Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Mar 5;75(Pt 4):423–427. doi: 10.1107/S2056989019000021

Synthesis, crystal structure, spectroscopic features and Hirshfeld surfaces of 2-methyl-3-[(2-methyl­phen­yl)carbamo­yl]phenyl acetate

Mavişe Yaman a, Şukriye Cakmak b, Necmi Dege a, Mustafa Odabaşoğlu c, Vadim A Pavlenko d,*, Halil Kutuk e
PMCID: PMC6509679  PMID: 31161049

2-Methyl-3-[(2-methyl­phen­yl)carbamo­yl]phenyl acetate was synthesized, characterized by IR spectroscopy, and its crystal structure was determined from single-crystal data. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds. The two independent mol­ecules in the asymmetric unit adopt different conformations.

Keywords: crystal structure, amide, X-ray diffraction, Hirshfeld surface, hydrogen bonding

Abstract

The title compound, C17H17NO3, was synthesized, characterized by IR spectroscopy and its crystal structure was determined from single-crystal diffraction data. The asymmetric unit contains two mol­ecules, which adopt different conformations. In one mol­ecule, the acet­oxy and the terminal 2-methyl­phenyl groups are positioned on opposite sides of the plane formed by the central benzene ring, whereas in the other mol­ecule they lie on the same side of this plane. In the crystal, the mol­ecules are linked through strong N—H⋯O hydrogen bonds into chains along [010]. Hirshfeld surface analysis and fingerprint plots were used to investigate the inter­molecular inter­actions in the solid state.

Chemical context  

Amides and their derivatives are extremely important biologically active compounds. Amide groups are present in a number of natural products, polymers and pharmaceuticals (Valeur & Bradley, 2009; Xiang et al., 2012). Amide derivatives have been found to exhibit biological and pharmacological activities such as anti­tumor, anti­microbial, anti­bacterial, anti­fungal, anti-HSV, analgesic, anti-inflammatory and anti­cancer (Carbonnelle et al., 2005). Moreover, amide-based compounds represent an important group of efficient chelating ligands (Strotmeyer et al., 2003; Sliva et al., 1997; Pavlishchuk et al., 2011; Gumienna-Kontecka et al., 2007). Recently, we synthesized and studied some new substituted secondary benzamide derivatives obtained as a result of the inter­action of aniline-based compounds with acyl chlorides (Çakmak et al., 2016; Kırca et al., 2018; Demir et al., 2015; Kansız, Çakmak et al., 2018). Among them, 3-acet­oxy-2-methyl-N-(4-meth­oxy­phen­yl) benzamide was found to exhibit good anti­oxidant activity (Demir et al., 2015). As a continuation of this work, we prepared the title compound and studied its spectroscopic and structural features.

Structural commentary  

The asymmetric unit of the title compound (Fig. 1) contains two mol­ecules, A and B, which adopt different conformations that can be characterized by the mutual arrangement of the acet­oxy and terminal 2-methyl­phenyl groups with respect to the plane of the central benzene ring: in mol­ecule A they lie on different sides of this plane, whereas in mol­ecule B they are positioned on the same side. The torsion angles characterizing the conformation details are summarized in Table 1. The dihedral angles subtended by the aromatic rings are 54.33 (12) and 66.68 (11)° in mol­ecules A and B, respectively. The mol­ecular conformations are stabilized by weak intra­molecular C—H⋯O contacts (Table 2). All bond lengths and angles are typical of similar compounds, bearing in mind the effect of inter­molecular hydrogen bonds on the geometry of the amido groups.graphic file with name e-75-00423-scheme1.jpg

Figure 1.

Figure 1

The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Table 1. Selected geometric parameters (Å, °).

O1—C1 1.222 (3) O3—C9 1.186 (4)
O4—C18 1.224 (3) O6—C26 1.188 (4)
N1—C1 1.348 (3) N2—C18 1.344 (4)
       
O1—C1—N1 123.5 (3) C1—N1—C11 123.4 (2)
O4—C18—N2 123.6 (3) C18—N2—C28 124.2 (2)
       
C9—O2—C6—C7 −100.0 (3) C26—O5—C23—C24 −83.7 (3)
N1—C1—C2—C7 129.1 (3) C24—C19—C18—N2 −113.6 (3)
C2—C1—N1—C11 −172.4 (2) C28—N2—C18—C19 166.2 (2)
C1—N1—C11—C16 −66.4 (4) C18—N2—C28—C33 66.0 (4)

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C28–C33 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O6i 0.93 2.49 3.402 (4) 167
N2—H2⋯O1ii 0.88 (3) 1.96 (3) 2.813 (3) 164 (2)
N1—H1⋯O4 0.91 (3) 1.91 (3) 2.804 (3) 166 (2)
C25—H25B⋯O4 0.96 2.76 3.117 (4) 103
C34—H34A⋯O4 0.96 2.59 3.100 (4) 114
C8—H8B⋯O1 0.96 2.75 2.986 (4) 95
C3—H3⋯Cg1 0.93 2.81 3.666 (3) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

The packing diagram of the title compounds is presented in Fig. 2. In the crystal, the mol­ecules are linked through strong N—H⋯O hydrogen bonds (Table 2) into chains along [010]. They are further linked by C—H⋯O and C—H⋯π contacts (Table 2).

Figure 2.

Figure 2

Packing diagram of the title compound showing the short inter­molecular contacts. Cg1 is the centroid of the C28–C33 benzene ring.

Database survey  

A search in the Cambridge Structural Database (CSD version 5.39, update of August 2018; Groom et al., 2016) for 3-acet­oxy-N-phenyl­benzamide derivatives gave three hits: 3-acet­oxy-2-methyl-N-(4-methyl­phen­yl)benzamide (HEJBIK; Kırca et al., 2018), 3-acet­oxy-2-methyl-N-phenyl­benzamide and 3-acet­oxy-2-methyl-N-(4-meth­oxy­phen­yl)benzamide (HEJBOQ and JUMCEB, respectively; both Demir et al., 2015). The structure of HEJBIK is especially close to that of the title compound: it also contains two mol­ecules in an asymmetric unit and is isostructural to the title compound with the exception of one methyl group (2-Me in the title compound and 4-Me in HEJBIK). The two independent mol­ecules in HEJBIK have different conformations in the same manner, as in the title structure. In the two structures HEJBOQ and JUMCEB, the acet­oxy groups and the terminal benzene rings are positioned on opposite sides of the planes formed by the central benzene rings. In all these structures, the mol­ecules are linked into chains by N—H⋯O hydrogen bonds.

Hirshfeld surface analysis  

The mol­ecular Hirshfeld surfaces (d norm) for mol­ecules A and B of the title compound generated using CrystalExplorer3.1 (Wolff et al., 2012) and are presented in Fig. 3. The d norm values are mapped on the Hirshfeld surfaces using a red–blue–white colour scheme (Spackman & Jayatilaka, 2009) as follows: the dark-red spots indicate the closest contacts related to the N—H⋯O hydrogen bonds, the other short inter­molecular contacts appear as light-red spots, blue regions depict positive d norm values, and in the white regions the lengths of the contacts are exactly equal to the sum of van der Waals radii (d norm = 0). Analogous dark-red spots related to the N—H⋯O inter­actions were observed on the Hirshfeld surfaces of similar mol­ecules (Şen et al., 2017; Gümüş et al., 2018; Kansız & Dege, 2018). Figs. 4 and 5 show the two-dimensional fingerprint plots for mol­ecules A and B, respectively. For both mol­ecules, the contributions from the H⋯H/ H⋯H contacts are the largest (55.3 and 53.9% for A and B, respectively). The contributions of the other inter­molecular contacts are as follows: C⋯H/H⋯C (22.5%) and O⋯H/H⋯O (20.7%) for A and C⋯H/H⋯C (23.8%) and O⋯H/H⋯O (21.7%) for B. The Hirshfeld surface mapped over the electrostatic potential n (±0.25 a.u.) is shown in Fig. 6 where blue regions correspond to positive electrostatic potential and red spots related to the oxygen atoms represent the areas of negative electrostatic potential; the distribution is analogous to that in a similar compound (Yaman et al., 2018).

Figure 3.

Figure 3

Hirsfeld surfaces of 3-acet­oxy-2-methyl-N-(3-methyl­phen­yl) benzamide (three-dimensional d norm surface): (a) mol­ecule A and (b) mol­ecule B.

Figure 4.

Figure 4

The fingerprint plots for mol­ecule A: (a) all atomsinside⋯all atomsoutside (100%), (b) Hinside⋯Houtside/Houtside⋯Hinside (55.3%), (c) Cinside⋯Houtside/Houtside⋯Cinside (22.5%) and (d) Oinside⋯Houtside/Houtside⋯Oinside (20.7%).

Figure 5.

Figure 5

The fingerprint plots for mol­ecule B: (a) all atomsinside⋯all atomsoutside (100%), (b) Hinside⋯Houtside/Houtside⋯Hinside (53.9%), (c) Cinside⋯Houtside/Houtside⋯Cinside (23.8%) and (d) Oinside⋯Houtside/Houtside⋯Oinside (21.7%).

Figure 6.

Figure 6

Electrostatic potential mapped on the Hirshfeld surface (± 0.25 a.u.).

Vibrational spectrum  

The IR spectrum of the title compound (KBr, cm−1) shown in Fig. 7 exhibits the following characteristic bands: 3210 (N—H), 1761 (acet­oxy C=O), 1651 (amide C=O). Because of the inter­action of the aromatic group with the acet­oxy carbonyl moiety, the frequency of the acet­oxy C=O stretching vibration is larger compared to the normal frequency of the stretching vibrations in esters (1740 cm−1).

Figure 7.

Figure 7

IR spectrum of the title compound.

Synthesis and crystallization  

The synthesis was performed according to the reaction scheme presented in Fig. 8 and applied earlier for the synthesis of analogous compounds (Cakmak et al., 2016; Kırca et al., 2018, Demir et al., 2015). A solution of 3-acet­oxy-2-methyl­benzoyl chloride (11 mmol) in THF (10 mL) was added dropwise to a solution of 2-methyl­aniline (10 mmol) and tri­ethyl­amine (10 mmol) in THF (10 mL) at room temperature. After the reaction mixture had been stirred at room temperature for 15 h, the resulting white precipitate was filtered off and then 100 ml of water was added dropwise to the filtrate. The precipitate was filtered off and washed several times with water to remove the unreacted reagents and tri­ethyl­amine hydro­chloride. The crude product was recrystallized from aceto­nitrile (1.82 g, 58%; m.p. 435-438 K). Single crystals were obtained from an aceto­nitrile solution after incubation in the fridge for 20 days.

Figure 8.

Figure 8

Reaction scheme.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The N-bound H atoms were freely refined. C-bound hydrogen atoms were positioned geom­etrically and refined as riding with C—H = 0.93 Å and U iso(H) = 1.2U eq(C) for aromatic C atoms and C—H = 0.96 Å and U iso(H) = 1.5U eq(C) for methyl groups. Each methyl group was allowed to rotate about its parent C—C bond.

Table 3. Experimental details.

Crystal data
Chemical formula C17H17NO3
M r 283.31
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 7.7842 (5), 8.8802 (5), 22.2112 (15)
α, β, γ (°) 94.791 (5), 97.620 (5), 90.043 (5)
V3) 1516.37 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.42 × 0.37 × 0.21
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.958, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 21781, 5950, 3029
R int 0.086
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.057, 0.159, 0.90
No. of reflections 5950
No. of parameters 393
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.14

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT (Sheldrick, 2015a ), SHELXL2017 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019000021/yk2118sup1.cif

e-75-00423-sup1.cif (815.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019000021/yk2118Isup2.hkl

e-75-00423-Isup2.hkl (473KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019000021/yk2118Isup3.cml

CCDC reference: 1584572

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

C17H17NO3 Z = 4
Mr = 283.31 F(000) = 600
Triclinic, P1 Dx = 1.241 Mg m3
a = 7.7842 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.8802 (5) Å Cell parameters from 19688 reflections
c = 22.2112 (15) Å θ = 1.9–27.5°
α = 94.791 (5)° µ = 0.09 mm1
β = 97.620 (5)° T = 296 K
γ = 90.043 (5)° Prism, colorless
V = 1516.37 (17) Å3 0.42 × 0.37 × 0.21 mm

Data collection

Stoe IPDS 2 diffractometer 5950 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 3029 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.086
rotation method scans θmax = 26.0°, θmin = 1.9°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −9→9
Tmin = 0.958, Tmax = 0.993 k = −10→10
21781 measured reflections l = −27→27

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0763P)2] where P = (Fo2 + 2Fc2)/3
S = 0.90 (Δ/σ)max < 0.001
5950 reflections Δρmax = 0.17 e Å3
393 parameters Δρmin = −0.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.5356 (3) 0.3278 (2) 0.28533 (9) 0.0605 (6)
N2 0.6781 (3) 1.0533 (3) 0.32141 (11) 0.0482 (6)
O2 0.2232 (3) 0.5083 (3) 0.07897 (10) 0.0717 (6)
C1 0.5516 (3) 0.4634 (3) 0.28130 (12) 0.0448 (7)
N1 0.6771 (3) 0.5500 (3) 0.31509 (11) 0.0486 (6)
O5 0.7722 (3) 1.0738 (3) 0.07181 (9) 0.0662 (6)
C28 0.5682 (4) 0.9934 (3) 0.36083 (12) 0.0468 (7)
O4 0.7921 (3) 0.8326 (2) 0.28774 (10) 0.0608 (6)
C19 0.8414 (3) 1.0503 (3) 0.23666 (12) 0.0438 (6)
C18 0.7690 (3) 0.9681 (3) 0.28425 (13) 0.0464 (7)
C11 0.8180 (3) 0.4903 (3) 0.35334 (12) 0.0463 (7)
C16 0.7951 (4) 0.4184 (3) 0.40468 (13) 0.0537 (7)
C2 0.4280 (3) 0.5450 (3) 0.23801 (13) 0.0452 (7)
C3 0.3430 (4) 0.6702 (3) 0.26034 (15) 0.0567 (8)
H3 0.368858 0.706558 0.301043 0.068*
C12 0.9848 (4) 0.5130 (3) 0.33845 (14) 0.0572 (8)
H12 0.999896 0.565609 0.304998 0.069*
C7 0.3944 (4) 0.4892 (3) 0.17655 (14) 0.0516 (7)
C17 0.6204 (4) 0.4057 (4) 0.42552 (15) 0.0705 (9)
H17A 0.558650 0.319989 0.403650 0.106*
H17B 0.555999 0.495828 0.417841 0.106*
H17C 0.634656 0.393102 0.468398 0.106*
C20 0.9676 (4) 1.1600 (3) 0.25396 (14) 0.0560 (8)
H20 1.006541 1.184171 0.295057 0.067*
C6 0.2705 (4) 0.5654 (4) 0.14029 (14) 0.0585 (8)
C24 0.7774 (4) 1.0137 (3) 0.17529 (14) 0.0532 (7)
C34 0.8224 (4) 0.8962 (4) 0.42816 (16) 0.0729 (9)
H34A 0.864042 0.813155 0.403828 0.109*
H34B 0.842987 0.876968 0.470381 0.109*
H34C 0.882266 0.987300 0.422249 0.109*
C23 0.8470 (4) 1.0938 (3) 0.13335 (13) 0.0545 (8)
O6 0.9365 (4) 0.8729 (3) 0.05401 (12) 0.0885 (8)
C33 0.6320 (4) 0.9139 (3) 0.40945 (14) 0.0550 (7)
C13 1.1258 (4) 0.4580 (4) 0.37307 (17) 0.0728 (10)
H13 1.236428 0.472783 0.362982 0.087*
C22 0.9755 (4) 1.2010 (4) 0.14968 (15) 0.0639 (9)
H22 1.020909 1.250648 0.119977 0.077*
C26 0.8233 (5) 0.9545 (4) 0.03635 (15) 0.0646 (9)
C4 0.2194 (4) 0.7415 (4) 0.22218 (18) 0.0727 (10)
H4 0.161175 0.824827 0.237254 0.087*
C32 0.5113 (5) 0.8545 (4) 0.44225 (15) 0.0713 (9)
H32 0.550319 0.797517 0.474527 0.086*
C29 0.3907 (4) 1.0207 (3) 0.34776 (15) 0.0608 (8)
H29 0.350054 1.078584 0.315939 0.073*
C5 0.1834 (4) 0.6884 (4) 0.16207 (18) 0.0736 (10)
H5 0.100416 0.735476 0.136156 0.088*
C15 0.9407 (4) 0.3628 (4) 0.43830 (15) 0.0678 (9)
H15 0.928027 0.311797 0.472381 0.081*
C21 1.0363 (4) 1.2343 (4) 0.21012 (16) 0.0680 (9)
H21 1.123516 1.306624 0.221625 0.082*
C9 0.2956 (5) 0.5755 (5) 0.03514 (16) 0.0724 (10)
C31 0.3375 (5) 0.8771 (4) 0.42858 (17) 0.0758 (10)
H31 0.260317 0.834551 0.451079 0.091*
C14 1.1044 (5) 0.3818 (4) 0.42210 (17) 0.0739 (10)
H14 1.200093 0.342190 0.444874 0.089*
C25 0.6354 (5) 0.8978 (4) 0.15608 (16) 0.0806 (11)
H25A 0.568073 0.923610 0.119042 0.121*
H25B 0.562053 0.895667 0.187499 0.121*
H25C 0.685593 0.800058 0.149429 0.121*
O3 0.4029 (4) 0.6720 (3) 0.04766 (13) 0.1018 (9)
C30 0.2768 (4) 0.9620 (4) 0.38199 (17) 0.0752 (10)
H30 0.158693 0.979873 0.373513 0.090*
C8 0.4864 (5) 0.3554 (4) 0.15108 (15) 0.0709 (9)
H8A 0.432986 0.264201 0.160420 0.106*
H8B 0.605821 0.358900 0.168815 0.106*
H8C 0.479238 0.357183 0.107663 0.106*
C10 0.2217 (5) 0.5106 (5) −0.02652 (16) 0.0945 (13)
H10A 0.118483 0.563994 −0.040154 0.142*
H10B 0.193802 0.405789 −0.025063 0.142*
H10C 0.304914 0.520111 −0.054284 0.142*
C27 0.7180 (5) 0.9428 (5) −0.02461 (16) 0.0866 (11)
H27A 0.778041 0.882794 −0.052970 0.130*
H27B 0.699550 1.042040 −0.038207 0.130*
H27C 0.608231 0.896027 −0.022119 0.130*
H2 0.653 (3) 1.146 (3) 0.3128 (11) 0.043 (7)*
H1 0.696 (3) 0.644 (3) 0.3039 (12) 0.050 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0662 (13) 0.0394 (12) 0.0731 (14) −0.0031 (10) −0.0063 (10) 0.0143 (10)
N2 0.0520 (14) 0.0373 (13) 0.0590 (15) 0.0039 (11) 0.0162 (12) 0.0120 (12)
O2 0.0670 (14) 0.0830 (16) 0.0625 (15) −0.0198 (12) −0.0088 (11) 0.0188 (12)
C1 0.0410 (15) 0.0385 (16) 0.0560 (17) −0.0008 (12) 0.0073 (13) 0.0098 (13)
N1 0.0473 (14) 0.0361 (13) 0.0616 (15) −0.0058 (11) −0.0006 (11) 0.0121 (12)
O5 0.0718 (14) 0.0768 (15) 0.0500 (13) 0.0150 (12) 0.0071 (11) 0.0076 (11)
C28 0.0541 (17) 0.0373 (15) 0.0503 (17) −0.0026 (13) 0.0124 (13) 0.0025 (13)
O4 0.0714 (14) 0.0373 (11) 0.0799 (15) 0.0040 (10) 0.0271 (11) 0.0141 (10)
C19 0.0424 (15) 0.0389 (15) 0.0523 (18) 0.0006 (12) 0.0119 (13) 0.0075 (13)
C18 0.0422 (15) 0.0405 (17) 0.0565 (18) −0.0036 (13) 0.0057 (13) 0.0064 (14)
C11 0.0478 (16) 0.0380 (15) 0.0510 (17) −0.0028 (13) 0.0001 (13) 0.0021 (13)
C16 0.0569 (18) 0.0495 (17) 0.0538 (18) −0.0046 (14) 0.0028 (14) 0.0064 (14)
C2 0.0387 (15) 0.0391 (15) 0.0582 (19) −0.0023 (12) 0.0039 (13) 0.0111 (14)
C3 0.0539 (18) 0.0506 (18) 0.065 (2) 0.0044 (15) 0.0038 (15) 0.0091 (15)
C12 0.0500 (18) 0.0579 (19) 0.0633 (19) −0.0053 (15) 0.0046 (15) 0.0080 (15)
C7 0.0455 (16) 0.0484 (17) 0.0611 (19) −0.0051 (13) 0.0033 (14) 0.0117 (15)
C17 0.068 (2) 0.080 (2) 0.067 (2) −0.0040 (18) 0.0158 (17) 0.0151 (18)
C20 0.0559 (18) 0.0562 (18) 0.0562 (18) −0.0131 (15) 0.0101 (14) 0.0026 (15)
C6 0.0532 (18) 0.062 (2) 0.058 (2) −0.0064 (16) −0.0075 (15) 0.0158 (16)
C24 0.0503 (17) 0.0479 (17) 0.062 (2) 0.0002 (14) 0.0069 (15) 0.0078 (15)
C34 0.065 (2) 0.085 (2) 0.068 (2) 0.0039 (19) 0.0013 (17) 0.0160 (19)
C23 0.0582 (18) 0.0571 (18) 0.0504 (18) 0.0051 (15) 0.0124 (15) 0.0093 (15)
O6 0.0905 (18) 0.0892 (18) 0.0804 (17) 0.0270 (16) −0.0028 (14) −0.0017 (14)
C33 0.0586 (18) 0.0497 (17) 0.0571 (19) −0.0006 (14) 0.0090 (15) 0.0047 (15)
C13 0.0478 (19) 0.084 (2) 0.085 (3) −0.0015 (17) 0.0010 (17) 0.009 (2)
C22 0.069 (2) 0.061 (2) 0.068 (2) −0.0093 (17) 0.0290 (17) 0.0134 (17)
C26 0.060 (2) 0.075 (2) 0.059 (2) −0.0054 (18) 0.0066 (17) 0.0032 (19)
C4 0.060 (2) 0.067 (2) 0.090 (3) 0.0220 (17) 0.0032 (19) 0.009 (2)
C32 0.085 (3) 0.071 (2) 0.063 (2) −0.0019 (19) 0.0214 (18) 0.0162 (18)
C29 0.0547 (19) 0.0576 (19) 0.073 (2) 0.0033 (15) 0.0166 (16) 0.0071 (16)
C5 0.056 (2) 0.071 (2) 0.091 (3) 0.0117 (18) −0.0102 (18) 0.024 (2)
C15 0.069 (2) 0.071 (2) 0.062 (2) 0.0009 (18) −0.0044 (17) 0.0197 (17)
C21 0.070 (2) 0.066 (2) 0.070 (2) −0.0283 (17) 0.0181 (17) 0.0029 (18)
C9 0.059 (2) 0.084 (3) 0.074 (2) −0.0010 (19) −0.0024 (18) 0.022 (2)
C31 0.071 (2) 0.085 (3) 0.079 (2) −0.004 (2) 0.034 (2) 0.014 (2)
C14 0.061 (2) 0.079 (2) 0.079 (2) 0.0102 (18) −0.0053 (18) 0.013 (2)
C25 0.074 (2) 0.091 (3) 0.073 (2) −0.036 (2) −0.0032 (18) 0.013 (2)
O3 0.097 (2) 0.108 (2) 0.101 (2) −0.0409 (18) 0.0092 (16) 0.0158 (17)
C30 0.054 (2) 0.083 (2) 0.093 (3) 0.0012 (18) 0.0241 (19) 0.009 (2)
C8 0.080 (2) 0.068 (2) 0.063 (2) 0.0065 (18) 0.0068 (17) 0.0001 (17)
C10 0.082 (3) 0.135 (4) 0.064 (2) −0.010 (3) −0.0021 (19) 0.020 (2)
C27 0.075 (2) 0.119 (3) 0.063 (2) −0.005 (2) 0.0047 (18) −0.008 (2)

Geometric parameters (Å, º)

O1—C1 1.222 (3) C24—C25 1.504 (4)
O4—C18 1.224 (3) C34—C33 1.497 (4)
N1—C1 1.348 (3) C34—H34A 0.9600
O3—C9 1.186 (4) C34—H34B 0.9600
O6—C26 1.188 (4) C34—H34C 0.9600
N2—C18 1.344 (4) C23—C22 1.372 (4)
N2—C28 1.434 (3) C33—C32 1.391 (4)
N2—H2 0.88 (3) C13—C14 1.357 (5)
O2—C9 1.365 (4) C13—H13 0.9300
O2—C6 1.414 (4) C22—C21 1.371 (4)
C1—C2 1.499 (4) C22—H22 0.9300
N1—C11 1.427 (3) C26—C27 1.483 (5)
N1—H1 0.91 (3) C4—C5 1.371 (5)
O5—C26 1.359 (4) C4—H4 0.9300
O5—C23 1.409 (4) C32—C31 1.365 (5)
C28—C33 1.378 (4) C32—H32 0.9300
C28—C29 1.400 (4) C29—C30 1.372 (4)
C19—C20 1.378 (4) C29—H29 0.9300
C19—C24 1.399 (4) C5—H5 0.9300
C19—C18 1.502 (4) C15—C14 1.383 (5)
C11—C16 1.384 (4) C15—H15 0.9300
C11—C12 1.400 (4) C21—H21 0.9300
C16—C15 1.387 (4) C9—C10 1.482 (5)
C16—C17 1.501 (4) C31—C30 1.365 (5)
C2—C3 1.384 (4) C31—H31 0.9300
C2—C7 1.404 (4) C14—H14 0.9300
C3—C4 1.385 (4) C25—H25A 0.9600
C3—H3 0.9300 C25—H25B 0.9600
C12—C13 1.369 (4) C25—H25C 0.9600
C12—H12 0.9300 C30—H30 0.9300
C7—C6 1.387 (4) C8—H8A 0.9600
C7—C8 1.497 (4) C8—H8B 0.9600
C17—H17A 0.9600 C8—H8C 0.9600
C17—H17B 0.9600 C10—H10A 0.9600
C17—H17C 0.9600 C10—H10B 0.9600
C20—C21 1.383 (4) C10—H10C 0.9600
C20—H20 0.9300 C27—H27A 0.9600
C6—C5 1.374 (5) C27—H27B 0.9600
C24—C23 1.382 (4) C27—H27C 0.9600
O1—C1—N1 123.5 (3) C32—C33—C34 120.9 (3)
O4—C18—N2 123.6 (3) C14—C13—C12 120.1 (3)
C1—N1—C11 123.4 (2) C14—C13—H13 120.0
C18—N2—C28 124.2 (2) C12—C13—H13 120.0
C18—N2—H2 118.5 (17) C21—C22—C23 119.4 (3)
C28—N2—H2 113.7 (17) C21—C22—H22 120.3
C9—O2—C6 117.7 (2) C23—C22—H22 120.3
O1—C1—C2 121.1 (2) O6—C26—O5 122.6 (3)
N1—C1—C2 115.4 (2) O6—C26—C27 126.8 (4)
C1—N1—H1 118.2 (17) O5—C26—C27 110.6 (3)
C11—N1—H1 114.9 (17) C5—C4—C3 119.6 (3)
C26—O5—C23 118.4 (2) C5—C4—H4 120.2
C33—C28—C29 121.0 (3) C3—C4—H4 120.2
C33—C28—N2 122.5 (3) C31—C32—C33 122.1 (3)
C29—C28—N2 116.5 (2) C31—C32—H32 118.9
C20—C19—C24 121.4 (2) C33—C32—H32 118.9
C20—C19—C18 119.9 (3) C30—C29—C28 119.8 (3)
C24—C19—C18 118.7 (2) C30—C29—H29 120.1
O4—C18—C19 121.1 (3) C28—C29—H29 120.1
N2—C18—C19 115.3 (2) C4—C5—C6 119.6 (3)
C16—C11—C12 120.3 (3) C4—C5—H5 120.2
C16—C11—N1 122.5 (2) C6—C5—H5 120.2
C12—C11—N1 117.1 (2) C14—C15—C16 121.3 (3)
C11—C16—C15 117.9 (3) C14—C15—H15 119.4
C11—C16—C17 121.8 (3) C16—C15—H15 119.4
C15—C16—C17 120.3 (3) C22—C21—C20 119.8 (3)
C3—C2—C7 121.3 (3) C22—C21—H21 120.1
C3—C2—C1 119.0 (3) C20—C21—H21 120.1
C7—C2—C1 119.6 (2) O3—C9—O2 121.8 (3)
C4—C3—C2 120.1 (3) O3—C9—C10 127.5 (4)
C4—C3—H3 119.9 O2—C9—C10 110.7 (3)
C2—C3—H3 119.9 C30—C31—C32 120.2 (3)
C13—C12—C11 120.1 (3) C30—C31—H31 119.9
C13—C12—H12 119.9 C32—C31—H31 119.9
C11—C12—H12 119.9 C13—C14—C15 120.2 (3)
C6—C7—C2 116.1 (3) C13—C14—H14 119.9
C6—C7—C8 121.5 (3) C15—C14—H14 119.9
C2—C7—C8 122.4 (3) C24—C25—H25A 109.5
C16—C17—H17A 109.5 C24—C25—H25B 109.5
C16—C17—H17B 109.5 H25A—C25—H25B 109.5
H17A—C17—H17B 109.5 C24—C25—H25C 109.5
C16—C17—H17C 109.5 H25A—C25—H25C 109.5
H17A—C17—H17C 109.5 H25B—C25—H25C 109.5
H17B—C17—H17C 109.5 C31—C30—C29 119.7 (3)
C19—C20—C21 119.9 (3) C31—C30—H30 120.2
C19—C20—H20 120.0 C29—C30—H30 120.2
C21—C20—H20 120.0 C7—C8—H8A 109.5
C5—C6—C7 123.1 (3) C7—C8—H8B 109.5
C5—C6—O2 118.2 (3) H8A—C8—H8B 109.5
C7—C6—O2 118.6 (3) C7—C8—H8C 109.5
C23—C24—C19 116.4 (3) H8A—C8—H8C 109.5
C23—C24—C25 121.7 (3) H8B—C8—H8C 109.5
C19—C24—C25 121.8 (3) C9—C10—H10A 109.5
C33—C34—H34A 109.5 C9—C10—H10B 109.5
C33—C34—H34B 109.5 H10A—C10—H10B 109.5
H34A—C34—H34B 109.5 C9—C10—H10C 109.5
C33—C34—H34C 109.5 H10A—C10—H10C 109.5
H34A—C34—H34C 109.5 H10B—C10—H10C 109.5
H34B—C34—H34C 109.5 C26—C27—H27A 109.5
C22—C23—C24 122.9 (3) C26—C27—H27B 109.5
C22—C23—O5 118.5 (3) H27A—C27—H27B 109.5
C24—C23—O5 118.4 (3) C26—C27—H27C 109.5
C28—C33—C32 117.0 (3) H27A—C27—H27C 109.5
C28—C33—C34 122.1 (3) H27B—C27—H27C 109.5
C9—O2—C6—C7 −100.0 (3) C20—C19—C24—C23 −0.3 (4)
N1—C1—C2—C7 129.1 (3) C18—C19—C24—C23 179.3 (3)
C2—C1—N1—C11 −172.4 (2) C20—C19—C24—C25 −177.9 (3)
C1—N1—C11—C16 −66.4 (4) C18—C19—C24—C25 1.7 (4)
C26—O5—C23—C24 −83.7 (3) C19—C24—C23—C22 1.8 (4)
C24—C19—C18—N2 −113.6 (3) C25—C24—C23—C22 179.4 (3)
C28—N2—C18—C19 166.2 (2) C19—C24—C23—O5 −172.5 (2)
C18—N2—C28—C33 66.0 (4) C25—C24—C23—O5 5.1 (4)
N1—C1—C2—C3 −53.9 (3) C26—O5—C23—C22 101.7 (3)
O1—C1—N1—C11 8.5 (4) C29—C28—C33—C32 3.9 (4)
C18—N2—C28—C29 −114.4 (3) N2—C28—C33—C32 −176.5 (3)
C28—N2—C18—O4 −13.4 (4) C29—C28—C33—C34 −173.8 (3)
C20—C19—C18—O4 −114.4 (3) N2—C28—C33—C34 5.8 (4)
C24—C19—C18—O4 66.0 (4) C11—C12—C13—C14 −0.3 (5)
C20—C19—C18—N2 66.0 (3) C24—C23—C22—C21 −1.6 (5)
C1—N1—C11—C12 116.4 (3) O5—C23—C22—C21 172.7 (3)
C12—C11—C16—C15 −3.6 (4) C23—O5—C26—O6 −5.3 (5)
N1—C11—C16—C15 179.2 (3) C23—O5—C26—C27 174.0 (3)
C12—C11—C16—C17 173.8 (3) C2—C3—C4—C5 −0.8 (5)
N1—C11—C16—C17 −3.3 (4) C28—C33—C32—C31 −2.0 (5)
O1—C1—C2—C3 125.3 (3) C34—C33—C32—C31 175.7 (3)
O1—C1—C2—C7 −51.7 (4) C33—C28—C29—C30 −3.0 (5)
C7—C2—C3—C4 1.3 (4) N2—C28—C29—C30 177.4 (3)
C1—C2—C3—C4 −175.6 (3) C3—C4—C5—C6 −0.1 (5)
C16—C11—C12—C13 3.0 (4) C7—C6—C5—C4 0.6 (5)
N1—C11—C12—C13 −179.7 (3) O2—C6—C5—C4 176.4 (3)
C3—C2—C7—C6 −0.8 (4) C11—C16—C15—C14 1.6 (5)
C1—C2—C7—C6 176.1 (2) C17—C16—C15—C14 −175.9 (3)
C3—C2—C7—C8 179.1 (3) C23—C22—C21—C20 −0.1 (5)
C1—C2—C7—C8 −4.0 (4) C19—C20—C21—C22 1.6 (5)
C24—C19—C20—C21 −1.4 (4) C6—O2—C9—O3 4.8 (5)
C18—C19—C20—C21 179.0 (3) C6—O2—C9—C10 −175.4 (3)
C2—C7—C6—C5 −0.1 (4) C33—C32—C31—C30 −0.9 (6)
C8—C7—C6—C5 179.9 (3) C12—C13—C14—C15 −1.7 (5)
C2—C7—C6—O2 −175.9 (2) C16—C15—C14—C13 1.0 (5)
C8—C7—C6—O2 4.1 (4) C32—C31—C30—C29 2.0 (6)
C9—O2—C6—C5 84.0 (4) C28—C29—C30—C31 −0.1 (5)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C28–C33 ring.

D—H···A D—H H···A D···A D—H···A
C5—H5···O6i 0.93 2.49 3.402 (4) 167
N2—H2···O1ii 0.88 (3) 1.96 (3) 2.813 (3) 164 (2)
N1—H1···O4 0.91 (3) 1.91 (3) 2.804 (3) 166 (2)
C25—H25B···O4 0.96 2.76 3.117 (4) 103
C34—H34A···O4 0.96 2.59 3.100 (4) 114
C8—H8B···O1 0.96 2.75 2.986 (4) 95
C3—H3···Cg1 0.93 2.81 3.666 (3) 153

Symmetry codes: (i) x−1, y, z; (ii) x, y+1, z.

References

  1. Cakmak, S., Kutuk, H., Odabasoglu, M., Yakan, H. & Buyukgungor, O. (2016). Lett. Org. Chem. 13, 181–194.
  2. Carbonnelle, D., Ebstein, F., Rabu, C., Petit, J. Y., Gregoire, M. & Lang, F. (2005). Eur. J. Immunol. 35, 546–556. [DOI] [PubMed]
  3. Demir, S., Cakmak, S., Dege, N., Kutuk, H., Odabasoglu, M. & Kepekci, R. A. (2015). J. Mol. Struct. 1100, 582–591.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.
  7. Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018). J. Mol. Struct. 1168, 280–290.
  8. Kansız, S., Çakmak, Ş., Dege, N., Meral, G. & Kütük, H. (2018). X-Ray Struct. Anal. Online, 34, 17–18.
  9. Kansız, S. & Dege, N. (2018). J. Mol. Struct. 1173, 42–51.
  10. Kırca, B. K., Çakmak, Ş., Kütük, H., Odabaşoğlu, M. & Büyükgüngör, O. (2018). J. Mol. Struct. 1151, 191–197.
  11. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.
  12. Şen, F., Kansiz, S. & Uçar, İ. (2017). Acta Cryst. C73, 517–524. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997). J. Chem. Soc. Dalton Trans. pp. 273–276.
  16. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  19. Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.
  20. Valeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606–631. [DOI] [PubMed]
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  22. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.
  23. Xiang, Y.-F., Qian, C.-W., Xing, G.-W., Hao, J., Xia, M. & Wang, Y.-F. (2012). Bioorg. Med. Chem. Lett. 22, 4703–4706. [DOI] [PubMed]
  24. Yaman, M., Almarhoon, Z. M., Çakmak, Ş., Kütük, H., Meral, G. & Dege, N. (2018). Acta Cryst. E74, 41–44. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019000021/yk2118sup1.cif

e-75-00423-sup1.cif (815.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019000021/yk2118Isup2.hkl

e-75-00423-Isup2.hkl (473KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019000021/yk2118Isup3.cml

CCDC reference: 1584572

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES