The dihedral angle between the 4-fluorophenyl ring and the 4-chlorophenyl ring is 56.13 (13)°. In the crystal, molecules are linked by C—H⋯Cl hydrogen bonds stacking in a column along the a axis. The crystal packing is further stabilized by face-to-face π–π stacking interactions between the centres of the similar aromatic rings of the adjacent molecules.
Keywords: crystal structure, 4-chlorophenyl, 4-fluorophenyl, face-to-face π-π stacking interaction, Hirshfeld surface analysis
Abstract
In the title compound, C14H8Cl3FN2, the planes of the 4-fluorophenyl ring and the 4-chlorophenyl ring make a dihedral angle of 56.13 (13)°. In the crystal, molecules are stacked in a column along the a axis via a weak C—H⋯Cl hydrogen bond and face-to-face π–π stacking interactions [centroid–centroid distances = 3.8615 (18) and 3.8619 (18) Å]. The crystal packing is further stabilized by short Cl⋯Cl contacts. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from Cl⋯H/H⋯Cl (31.2%), H⋯H (14.8%), C⋯H/H⋯C (14.0%), F⋯H/H⋯F (12.8%), C⋯C (9.0%) and Cl⋯Cl (6.7%) interactions.
Chemical context
Azo compounds provide ubiquitous motifs in synthetic chemistry and are widely used as organic dyes, indicators, molecular switches, pigments, ligands, food additives, radical reaction initiators, therapeutic agents etc. (Gurbanov et al., 2017 ▸; Maharramov et al., 2018 ▸; Mahmudov et al., 2019 ▸). Azo dyes are also convenient model compounds to study both E/Z isomerization and noncovalent interactions (Mahmudov et al., 2015 ▸; Shixaliyev et al., 2018 ▸). Thus, decorating the structure of dyes with tailored functionalities (noncovalent bond donor centres) can be a pivotal strategy for controlling and tuning their functional properties (Mahmudov et al., 2017 ▸; Zubkov et al., 2018 ▸). Herein we report the molecular structure and noncovalent interactions in the title compound.
Structural commentary
The molecular conformation of the title compound is not planar (Fig. 1 ▸); the planes of the 4-fluorophenyl ring and the 4-chlorophenyl ring form a dihedral angle of 56.13 (13)°. The C4—C3—C1—N1, C8—C3—C1—C2, C3—C1—C2—Cl1, C3—C1—C2—Cl2, N1—C1—C2—Cl1, N1—C1—C2—Cl2, C1—N1—N2—C9 and N1—N2—C9—C14 torsion angles are 48.4 (4), 49.2 (4), −1.9 (4), 177.94 (19), 177.14 (18), −3.0 (3), 179.2 (2) and 175.9 (2)°, respectively.
Figure 1.
The molecular structure of the title compound, with the atom-labelling scheme and 50% probability displacement ellipsoids.
Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by a weak C—H⋯Cl hydrogen bond (Table 1 ▸), forming a column along the a axis (Figs. 2 ▸ and 3 ▸). The column is further stabilized by face-to-face π–π stacking interactions; the centroid–centroid distances between the adjacent C3–C8 rings and between the adjacent C9–C14 rings are 3.8615 (18) and 3.8619 (18) Å, respectively. Moreover, the columns are linked by intermolecular Cl⋯Cl short contacts, with distances of 3.3756 (11) and 3.3841 (11) Å (Table 2 ▸), forming a layer parallel to the bc plane (Fig. 2 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C8—H8⋯Cl1i | 0.95 | 2.81 | 3.634 (3) | 146 |
Symmetry code: (i)
.
Figure 2.
A packing diagram of the title compound, viewed along the a axis, showing the C—H⋯Cl interactions (dashed lines).
Figure 3.
A packing diagram of the title compound, viewed along the b axis, showing the C—H⋯Cl interactions (dashed lines).
Table 2. Summary of short interatomic contacts (Å) in the title compound.
| Contact | Distance | Symmetry operation |
|---|---|---|
| H4⋯N2 | 2.67 | 1 + x, y, z |
| Cl1⋯Cl3 | 3.3756 (11) | −x, − + y, − z
|
| Cl1⋯Cl3 | 3.3841 (11) | 1 − x, − + y, − z
|
| Cl2⋯H14 | 3.03 | 1 + x, − y, − + z
|
| H11⋯F1 | 2.81 |
x, − y, − + z
|
| H7⋯F1 | 2.67 | 1 − x, −y, 1 − z |
| F1⋯H11 | 2.84 | 1 + x, − y, + z
|
Hirshfeld surfaces and fingerprint plots were generated for the title compound using CrystalExplorer (McKinnon et al., 2007 ▸). The Hirshfeld surface mapped over d norm using a standard surface resolution with a fixed colour scale of −0.0941 (red) to 1.4174 a.u. (blue) is shown in Fig. 4 ▸. This plot was generated to quantify and visualize the intermolecular interactions and to explain the observed crystal packing. The dark-red spots on the d norm surface arise as a result of the C—H⋯Cl interaction and short interatomic contacts (Tables 1 ▸ and 2 ▸), while the other weaker intermolecular interactions appear as light-red spots. The shape index of the Hirshfeld surface is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 ▸ clearly suggests that there are π–π interactions in the title compound.
Figure 4.

View of the Hirshfeld surface of the title compound plotted over d norm in the range from −0.0941 to 1.4174 a.u.
Figure 5.

View of the Hirshfeld surface of the title compound plotted over shape index.
The percentage contributions of the various contacts to the total Hirshfeld surface are shown in the 2D fingerprint plots in Fig. 6 ▸. The reciprocal Cl⋯H/H⋯Cl interactions appear as two symmetrical broad wings with d e + d i ≃ 2.7 Å and contribute 31.2% to the Hirshfeld surface (Fig. 6 ▸ b). The H⋯H interactions appear in the middle of the scattered points in the 2D fingerprint plots, with an overall contribution to the Hirshfeld surface of 14.8% (Fig. 6 ▸ c). The C⋯H/H⋯C interactions, with a 14.0% contribution, are present as bump symmetrical spikes at diagonal axes (Fig. 6 ▸ d). The F⋯H/H⋯F interactions, with a 12.8% contribution, are present as sharp symmetrical spikes at diagonal axes d e + d i ≃ 2.55 Å (Fig. 6 ▸ e). The C⋯C interactions appear in the middle of the scattered points in the 2D fingerprint plots with an overall contribution to the Hirshfeld surface of 9.0% (Fig. 6 ▸ f). The small percentage contributions from the other different interatomic contacts to the Hirshfeld surfaces are as follows: Cl⋯Cl (6.7%) (Fig. 6 ▸ g), N⋯H/H⋯N (3.4%) (Fig. 6 ▸ h), Cl⋯C/C⋯Cl (3.1%) (Fig. 6 ▸ i), N⋯C/C⋯N (2.8%), N⋯N (1.0%), Cl⋯N/N⋯Cl (0.8%), F⋯F (0.4%) and F⋯C/C⋯F (0.1%). Hirshfeld surface representations with the function d norm plotted onto the surface for Cl⋯H/H⋯Cl, H⋯H, C⋯H/H⋯C, F⋯H/H⋯F, C⋯C, Cl⋯Cl, N⋯H/H⋯N and Cl⋯C/C⋯Cl interactions are shown in Fig. 7 ▸. The large number of Cl⋯H/H⋯Cl, H⋯H, C⋯H/H⋯C, F⋯H/H⋯F and C⋯C interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015 ▸).
Figure 6.

The full 2D fingerprint plots for the title compound, showing (a) all interactions, and those delineated into (b) Cl⋯H/H⋯Cl, (c) H⋯H, (d) C⋯H/H⋯C, (e) F⋯H/H⋯F, (f) C⋯C, (g) Cl⋯Cl, (h) N⋯H/H⋯N and (i) Cl⋯C/C⋯Cl interactions. The d i and d e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface contacts.
Figure 7.

Hirshfeld surface representations with the function d norm plotted onto the surface for (a) all interactions, (b) Cl⋯H/H⋯Cl, (c) H⋯H, (d) C⋯H/H⋯C, (e) F⋯H/H⋯F, (f) C⋯C, (g) Cl⋯Cl, (h) N⋯H/H⋯N and (i) Cl⋯C/C⋯Cl interactions.
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, November 2018; Groom et al., 2016 ▸) for structures having an (E)-1-(2,2-dichloro-1-phenylvinyl)-2-phenyldiazene unit gave 18 hits. Three compounds closely resemble the title compound, viz. 1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene (CSD refcode XIZREG; Atioğlu et al., 2019 ▸), 1,1′-[methylenebis(4,1-phenylene)]bis[(2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (LEQXIR; Shixaliyev et al., 2018 ▸) and 1,1′-[methylenebis(4,1-phenylene)]bis{[2,2-dichloro-1-(4-chlorophenyl)ethenyl]diazene} (LEQXOX; Shixaliyev et al., 2018 ▸). In XIZREG (Atioğlu et al., 2019 ▸), molecules are linked by a C—H⋯O hydrogen bond into a zigzag chain running along the c axis. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π interactions. In the crystal of LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and Cl⋯O contacts were found, and in LEQXOX, C—H⋯N and Cl⋯Cl contacts were observed.
Synthesis and crystallization
This dye was synthesized according to a reported method (Shixaliyev et al., 2018 ▸). A 20 ml screw-necked vial was charged with dimethyl sulfoxide (10 ml), (E)-1-(4-chlorophenyl)-2-(4-fluorobenzylidene)hydrazine (248 mg, 1 mmol), tetramethylethylenediamine (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv.). After 1–3 h (until thin-layer chromatography analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a ∼0.01 M solution of HCl (100 ml, ∼pH = 2–3) and extracted with dichloromethane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo with a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and dichloromethane (3:1–1:1 v/v).
Red solid (yield 46%); m.p. 340–338 K. Analysis calculated (%) for C14H8Cl3FN2: C 51.02, H 2.45, N 8.50; found: C 49.95, H 2.43, N 8.47. 1H NMR (300 MHz, CDCl3): δ 7.15-7.17 (m, 4H), 7.42–7.45 (d, 2H, J = 9.21 Hz), 7.73–7.75 (d, 2H, J = 6.04 Hz). 13C NMR (75 MHz, CDCl3): δ 115.29, 115.58, 124.49, 127.46, 129.37, 130.43, 131.88, 131.99, 137.73, 151.13. ESI-MS: m/z: 330.44 [M + H]+.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. C-bound H atoms were constrained to an ideal geometry, with C—H = 0.95 Å and U
iso(H) = 1.2U
eq(C). Nine outliers (
,2,12;
,1,12;
,18,11; 2,21,1;
,3,12;
,19,10; 0,13,17;
,4,10; 2,20,0) were omitted in the final cycles of refinement.
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | C14H8Cl3FN2 |
| M r | 329.57 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 100 |
| a, b, c (Å) | 3.8617 (8), 24.249 (5), 14.724 (3) |
| β (°) | 94.30 (3) |
| V (Å3) | 1374.9 (5) |
| Z | 4 |
| Radiation type | Synchrotron, λ = 0.80246 Å |
| μ (mm−1) | 0.93 |
| Crystal size (mm) | 0.20 × 0.10 × 0.02 |
| Data collection | |
| Diffractometer | Rayonix SX165 CCD |
| Absorption correction | Multi-scan (SCALA; Evans, 2006 ▸) |
| T min, T max | 0.840, 0.970 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 20761, 2984, 2719 |
| R int | 0.115 |
| (sin θ/λ)max (Å−1) | 0.640 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.053, 0.142, 1.05 |
| No. of reflections | 2984 |
| No. of parameters | 182 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.59, −0.72 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019003657/is5510sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003657/is5510Isup2.hkl
CCDC reference: 1882554
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C14H8Cl3FN2 | F(000) = 664 |
| Mr = 329.57 | Dx = 1.592 Mg m−3 |
| Monoclinic, P21/c | Synchrotron radiation, λ = 0.80246 Å |
| a = 3.8617 (8) Å | Cell parameters from 600 reflections |
| b = 24.249 (5) Å | θ = 3.3–30.0° |
| c = 14.724 (3) Å | µ = 0.93 mm−1 |
| β = 94.30 (3)° | T = 100 K |
| V = 1374.9 (5) Å3 | Plate, orange |
| Z = 4 | 0.20 × 0.10 × 0.02 mm |
Data collection
| Rayonix SX165 CCD diffractometer | 2719 reflections with I > 2σ(I) |
| /f scan | Rint = 0.115 |
| Absorption correction: multi-scan (Scala; Evans, 2006) | θmax = 30.9°, θmin = 3.3° |
| Tmin = 0.840, Tmax = 0.970 | h = −4→4 |
| 20761 measured reflections | k = −30→31 |
| 2984 independent reflections | l = −18→18 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
| wR(F2) = 0.142 | w = 1/[σ2(Fo2) + (0.0557P)2 + 1.092P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.05 | (Δ/σ)max = 0.001 |
| 2984 reflections | Δρmax = 0.59 e Å−3 |
| 182 parameters | Δρmin = −0.72 e Å−3 |
| 0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: difference Fourier map | Extinction coefficient: 0.026 (3) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.68912 (17) | 0.12097 (2) | 0.17209 (4) | 0.0265 (2) | |
| Cl2 | 0.48467 (18) | 0.22728 (2) | 0.10431 (4) | 0.0283 (2) | |
| Cl3 | −0.18247 (18) | 0.50802 (2) | 0.35787 (5) | 0.0318 (2) | |
| F1 | 0.5868 (5) | 0.06509 (7) | 0.58998 (10) | 0.0386 (4) | |
| N1 | 0.3562 (6) | 0.25699 (8) | 0.28387 (14) | 0.0246 (5) | |
| N2 | 0.2435 (6) | 0.27366 (8) | 0.35685 (14) | 0.0230 (4) | |
| C1 | 0.4622 (7) | 0.20110 (9) | 0.28183 (16) | 0.0225 (5) | |
| C2 | 0.5361 (7) | 0.18506 (9) | 0.19760 (16) | 0.0237 (5) | |
| C3 | 0.4936 (7) | 0.16469 (9) | 0.36354 (16) | 0.0232 (5) | |
| C4 | 0.6716 (7) | 0.18329 (10) | 0.44378 (16) | 0.0249 (5) | |
| H4 | 0.7714 | 0.2191 | 0.4459 | 0.030* | |
| C5 | 0.7036 (7) | 0.14978 (10) | 0.52038 (16) | 0.0283 (6) | |
| H5 | 0.8242 | 0.1622 | 0.5752 | 0.034* | |
| C6 | 0.5558 (8) | 0.09804 (10) | 0.51483 (17) | 0.0287 (6) | |
| C7 | 0.3803 (7) | 0.07791 (10) | 0.43694 (17) | 0.0280 (5) | |
| H7 | 0.2840 | 0.0418 | 0.4352 | 0.034* | |
| C8 | 0.3485 (7) | 0.11196 (10) | 0.36103 (17) | 0.0243 (5) | |
| H8 | 0.2264 | 0.0992 | 0.3067 | 0.029* | |
| C9 | 0.1482 (7) | 0.33066 (9) | 0.35229 (16) | 0.0225 (5) | |
| C10 | 0.1990 (7) | 0.36475 (10) | 0.27784 (16) | 0.0251 (5) | |
| H10 | 0.3012 | 0.3504 | 0.2261 | 0.030* | |
| C11 | 0.1000 (7) | 0.41943 (10) | 0.27997 (16) | 0.0257 (5) | |
| H11 | 0.1332 | 0.4430 | 0.2298 | 0.031* | |
| C12 | −0.0490 (7) | 0.43956 (10) | 0.35640 (17) | 0.0246 (5) | |
| C13 | −0.0997 (7) | 0.40658 (10) | 0.43064 (17) | 0.0255 (5) | |
| H13 | −0.2002 | 0.4212 | 0.4824 | 0.031* | |
| C14 | −0.0012 (7) | 0.35157 (10) | 0.42818 (16) | 0.0248 (5) | |
| H14 | −0.0358 | 0.3282 | 0.4784 | 0.030* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0363 (4) | 0.0157 (3) | 0.0273 (3) | 0.0018 (2) | 0.0006 (2) | −0.0038 (2) |
| Cl2 | 0.0408 (4) | 0.0196 (3) | 0.0243 (3) | 0.0022 (2) | 0.0017 (2) | 0.0020 (2) |
| Cl3 | 0.0384 (4) | 0.0125 (3) | 0.0442 (4) | 0.0020 (2) | 0.0011 (3) | 0.0002 (2) |
| F1 | 0.0622 (12) | 0.0241 (8) | 0.0290 (8) | 0.0040 (8) | −0.0004 (7) | 0.0087 (6) |
| N1 | 0.0333 (12) | 0.0135 (9) | 0.0266 (10) | −0.0008 (8) | 0.0000 (8) | −0.0019 (7) |
| N2 | 0.0292 (11) | 0.0128 (9) | 0.0269 (10) | 0.0004 (8) | 0.0008 (8) | −0.0015 (7) |
| C1 | 0.0273 (13) | 0.0123 (10) | 0.0272 (11) | −0.0027 (9) | −0.0017 (9) | −0.0010 (8) |
| C2 | 0.0286 (13) | 0.0146 (10) | 0.0272 (11) | −0.0032 (9) | −0.0019 (9) | −0.0014 (8) |
| C3 | 0.0301 (13) | 0.0143 (11) | 0.0253 (11) | 0.0017 (9) | 0.0013 (9) | −0.0013 (8) |
| C4 | 0.0316 (14) | 0.0149 (11) | 0.0279 (11) | 0.0016 (9) | 0.0007 (10) | −0.0005 (9) |
| C5 | 0.0361 (15) | 0.0214 (12) | 0.0267 (11) | 0.0039 (10) | −0.0023 (10) | −0.0023 (9) |
| C6 | 0.0407 (15) | 0.0175 (11) | 0.0280 (11) | 0.0064 (10) | 0.0037 (10) | 0.0060 (9) |
| C7 | 0.0376 (15) | 0.0143 (11) | 0.0321 (12) | 0.0007 (10) | 0.0037 (10) | 0.0016 (9) |
| C8 | 0.0291 (13) | 0.0153 (11) | 0.0285 (11) | 0.0000 (9) | 0.0013 (10) | −0.0017 (9) |
| C9 | 0.0288 (13) | 0.0112 (10) | 0.0269 (11) | 0.0003 (9) | −0.0025 (9) | −0.0011 (8) |
| C10 | 0.0315 (14) | 0.0176 (11) | 0.0259 (11) | −0.0001 (9) | −0.0004 (9) | 0.0001 (9) |
| C11 | 0.0332 (14) | 0.0157 (11) | 0.0277 (11) | −0.0010 (9) | −0.0020 (10) | 0.0022 (9) |
| C12 | 0.0286 (13) | 0.0132 (11) | 0.0312 (12) | −0.0020 (9) | −0.0037 (10) | −0.0005 (9) |
| C13 | 0.0302 (13) | 0.0165 (11) | 0.0292 (11) | −0.0012 (9) | −0.0009 (9) | −0.0037 (9) |
| C14 | 0.0319 (14) | 0.0175 (11) | 0.0243 (11) | −0.0007 (9) | −0.0019 (9) | 0.0013 (9) |
Geometric parameters (Å, º)
| Cl1—C2 | 1.714 (2) | C6—C7 | 1.377 (4) |
| Cl2—C2 | 1.713 (2) | C7—C8 | 1.388 (3) |
| Cl3—C12 | 1.739 (2) | C7—H7 | 0.9500 |
| F1—C6 | 1.363 (3) | C8—H8 | 0.9500 |
| N1—N2 | 1.256 (3) | C9—C14 | 1.391 (3) |
| N1—C1 | 1.417 (3) | C9—C10 | 1.399 (3) |
| N2—C9 | 1.431 (3) | C10—C11 | 1.381 (3) |
| C1—C2 | 1.351 (3) | C10—H10 | 0.9500 |
| C1—C3 | 1.490 (3) | C11—C12 | 1.390 (4) |
| C3—C8 | 1.395 (3) | C11—H11 | 0.9500 |
| C3—C4 | 1.396 (3) | C12—C13 | 1.380 (3) |
| C4—C5 | 1.388 (3) | C13—C14 | 1.389 (3) |
| C4—H4 | 0.9500 | C13—H13 | 0.9500 |
| C5—C6 | 1.378 (4) | C14—H14 | 0.9500 |
| C5—H5 | 0.9500 | ||
| N2—N1—C1 | 116.43 (19) | C8—C7—H7 | 121.0 |
| N1—N2—C9 | 112.0 (2) | C7—C8—C3 | 120.9 (2) |
| C2—C1—N1 | 112.1 (2) | C7—C8—H8 | 119.6 |
| C2—C1—C3 | 124.1 (2) | C3—C8—H8 | 119.6 |
| N1—C1—C3 | 123.8 (2) | C14—C9—C10 | 120.4 (2) |
| C1—C2—Cl2 | 122.99 (19) | C14—C9—N2 | 115.8 (2) |
| C1—C2—Cl1 | 124.22 (18) | C10—C9—N2 | 123.9 (2) |
| Cl2—C2—Cl1 | 112.79 (14) | C11—C10—C9 | 119.6 (2) |
| C8—C3—C4 | 119.3 (2) | C11—C10—H10 | 120.2 |
| C8—C3—C1 | 120.9 (2) | C9—C10—H10 | 120.2 |
| C4—C3—C1 | 119.8 (2) | C10—C11—C12 | 119.2 (2) |
| C5—C4—C3 | 120.4 (2) | C10—C11—H11 | 120.4 |
| C5—C4—H4 | 119.8 | C12—C11—H11 | 120.4 |
| C3—C4—H4 | 119.8 | C13—C12—C11 | 122.0 (2) |
| C6—C5—C4 | 118.3 (2) | C13—C12—Cl3 | 118.9 (2) |
| C6—C5—H5 | 120.9 | C11—C12—Cl3 | 119.10 (18) |
| C4—C5—H5 | 120.9 | C12—C13—C14 | 118.7 (2) |
| F1—C6—C7 | 118.4 (2) | C12—C13—H13 | 120.6 |
| F1—C6—C5 | 118.3 (2) | C14—C13—H13 | 120.6 |
| C7—C6—C5 | 123.2 (2) | C13—C14—C9 | 120.1 (2) |
| C6—C7—C8 | 117.9 (2) | C13—C14—H14 | 119.9 |
| C6—C7—H7 | 121.0 | C9—C14—H14 | 119.9 |
| C1—N1—N2—C9 | 179.2 (2) | C5—C6—C7—C8 | −0.8 (4) |
| N2—N1—C1—C2 | 171.9 (2) | C6—C7—C8—C3 | 0.7 (4) |
| N2—N1—C1—C3 | −9.0 (4) | C4—C3—C8—C7 | −0.3 (4) |
| N1—C1—C2—Cl2 | −3.0 (3) | C1—C3—C8—C7 | 179.5 (2) |
| C3—C1—C2—Cl2 | 177.94 (19) | N1—N2—C9—C14 | 175.9 (2) |
| N1—C1—C2—Cl1 | 177.14 (18) | N1—N2—C9—C10 | −4.5 (4) |
| C3—C1—C2—Cl1 | −1.9 (4) | C14—C9—C10—C11 | 0.0 (4) |
| C2—C1—C3—C8 | −49.2 (4) | N2—C9—C10—C11 | −179.6 (2) |
| N1—C1—C3—C8 | 131.8 (3) | C9—C10—C11—C12 | 0.0 (4) |
| C2—C1—C3—C4 | 130.5 (3) | C10—C11—C12—C13 | 0.3 (4) |
| N1—C1—C3—C4 | −48.4 (4) | C10—C11—C12—Cl3 | −178.57 (19) |
| C8—C3—C4—C5 | −0.1 (4) | C11—C12—C13—C14 | −0.6 (4) |
| C1—C3—C4—C5 | −179.9 (2) | Cl3—C12—C13—C14 | 178.31 (19) |
| C3—C4—C5—C6 | 0.0 (4) | C12—C13—C14—C9 | 0.5 (4) |
| C4—C5—C6—F1 | −180.0 (2) | C10—C9—C14—C13 | −0.2 (4) |
| C4—C5—C6—C7 | 0.4 (4) | N2—C9—C14—C13 | 179.4 (2) |
| F1—C6—C7—C8 | 179.6 (2) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C8—H8···Cl1i | 0.95 | 2.81 | 3.634 (3) | 146 |
Symmetry code: (i) x−1, y, z.
Funding Statement
This work was funded by Science Development Foundation grant EİF/MQM/Elm-Tehsil-1–2016-1(26)–71/06/4.
References
- Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. [DOI] [PMC free article] [PubMed]
- Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. [DOI] [PMC free article] [PubMed]
- Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, USA.
- Evans, P. (2006). Acta Cryst. D62, 72–82. [DOI] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
- Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
- Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610. [DOI] [PubMed]
- Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.
- Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Coord. Chem. Rev. 345, 54–72.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019003657/is5510sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003657/is5510Isup2.hkl
CCDC reference: 1882554
Additional supporting information: crystallographic information; 3D view; checkCIF report




