ellis, D., Macgregor, S. A., McKay, D., Rosair, G. M., Welch, A. J., Glukhov, I. V., Rossi, F., Laschi, F. & Zanello, P. (2011). Dalton Trans. 40, 4200–4211. [DOI] [PubMed]
  17. Tu, D., Leong, P., Guo, S., Yan, H., Lu, C. & Zhao, Q. (2017). Angew. Chem. Int. Ed. 56, 11370–11374. [DOI] [PubMed]
  18. Van Nghia, N., Oh, J., Sujith, S., Jung, J. & Lee, M. H. (2018). Dalton Trans. 47, 17441–17449. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019004067/lh5894sup1.cif

e-75-00512-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019004067/lh5894Isup2.hkl

e-75-00512-Isup2.hkl (446.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019004067/lh5894Isup3.mol

CCDC reference: 1905663

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES