Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Mar 26;75(Pt 4):465–469. doi: 10.1107/S2056989019003657

Crystal structure and Hirshfeld surface analysis of (E)-1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-fluoro­phen­yl)ethen­yl]diazene

Namiq Q Shikhaliyev a, Sevim Türktekin Çelikesir b, Mehmet Akkurt b, Khanim N Bagirova a, Gulnar T Suleymanova a, Flavien A A Toze c,*
PMCID: PMC6509676  PMID: 31161058

The dihedral angle between the 4-fluoro­phenyl ring and the 4-chloro­phenyl ring is 56.13 (13)°. In the crystal, mol­ecules are linked by C—H⋯Cl hydrogen bonds stacking in a column along the a axis. The crystal packing is further stabilized by face-to-face π–π stacking inter­actions between the centres of the similar aromatic rings of the adjacent mol­ecules.

Keywords: crystal structure, 4-chloro­phen­yl, 4-fluoro­phen­yl, face-to-face π-π stacking inter­action, Hirshfeld surface analysis

Abstract

In the title compound, C14H8Cl3FN2, the planes of the 4-fluoro­phenyl ring and the 4-chloro­phenyl ring make a dihedral angle of 56.13 (13)°. In the crystal, mol­ecules are stacked in a column along the a axis via a weak C—H⋯Cl hydrogen bond and face-to-face π–π stacking inter­actions [centroid–centroid distances = 3.8615 (18) and 3.8619 (18) Å]. The crystal packing is further stabilized by short Cl⋯Cl contacts. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from Cl⋯H/H⋯Cl (31.2%), H⋯H (14.8%), C⋯H/H⋯C (14.0%), F⋯H/H⋯F (12.8%), C⋯C (9.0%) and Cl⋯Cl (6.7%) inter­actions.

Chemical context  

Azo compounds provide ubiquitous motifs in synthetic chemistry and are widely used as organic dyes, indicators, mol­ecular switches, pigments, ligands, food additives, radical reaction initiators, therapeutic agents etc. (Gurbanov et al., 2017; Maharramov et al., 2018; Mahmudov et al., 2019). Azo dyes are also convenient model compounds to study both E/Z isomerization and noncovalent inter­actions (Mahmudov et al., 2015; Shixaliyev et al., 2018). Thus, decorating the structure of dyes with tailored functionalities (noncovalent bond donor centres) can be a pivotal strategy for controlling and tuning their functional properties (Mahmudov et al., 2017; Zubkov et al., 2018). Herein we report the mol­ecular structure and noncovalent inter­actions in the title compound.graphic file with name e-75-00465-scheme1.jpg

Structural commentary  

The mol­ecular conformation of the title compound is not planar (Fig. 1); the planes of the 4-fluoro­phenyl ring and the 4-chloro­phenyl ring form a dihedral angle of 56.13 (13)°. The C4—C3—C1—N1, C8—C3—C1—C2, C3—C1—C2—Cl1, C3—C1—C2—Cl2, N1—C1—C2—Cl1, N1—C1—C2—Cl2, C1—N1—N2—C9 and N1—N2—C9—C14 torsion angles are 48.4 (4), 49.2 (4), −1.9 (4), 177.94 (19), 177.14 (18), −3.0 (3), 179.2 (2) and 175.9 (2)°, respectively.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom-labelling scheme and 50% probability displacement ellipsoids.

Supra­molecular features and Hirshfeld surface analysis  

In the crystal, mol­ecules are linked by a weak C—H⋯Cl hydrogen bond (Table 1), forming a column along the a axis (Figs. 2 and 3). The column is further stabilized by face-to-face π–π stacking inter­actions; the centroid–centroid distances between the adjacent C3–C8 rings and between the adjacent C9–C14 rings are 3.8615 (18) and 3.8619 (18) Å, respectively. Moreover, the columns are linked by inter­molecular Cl⋯Cl short contacts, with distances of 3.3756 (11) and 3.3841 (11) Å (Table 2), forming a layer parallel to the bc plane (Fig. 2).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cl1i 0.95 2.81 3.634 (3) 146

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

A packing diagram of the title compound, viewed along the a axis, showing the C—H⋯Cl inter­actions (dashed lines).

Figure 3.

Figure 3

A packing diagram of the title compound, viewed along the b axis, showing the C—H⋯Cl inter­actions (dashed lines).

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
H4⋯N2 2.67 1 + x, y, z
Cl1⋯Cl3 3.3756 (11) x, −Inline graphic + y, Inline graphic − z
Cl1⋯Cl3 3.3841 (11) 1 − x, −Inline graphic + y, Inline graphic − z
Cl2⋯H14 3.03 1 + x, Inline graphic − y, −Inline graphic + z
H11⋯F1 2.81 x, Inline graphic − y, −Inline graphic + z
H7⋯F1 2.67 1 − x, −y, 1 − z
F1⋯H11 2.84 1 + x, Inline graphic − y, Inline graphic + z

Hirshfeld surfaces and fingerprint plots were generated for the title compound using CrystalExplorer (McKinnon et al., 2007). The Hirshfeld surface mapped over d norm using a standard surface resolution with a fixed colour scale of −0.0941 (red) to 1.4174 a.u. (blue) is shown in Fig. 4. This plot was generated to qu­antify and visualize the inter­molecular inter­actions and to explain the observed crystal packing. The dark-red spots on the d norm surface arise as a result of the C—H⋯Cl inter­action and short inter­atomic contacts (Tables 1 and 2), while the other weaker inter­molecular inter­actions appear as light-red spots. The shape index of the Hirshfeld surface is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 5 clearly suggests that there are π–π inter­actions in the title compound.

Figure 4.

Figure 4

View of the Hirshfeld surface of the title compound plotted over d norm in the range from −0.0941 to 1.4174 a.u.

Figure 5.

Figure 5

View of the Hirshfeld surface of the title compound plotted over shape index.

The percentage contributions of the various contacts to the total Hirshfeld surface are shown in the 2D fingerprint plots in Fig. 6. The reciprocal Cl⋯H/H⋯Cl inter­actions appear as two symmetrical broad wings with d e + d i ≃ 2.7 Å and contribute 31.2% to the Hirshfeld surface (Fig. 6 b). The H⋯H inter­actions appear in the middle of the scattered points in the 2D fingerprint plots, with an overall contribution to the Hirshfeld surface of 14.8% (Fig. 6 c). The C⋯H/H⋯C inter­actions, with a 14.0% contribution, are present as bump symmetrical spikes at diagonal axes (Fig. 6 d). The F⋯H/H⋯F inter­actions, with a 12.8% contribution, are present as sharp symmetrical spikes at diagonal axes d e + d i ≃ 2.55 Å (Fig. 6 e). The C⋯C inter­actions appear in the middle of the scattered points in the 2D fingerprint plots with an overall contribution to the Hirshfeld surface of 9.0% (Fig. 6 f). The small percentage contributions from the other different inter­atomic contacts to the Hirshfeld surfaces are as follows: Cl⋯Cl (6.7%) (Fig. 6 g), N⋯H/H⋯N (3.4%) (Fig. 6 h), Cl⋯C/C⋯Cl (3.1%) (Fig. 6 i), N⋯C/C⋯N (2.8%), N⋯N (1.0%), Cl⋯N/N⋯Cl (0.8%), F⋯F (0.4%) and F⋯C/C⋯F (0.1%). Hirshfeld surface representations with the function d norm plotted onto the surface for Cl⋯H/H⋯Cl, H⋯H, C⋯H/H⋯C, F⋯H/H⋯F, C⋯C, Cl⋯Cl, N⋯H/H⋯N and Cl⋯C/C⋯Cl inter­actions are shown in Fig. 7. The large number of Cl⋯H/H⋯Cl, H⋯H, C⋯H/H⋯C, F⋯H/H⋯F and C⋯C inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Figure 6.

Figure 6

The full 2D fingerprint plots for the title compound, showing (a) all inter­actions, and those delineated into (b) Cl⋯H/H⋯Cl, (c) H⋯H, (d) C⋯H/H⋯C, (e) F⋯H/H⋯F, (f) C⋯C, (g) Cl⋯Cl, (h) N⋯H/H⋯N and (i) Cl⋯C/C⋯Cl inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Figure 7.

Figure 7

Hirshfeld surface representations with the function d norm plotted onto the surface for (a) all inter­actions, (b) Cl⋯H/H⋯Cl, (c) H⋯H, (d) C⋯H/H⋯C, (e) F⋯H/H⋯F, (f) C⋯C, (g) Cl⋯Cl, (h) N⋯H/H⋯N and (i) Cl⋯C/C⋯Cl inter­actions.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, November 2018; Groom et al., 2016) for structures having an (E)-1-(2,2-di­chloro-1-phenyl­vin­yl)-2-phenyldiazene unit gave 18 hits. Three compounds closely resemble the title compound, viz. 1-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene (CSD refcode XIZREG; Atioğlu et al., 2019), 1,1′-[methyl­enebis(4,1-phenyl­ene)]bis­[(2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (LEQXIR; Shixaliyev et al., 2018) and 1,1′-[methyl­enebis(4,1-phenyl­ene)]bis­{[2,2-di­chloro-1-(4-chloro­phen­yl)ethen­yl]dia­zene} (LEQXOX; Shixaliyev et al., 2018). In XIZREG (Atioğlu et al., 2019), mol­ecules are linked by a C—H⋯O hydrogen bond into a zigzag chain running along the c axis. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In the crystal of LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and Cl⋯O contacts were found, and in LEQXOX, C—H⋯N and Cl⋯Cl contacts were observed.

Synthesis and crystallization  

This dye was synthesized according to a reported method (Shixaliyev et al., 2018). A 20 ml screw-necked vial was charged with dimethyl sulfoxide (10 ml), (E)-1-(4-chloro­phen­yl)-2-(4-fluoro­benzyl­idene)hydrazine (248 mg, 1 mmol), tetra­methyl­ethylenedi­amine (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv.). After 1–3 h (until thin-layer chromatography analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a ∼0.01 M solution of HCl (100 ml, ∼pH = 2–3) and extracted with di­chloro­methane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo with a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3:1–1:1 v/v).

Red solid (yield 46%); m.p. 340–338 K. Analysis calculated (%) for C14H8Cl3FN2: C 51.02, H 2.45, N 8.50; found: C 49.95, H 2.43, N 8.47. 1H NMR (300 MHz, CDCl3): δ 7.15-7.17 (m, 4H), 7.42–7.45 (d, 2H, J = 9.21 Hz), 7.73–7.75 (d, 2H, J = 6.04 Hz). 13C NMR (75 MHz, CDCl3): δ 115.29, 115.58, 124.49, 127.46, 129.37, 130.43, 131.88, 131.99, 137.73, 151.13. ESI-MS: m/z: 330.44 [M + H]+.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were constrained to an ideal geometry, with C—H = 0.95 Å and U iso(H) = 1.2U eq(C). Nine outliers (Inline graphic,2,12; Inline graphic,1,12; Inline graphic,18,11; 2,21,1; Inline graphic,3,12; Inline graphic,19,10; 0,13,17; Inline graphic,4,10; 2,20,0) were omitted in the final cycles of refinement.

Table 3. Experimental details.

Crystal data
Chemical formula C14H8Cl3FN2
M r 329.57
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 3.8617 (8), 24.249 (5), 14.724 (3)
β (°) 94.30 (3)
V3) 1374.9 (5)
Z 4
Radiation type Synchrotron, λ = 0.80246 Å
μ (mm−1) 0.93
Crystal size (mm) 0.20 × 0.10 × 0.02
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006)
T min, T max 0.840, 0.970
No. of measured, independent and observed [I > 2σ(I)] reflections 20761, 2984, 2719
R int 0.115
(sin θ/λ)max−1) 0.640
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.142, 1.05
No. of reflections 2984
No. of parameters 182
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.72

Computer programs: Marccd (Doyle, 2011), iMosflm (Battye et al., 2011), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019003657/is5510sup1.cif

e-75-00465-sup1.cif (619.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003657/is5510Isup2.hkl

e-75-00465-Isup2.hkl (238.6KB, hkl)

CCDC reference: 1882554

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C14H8Cl3FN2 F(000) = 664
Mr = 329.57 Dx = 1.592 Mg m3
Monoclinic, P21/c Synchrotron radiation, λ = 0.80246 Å
a = 3.8617 (8) Å Cell parameters from 600 reflections
b = 24.249 (5) Å θ = 3.3–30.0°
c = 14.724 (3) Å µ = 0.93 mm1
β = 94.30 (3)° T = 100 K
V = 1374.9 (5) Å3 Plate, orange
Z = 4 0.20 × 0.10 × 0.02 mm

Data collection

Rayonix SX165 CCD diffractometer 2719 reflections with I > 2σ(I)
/f scan Rint = 0.115
Absorption correction: multi-scan (Scala; Evans, 2006) θmax = 30.9°, θmin = 3.3°
Tmin = 0.840, Tmax = 0.970 h = −4→4
20761 measured reflections k = −30→31
2984 independent reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0557P)2 + 1.092P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2984 reflections Δρmax = 0.59 e Å3
182 parameters Δρmin = −0.72 e Å3
0 restraints Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier map Extinction coefficient: 0.026 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.68912 (17) 0.12097 (2) 0.17209 (4) 0.0265 (2)
Cl2 0.48467 (18) 0.22728 (2) 0.10431 (4) 0.0283 (2)
Cl3 −0.18247 (18) 0.50802 (2) 0.35787 (5) 0.0318 (2)
F1 0.5868 (5) 0.06509 (7) 0.58998 (10) 0.0386 (4)
N1 0.3562 (6) 0.25699 (8) 0.28387 (14) 0.0246 (5)
N2 0.2435 (6) 0.27366 (8) 0.35685 (14) 0.0230 (4)
C1 0.4622 (7) 0.20110 (9) 0.28183 (16) 0.0225 (5)
C2 0.5361 (7) 0.18506 (9) 0.19760 (16) 0.0237 (5)
C3 0.4936 (7) 0.16469 (9) 0.36354 (16) 0.0232 (5)
C4 0.6716 (7) 0.18329 (10) 0.44378 (16) 0.0249 (5)
H4 0.7714 0.2191 0.4459 0.030*
C5 0.7036 (7) 0.14978 (10) 0.52038 (16) 0.0283 (6)
H5 0.8242 0.1622 0.5752 0.034*
C6 0.5558 (8) 0.09804 (10) 0.51483 (17) 0.0287 (6)
C7 0.3803 (7) 0.07791 (10) 0.43694 (17) 0.0280 (5)
H7 0.2840 0.0418 0.4352 0.034*
C8 0.3485 (7) 0.11196 (10) 0.36103 (17) 0.0243 (5)
H8 0.2264 0.0992 0.3067 0.029*
C9 0.1482 (7) 0.33066 (9) 0.35229 (16) 0.0225 (5)
C10 0.1990 (7) 0.36475 (10) 0.27784 (16) 0.0251 (5)
H10 0.3012 0.3504 0.2261 0.030*
C11 0.1000 (7) 0.41943 (10) 0.27997 (16) 0.0257 (5)
H11 0.1332 0.4430 0.2298 0.031*
C12 −0.0490 (7) 0.43956 (10) 0.35640 (17) 0.0246 (5)
C13 −0.0997 (7) 0.40658 (10) 0.43064 (17) 0.0255 (5)
H13 −0.2002 0.4212 0.4824 0.031*
C14 −0.0012 (7) 0.35157 (10) 0.42818 (16) 0.0248 (5)
H14 −0.0358 0.3282 0.4784 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0363 (4) 0.0157 (3) 0.0273 (3) 0.0018 (2) 0.0006 (2) −0.0038 (2)
Cl2 0.0408 (4) 0.0196 (3) 0.0243 (3) 0.0022 (2) 0.0017 (2) 0.0020 (2)
Cl3 0.0384 (4) 0.0125 (3) 0.0442 (4) 0.0020 (2) 0.0011 (3) 0.0002 (2)
F1 0.0622 (12) 0.0241 (8) 0.0290 (8) 0.0040 (8) −0.0004 (7) 0.0087 (6)
N1 0.0333 (12) 0.0135 (9) 0.0266 (10) −0.0008 (8) 0.0000 (8) −0.0019 (7)
N2 0.0292 (11) 0.0128 (9) 0.0269 (10) 0.0004 (8) 0.0008 (8) −0.0015 (7)
C1 0.0273 (13) 0.0123 (10) 0.0272 (11) −0.0027 (9) −0.0017 (9) −0.0010 (8)
C2 0.0286 (13) 0.0146 (10) 0.0272 (11) −0.0032 (9) −0.0019 (9) −0.0014 (8)
C3 0.0301 (13) 0.0143 (11) 0.0253 (11) 0.0017 (9) 0.0013 (9) −0.0013 (8)
C4 0.0316 (14) 0.0149 (11) 0.0279 (11) 0.0016 (9) 0.0007 (10) −0.0005 (9)
C5 0.0361 (15) 0.0214 (12) 0.0267 (11) 0.0039 (10) −0.0023 (10) −0.0023 (9)
C6 0.0407 (15) 0.0175 (11) 0.0280 (11) 0.0064 (10) 0.0037 (10) 0.0060 (9)
C7 0.0376 (15) 0.0143 (11) 0.0321 (12) 0.0007 (10) 0.0037 (10) 0.0016 (9)
C8 0.0291 (13) 0.0153 (11) 0.0285 (11) 0.0000 (9) 0.0013 (10) −0.0017 (9)
C9 0.0288 (13) 0.0112 (10) 0.0269 (11) 0.0003 (9) −0.0025 (9) −0.0011 (8)
C10 0.0315 (14) 0.0176 (11) 0.0259 (11) −0.0001 (9) −0.0004 (9) 0.0001 (9)
C11 0.0332 (14) 0.0157 (11) 0.0277 (11) −0.0010 (9) −0.0020 (10) 0.0022 (9)
C12 0.0286 (13) 0.0132 (11) 0.0312 (12) −0.0020 (9) −0.0037 (10) −0.0005 (9)
C13 0.0302 (13) 0.0165 (11) 0.0292 (11) −0.0012 (9) −0.0009 (9) −0.0037 (9)
C14 0.0319 (14) 0.0175 (11) 0.0243 (11) −0.0007 (9) −0.0019 (9) 0.0013 (9)

Geometric parameters (Å, º)

Cl1—C2 1.714 (2) C6—C7 1.377 (4)
Cl2—C2 1.713 (2) C7—C8 1.388 (3)
Cl3—C12 1.739 (2) C7—H7 0.9500
F1—C6 1.363 (3) C8—H8 0.9500
N1—N2 1.256 (3) C9—C14 1.391 (3)
N1—C1 1.417 (3) C9—C10 1.399 (3)
N2—C9 1.431 (3) C10—C11 1.381 (3)
C1—C2 1.351 (3) C10—H10 0.9500
C1—C3 1.490 (3) C11—C12 1.390 (4)
C3—C8 1.395 (3) C11—H11 0.9500
C3—C4 1.396 (3) C12—C13 1.380 (3)
C4—C5 1.388 (3) C13—C14 1.389 (3)
C4—H4 0.9500 C13—H13 0.9500
C5—C6 1.378 (4) C14—H14 0.9500
C5—H5 0.9500
N2—N1—C1 116.43 (19) C8—C7—H7 121.0
N1—N2—C9 112.0 (2) C7—C8—C3 120.9 (2)
C2—C1—N1 112.1 (2) C7—C8—H8 119.6
C2—C1—C3 124.1 (2) C3—C8—H8 119.6
N1—C1—C3 123.8 (2) C14—C9—C10 120.4 (2)
C1—C2—Cl2 122.99 (19) C14—C9—N2 115.8 (2)
C1—C2—Cl1 124.22 (18) C10—C9—N2 123.9 (2)
Cl2—C2—Cl1 112.79 (14) C11—C10—C9 119.6 (2)
C8—C3—C4 119.3 (2) C11—C10—H10 120.2
C8—C3—C1 120.9 (2) C9—C10—H10 120.2
C4—C3—C1 119.8 (2) C10—C11—C12 119.2 (2)
C5—C4—C3 120.4 (2) C10—C11—H11 120.4
C5—C4—H4 119.8 C12—C11—H11 120.4
C3—C4—H4 119.8 C13—C12—C11 122.0 (2)
C6—C5—C4 118.3 (2) C13—C12—Cl3 118.9 (2)
C6—C5—H5 120.9 C11—C12—Cl3 119.10 (18)
C4—C5—H5 120.9 C12—C13—C14 118.7 (2)
F1—C6—C7 118.4 (2) C12—C13—H13 120.6
F1—C6—C5 118.3 (2) C14—C13—H13 120.6
C7—C6—C5 123.2 (2) C13—C14—C9 120.1 (2)
C6—C7—C8 117.9 (2) C13—C14—H14 119.9
C6—C7—H7 121.0 C9—C14—H14 119.9
C1—N1—N2—C9 179.2 (2) C5—C6—C7—C8 −0.8 (4)
N2—N1—C1—C2 171.9 (2) C6—C7—C8—C3 0.7 (4)
N2—N1—C1—C3 −9.0 (4) C4—C3—C8—C7 −0.3 (4)
N1—C1—C2—Cl2 −3.0 (3) C1—C3—C8—C7 179.5 (2)
C3—C1—C2—Cl2 177.94 (19) N1—N2—C9—C14 175.9 (2)
N1—C1—C2—Cl1 177.14 (18) N1—N2—C9—C10 −4.5 (4)
C3—C1—C2—Cl1 −1.9 (4) C14—C9—C10—C11 0.0 (4)
C2—C1—C3—C8 −49.2 (4) N2—C9—C10—C11 −179.6 (2)
N1—C1—C3—C8 131.8 (3) C9—C10—C11—C12 0.0 (4)
C2—C1—C3—C4 130.5 (3) C10—C11—C12—C13 0.3 (4)
N1—C1—C3—C4 −48.4 (4) C10—C11—C12—Cl3 −178.57 (19)
C8—C3—C4—C5 −0.1 (4) C11—C12—C13—C14 −0.6 (4)
C1—C3—C4—C5 −179.9 (2) Cl3—C12—C13—C14 178.31 (19)
C3—C4—C5—C6 0.0 (4) C12—C13—C14—C9 0.5 (4)
C4—C5—C6—F1 −180.0 (2) C10—C9—C14—C13 −0.2 (4)
C4—C5—C6—C7 0.4 (4) N2—C9—C14—C13 179.4 (2)
F1—C6—C7—C8 179.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···Cl1i 0.95 2.81 3.634 (3) 146

Symmetry code: (i) x−1, y, z.

Funding Statement

This work was funded by Science Development Foundation grant EİF/MQM/Elm-Tehsil-1–2016-1(26)–71/06/4.

References

  1. Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. [DOI] [PMC free article] [PubMed]
  2. Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. [DOI] [PMC free article] [PubMed]
  3. Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, USA.
  4. Evans, P. (2006). Acta Cryst. D62, 72–82. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.
  8. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  9. Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
  10. Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610. [DOI] [PubMed]
  11. Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.
  12. Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017). Coord. Chem. Rev. 345, 54–72.
  13. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019003657/is5510sup1.cif

e-75-00465-sup1.cif (619.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003657/is5510Isup2.hkl

e-75-00465-Isup2.hkl (238.6KB, hkl)

CCDC reference: 1882554

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES