Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Mar 26;75(Pt 4):470–474. doi: 10.1107/S2056989019003220

(Z)-3-({[3-Meth­oxy-5-(tri­fluoro­meth­yl)phen­yl]imino}meth­yl)benzene-1,2-diol

Sibel Demir Kanmazalp a,*, Onur Erman Doĝan b, Necmi Dege c,*, Erbil Aĝar b, Hakan Bulbul c, Irina A Golenya d,*
PMCID: PMC6509687  PMID: 31161059

The mol­ecule of the compound adopts the phenol–imine tautomeric form. In the crystal, mol­ecules are linked via pairs of bifurcated O—H⋯O hydrogen bonds between the phenol OH groups, forming inversion dimers with an Inline graphic(5) ring motif.

Keywords: crystal structure, Schiff base, O⋯O inter­action, Hirshfeld surface analysis

Abstract

The title compound, C15H12F3NO3, crystallizes with one mol­ecule in the asymmetric unit. The mean planes of the two phenyl rings of the Schiff base moiety, bearing the OH groups and the imine group, respectively, are inclined to each other by 4.91 (1)°. In the crystal, mol­ecules are linked via pairs of bifurcated O—H⋯O hydrogen bonds between the phenol OH groups, forming inversion dimers with an R 1 2(5) ring motif. The structure exhibits also intra­molecular O—H⋯N and C—H⋯F hydrogen-bonding inter­actions. Hirshfeld surfaces analysis and two-dimensional fingerprint plots were applied to qu­antify the inter­molecular inter­actions. The three F atoms of the tri­fluoro­methyl group are disordered over two sets of sites, with occupancy factors of 0.578 (8) and 0.422 (8). The crystal studied was refined as an inversion twin

Chemical context  

Schiff bases (azomethines, imines) belong to a widely used group of organic compounds or inter­mediates that are important for production of certain chemical specialties, e.g. pharmaceuticals, or additives to rubber. The synthesis involves an aromatic amine and an aldehyde (Schiff et al., 1881). Schiff bases are also employed as catalyst carriers (Grigoras et al., 2001), thermo-stable materials (Vančo et al., 2004), metal–cation complexing agents or in biological systems (Taggi et al., 2002). Furthermore, they are used as starting materials in the synthesis of significant drugs with properties such as anti­fungal, anti­bacterial, anti­malarial, anti­proliferative, anti-inflammatory, anti­viral, and anti­pyretic (Hadjoudis et al., 1987). On an industrial scale, they have a wide range of applications such as dyes and pigments.

In general, Schiff bases display two possible tautomeric forms, viz. phenol–imine and keto–amine. Depending on the tautomers, two types of intra­molecular hydrogen bonds are observed in Schiff bases: O—H⋯N in phenol–imine and N—H⋯O in keto-amine tautomers. In the present study, a new Schiff base, (Z)-3-({[3-meth­oxy-5-(tri­fluoro­meth­yl)phen­yl]imino}­meth­yl)benzene-1,2-diol, was obtained in crystalline form from the reaction of 2,3-di­hydroxy­benzaldehyde with 3-meth­oxy-5-(tri­fluoro­meth­yl)aniline.

Structural commentary  

The title compound crystallizes as the phenol–imine tautomer with one mol­ecule in the asymmetric unit (Fig. 1). The two phenyl rings of the Schiff base (C1–C6 and C8–C13) are inclined at an angle of 4.91 (1)° with respect to one another. The orientation of the two hy­droxy groups with respect to their tautomeric counterparts is defined by the torsion angles T1(C1—C6—C7—N1) and T2(C7—N1—C8—C9). The respective values of = 2.0 (10) and −5.5 (11)° indicate that the mol­ecule is not planar (Ünver et al., 2016).graphic file with name e-75-00470-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atomic numbering scheme. The dashed line shows the intra­molecular O—H⋯N hydrogen bond. Displacement ellipsoids are drawn at the 50% probability level.

In the mol­ecule, the C=N group has a strong electron-withdrawing character as revealed by the double-bond character of N1=C7 [1.269 (8) Å] and the single bond character of O1—C2 [1.368 (6) Å] in the phenol–imine tautomer. These values and other bond lengths and angles (Table 1) are in good agreement with those previously reported for C=N and O—C bonds (Koşar et al.., 2010; Demir Kanmazalp et al.., 2019). One of the hy­droxy groups (O2) makes a strong intra­molecular O—H⋯N bond to the imine N atom (Fig. 1, Table 2) with an S(6) ring motif, characteristic of o-hy­droxy­salicyl­idene systems. Other intra­molecular hydrogen bonding inter­actions involve the disordered –CF3 group and adjacent aromatic H atoms bonded to C9 and C11 (Table 2). As a result of the strongly bent C—H⋯F angles of about 100°, these contributions are of minor importance.

Table 1. Selected geometric parameters (Å, °).

O1—C2 1.368 (6) C1—C6 1.394 (8)
O2—C1 1.350 (7) C6—C5 1.385 (8)
N1—C7 1.269 (8) C6—C7 1.462 (9)
N1—C8 1.409 (8)    
       
C12—O3—C14 116.5 (6) C9—C8—N1 125.6 (7)
C7—N1—C8 123.1 (6) N1—C7—C6 122.1 (6)
       
C7—N1—C8—C9 −5.5 (11) C1—C6—C7—N1 2.0 (10)
C5—C6—C7—N1 −178.7 (7)    

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.82 1.99 2.770 (4) 159
O1—H1⋯O2i 0.82 2.72 3.190 (6) 118
O2—H2⋯N1 0.82 1.85 2.581 (7) 147
C9—H9⋯F2A 0.93 2.44 2.757 (12) 100
C11—H11⋯F3B 0.93 2.39 2.725 (18) 101

Symmetry code: (i) Inline graphic.

Supra­molecular features  

Between adjacent mol­ecules there are bifurcated inter­molecular O1—H⋯(O1,O2) hydrogen bonds with an Inline graphic(5) graph-set motif (Fig. 2, Table 2), leading to the formation of chains parallel to [001]. Despite the presence of aromatic systems, the mol­ecule is arranged in such a way that π–π or C—H⋯π inter­actions are not favoured.

Figure 2.

Figure 2

Unit-cell packing diagram for the title compound. Intra- and inter­molecular hydrogen bonds are shown as dashed lines. [Symmetry code: (i) −x − 1, −y, z − Inline graphic.]

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.40, update Nov 2018; Groom et al., 2016) for the (Z)-1-phenyl-N-[3-(tri­fluoro­meth­yl)phen­yl]methanimine skeleton yielded eight matches. Distinctive bond lengths (here N1=C7, C1—O2) in the Schiff base structure are the same within standard uncertainties as those of the corresponding bond lengths in the structures of 4N-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]-3-meth­oxy­salicylaldimine (Karadayı et al., 2003), 2-{[3,5-bis­(tri­fluoro­meth­yl)phen­yl]carbonoimido­yl}phenol (Yıldız et al., 2015), 2-{[3,5-bis­(tri­fluoro­meth­yl)phen­yl]carbonoimido­yl}phenol (Ünver et al., 2016), (E)-3-{[3-(tri­fluoro­meth­yl)phenyl­imino]­meth­yl}benzene-1,2-diol (Koşar et al., 2010), 2-fluoro-N-(3-nitro­benzyl­idene)-5-(tri­fluoro­meth­yl)aniline (Yang et al., 2007), (E)-2-methyl-6-[3-(tri­fluoro­meth­yl)-phen­yl­imino­meth­yl]phenol (Akkaya et al., 2007), (E)-2-[(4-chloro­phen­yl)imino­meth­yl]-4-(tri­fluoro­meth­oxy)phenol (Tüf­ekçi et al., 2009) and (E)-4-methyl-2-[3-(tri­fluoro­meth­yl)phen­yl­imino­meth­yl]phenol (Gül et al., 2007). The C=N bond lengths in these structures vary from 1.270 (3) to 1.295 (5) Å and the C—O bond lengths from 1.336 (5) to 1.366 (2) Å. The mol­ecular conformations of these structures are also not planar, with dihedral angles between the phenyl rings varying between 5.00 (5) and 47.62 (9)°. It is likely that the intra­molecular O—H⋯N hydrogen bond, where the imine N atom acts as an hydrogen-bond acceptor, is an important prerequisite for the tautomeric shift toward the phenol–imine form. In fact, in all eight structures of the phenol–imine tautomers, hydrogen bonds of this type are observed.

Hirshfeld surface analysis  

Hirshfeld surface analysis of the title compound was performed utilizing the CrystalExplorer program (Turner et al., 2017). The three-dimensional d norm surface is a useful tool for analysing and visualizing the inter­molecular inter­actions and utilizes the function of the normalized distances d e and d i, where d e and d i are the distances from a given point on the surface to the nearest atom outside and inside, respectively. The blue, white and red colour convention used for the d norm-mapped Hirshfeld surfaces indicates the inter­atomic contacts longer, equal to or shorter than the van der Waals separations. The standard-resolution mol­ecular 3D (d norm) plot with d e and d i for the title compound is shown in Fig. 3. The bright-red spots near the oxygen and hydrogen atoms indicate donors and acceptors of a potential O—H⋯O inter­action. As can be seen from the two-dimensional fingerprint plots (scattering points spread up to d e = d i = 1.5 Å; Fig. 4), the dominant inter­action in the title compound originates from H⋯H contacts, which are the major contributor (25.1%) to the total Hirshfeld surface. The contribution from the O⋯H/H⋯O contacts, corresponding to medium O1—H1⋯O1 and O1—H1⋯O2 inter­molecular inter­actions (9.6% + 8.2% = 17.8%), is represented by a pair of sharp spikes that are the characteristics of hydrogen-bonding inter­actions (Fig. 4). Other significant inter­actions are F⋯H/H⋯F (20.6%) and C⋯H/H⋯C (15.4%). While it is likely there are other identifiable points of contact that can be highlighted in the crystal, these may be of limited significance and do not require detailed discussion nor illustration. The inter­actions are visualized in Fig. 5.

Figure 3.

Figure 3

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm (in the range −0.211 to 1.077 a.u.), d e and d i.

Figure 4.

Figure 4

Two-dimensional fingerprint plots of the crystal with the relative contributions of the atom pairs to the Hirshfeld surface.

Figure 5.

Figure 5

Hirshfeld surface mapped over d norm to visualize the inter­molecular inter­actions.

Synthesis and crystallization  

The title compound was prepared by refluxing mixed solutions of 2,3-di­hydroxy­benzaldehyde (34.5 mg, 0.25 mmol) in ethanol (15 ml) and 3-meth­oxy-5-(tri­fluoro­meth­yl)aniline (47.8 mg, 0.25 mmol) in ethanol (15 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, m.p. 396–398 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The carbon-bound H atoms were positioned with idealized geometry and refined isotropically with C—H distances of 0.93–0.96 Å and U iso(H) set to 1.2–1.5U eq(C), and with O—H = 0.82 Å and U iso(H) = 1.5U eq(O). The three F atoms of the tri­fluoro­methyl group are disordered over two sets of sites, with occupancy factors of 0.578 (8) for F atoms with suffix A and 0.422 (8) for those with suffix B (Fig. 1). A similar behaviour for a disordered –CF3 group was observed in a previous study (Demir et al., 2006). Restraints (SIMU, DELU and ISOR; Sheldrick et al., 2015b ) were finally applied to the disordered tri­fluoro­methyl group. As a result of missing anomalous dispersion, the absolute structure of the title compound could not be determined reliably (Table 3).

Table 3. Experimental details.

Crystal data
Chemical formula C15H12F3NO3
M r 311.26
Crystal system, space group Orthorhombic, P n a21
Temperature (K) 296
a, b, c (Å) 30.790 (3), 9.0703 (6), 4.8579 (3)
V3) 1356.69 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.79 × 0.32 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.957, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 7150, 2140, 1110
R int 0.099
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.062, 0.088, 0.95
No. of reflections 2140
No. of parameters 231
No. of restraints 73
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.16
Absolute structure Refined as an inversion twin
Absolute structure parameter 3 (3)

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT2018 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019003220/wm5488sup1.cif

e-75-00470-sup1.cif (267.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003220/wm5488Isup2.hkl

e-75-00470-Isup2.hkl (171.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019003220/wm5488Isup3.cml

CCDC reference: 1892713

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C15H12F3NO3 Dx = 1.524 Mg m3
Mr = 311.26 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 5897 reflections
a = 30.790 (3) Å θ = 2.2–27.0°
b = 9.0703 (6) Å µ = 0.13 mm1
c = 4.8579 (3) Å T = 296 K
V = 1356.69 (17) Å3 Prism, red
Z = 4 0.79 × 0.32 × 0.05 mm
F(000) = 640

Data collection

Stoe IPDS 2 diffractometer 2140 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 1110 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.099
Detector resolution: 6.67 pixels mm-1 θmax = 25.0°, θmin = 2.3°
rotation method scans h = −30→36
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −10→10
Tmin = 0.957, Tmax = 0.995 l = −4→5
7150 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.0144P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088 (Δ/σ)max < 0.001
S = 0.95 Δρmax = 0.14 e Å3
2140 reflections Δρmin = −0.16 e Å3
231 parameters Absolute structure: Refined as an inversion twin.
73 restraints Absolute structure parameter: 3 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
F1A −0.2587 (3) −0.7222 (12) −0.112 (3) 0.109 (3) 0.578 (8)
F2A −0.2437 (3) −0.4973 (12) −0.058 (4) 0.110 (3) 0.578 (8)
F3A −0.2630 (4) −0.6345 (18) 0.281 (3) 0.117 (4) 0.578 (8)
F1B −0.2486 (5) −0.605 (3) −0.165 (4) 0.115 (4) 0.422 (8)
F2B −0.2558 (4) −0.4953 (17) 0.212 (5) 0.111 (4) 0.422 (8)
F3B −0.2668 (6) −0.7256 (19) 0.191 (5) 0.112 (4) 0.422 (8)
O1 −0.48182 (12) −0.0397 (5) −1.1221 (12) 0.0559 (13)
H1 −0.488061 0.002147 −1.266405 0.084*
O2 −0.45187 (14) −0.2219 (5) −0.7485 (11) 0.0566 (13)
H2 −0.439356 −0.273123 −0.634283 0.085*
O3 −0.42289 (17) −0.6770 (5) 0.2365 (12) 0.0675 (15)
N1 −0.38682 (18) −0.3355 (6) −0.4892 (13) 0.0462 (15)
C13 −0.4043 (2) −0.5057 (6) −0.1300 (19) 0.0429 (18)
H13 −0.433339 −0.485521 −0.165359 0.051*
C8 −0.3718 (2) −0.4343 (7) −0.2864 (14) 0.0422 (17)
C2 −0.4376 (2) −0.0449 (7) −1.0943 (16) 0.0444 (18)
C12 −0.3936 (2) −0.6048 (7) 0.0740 (16) 0.050 (2)
C1 −0.4223 (2) −0.1434 (7) −0.8926 (14) 0.0383 (17)
C6 −0.37787 (19) −0.1545 (7) −0.8426 (13) 0.0367 (17)
C7 −0.3617 (2) −0.2539 (7) −0.6293 (16) 0.0453 (18)
H7 −0.331950 −0.257523 −0.595114 0.054*
C10 −0.3189 (2) −0.5665 (8) −0.0246 (15) 0.0475 (19)
C5 −0.3498 (2) −0.0686 (7) −0.9968 (15) 0.0477 (19)
H5 −0.320085 −0.075095 −0.962902 0.057*
C11 −0.3506 (3) −0.6359 (7) 0.1267 (16) 0.056 (2)
H11 −0.343162 −0.703200 0.263109 0.067*
C9 −0.3286 (2) −0.4645 (7) −0.2283 (15) 0.051 (2)
H9 −0.306471 −0.417196 −0.324352 0.061*
C3 −0.4091 (2) 0.0371 (7) −1.2431 (17) 0.054 (2)
H3 −0.419422 0.101663 −1.376554 0.065*
C4 −0.3642 (2) 0.0258 (7) −1.1982 (16) 0.053 (2)
H4 −0.344674 0.080776 −1.302170 0.064*
C15 −0.2733 (3) −0.5977 (14) 0.035 (2) 0.088 (3)
C14 −0.4674 (2) −0.6454 (10) 0.189 (2) 0.087 (3)
H14A −0.475930 −0.685003 0.013742 0.130*
H14B −0.471687 −0.540545 0.188861 0.130*
H14C −0.484666 −0.689170 0.331567 0.130*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1A 0.078 (5) 0.107 (7) 0.142 (8) 0.048 (5) −0.008 (6) −0.030 (8)
F2A 0.055 (5) 0.125 (7) 0.148 (9) 0.008 (6) −0.018 (6) 0.015 (8)
F3A 0.080 (5) 0.155 (10) 0.116 (8) 0.043 (8) −0.034 (6) 0.014 (8)
F1B 0.074 (6) 0.138 (9) 0.133 (9) 0.034 (8) −0.001 (7) 0.003 (9)
F2B 0.059 (6) 0.136 (8) 0.138 (8) 0.018 (7) −0.034 (7) −0.017 (9)
F3B 0.087 (6) 0.118 (9) 0.132 (9) 0.042 (7) −0.029 (8) 0.010 (9)
O1 0.041 (3) 0.075 (4) 0.051 (3) 0.014 (2) −0.006 (3) 0.009 (3)
O2 0.043 (3) 0.067 (3) 0.060 (4) 0.002 (2) 0.003 (3) 0.012 (3)
O3 0.072 (4) 0.067 (3) 0.063 (4) −0.011 (3) 0.002 (4) 0.012 (3)
N1 0.045 (3) 0.049 (3) 0.044 (4) 0.009 (3) −0.004 (3) 0.000 (3)
C13 0.042 (4) 0.037 (4) 0.050 (5) 0.005 (3) −0.009 (4) 0.000 (4)
C8 0.042 (4) 0.052 (4) 0.032 (5) 0.001 (3) −0.006 (4) −0.003 (4)
C2 0.039 (4) 0.047 (4) 0.047 (5) 0.013 (3) 0.004 (4) −0.004 (4)
C12 0.046 (5) 0.049 (4) 0.057 (6) 0.002 (3) 0.000 (5) 0.002 (4)
C1 0.035 (4) 0.044 (4) 0.036 (4) 0.002 (3) 0.004 (4) 0.002 (3)
C6 0.040 (4) 0.036 (4) 0.034 (5) −0.001 (3) −0.002 (4) 0.000 (4)
C7 0.030 (3) 0.055 (4) 0.051 (5) 0.000 (3) −0.004 (4) −0.004 (4)
C10 0.048 (5) 0.053 (4) 0.042 (5) 0.016 (4) −0.003 (4) −0.005 (4)
C5 0.045 (5) 0.050 (4) 0.048 (5) −0.008 (4) −0.007 (4) 0.000 (4)
C11 0.077 (6) 0.042 (4) 0.049 (5) 0.009 (4) −0.005 (5) −0.002 (4)
C9 0.053 (4) 0.051 (4) 0.048 (5) 0.007 (3) 0.005 (5) −0.001 (4)
C3 0.061 (5) 0.049 (4) 0.051 (5) 0.009 (4) −0.002 (5) 0.007 (4)
C4 0.056 (5) 0.052 (4) 0.052 (6) −0.011 (3) 0.008 (5) 0.006 (4)
C15 0.070 (7) 0.136 (10) 0.059 (7) 0.044 (6) −0.004 (7) 0.029 (7)
C14 0.051 (5) 0.113 (7) 0.096 (9) −0.017 (5) 0.008 (6) 0.026 (6)

Geometric parameters (Å, º)

F1A—C15 1.410 (14) C2—C1 1.407 (9)
F2A—C15 1.364 (14) C12—C11 1.377 (9)
F3A—C15 1.282 (15) C1—C6 1.394 (8)
F1B—C15 1.236 (19) C6—C5 1.385 (8)
F2B—C15 1.375 (19) C6—C7 1.462 (9)
F3B—C15 1.40 (2) C7—H7 0.9300
O1—C2 1.368 (6) C10—C11 1.376 (9)
O1—H1 0.8200 C10—C9 1.387 (8)
O2—C1 1.350 (7) C10—C15 1.462 (10)
O2—H2 0.8200 C5—C4 1.374 (9)
O3—C12 1.366 (8) C5—H5 0.9300
O3—C14 1.419 (8) C11—H11 0.9300
N1—C7 1.269 (8) C9—H9 0.9300
N1—C8 1.409 (8) C3—C4 1.403 (9)
C13—C12 1.377 (9) C3—H3 0.9300
C13—C8 1.412 (9) C4—H4 0.9300
C13—H13 0.9300 C14—H14A 0.9600
C8—C9 1.389 (8) C14—H14B 0.9600
C2—C3 1.360 (9) C14—H14C 0.9600
C2—O1—H1 109.5 C10—C11—C12 119.3 (7)
C1—O2—H2 109.5 C10—C11—H11 120.3
C12—O3—C14 116.5 (6) C12—C11—H11 120.3
C7—N1—C8 123.1 (6) C10—C9—C8 118.9 (7)
C12—C13—C8 121.2 (6) C10—C9—H9 120.6
C12—C13—H13 119.4 C8—C9—H9 120.6
C8—C13—H13 119.4 C2—C3—C4 120.9 (7)
C9—C8—N1 125.6 (7) C2—C3—H3 119.5
C9—C8—C13 118.5 (7) C4—C3—H3 119.5
N1—C8—C13 115.9 (6) C5—C4—C3 118.4 (7)
C3—C2—O1 124.9 (7) C5—C4—H4 120.8
C3—C2—C1 120.1 (6) C3—C4—H4 120.8
O1—C2—C1 115.0 (6) F3A—C15—F2A 108.6 (13)
O3—C12—C11 115.4 (6) F1B—C15—F2B 106.8 (16)
O3—C12—C13 124.9 (6) F1B—C15—F3B 107.0 (14)
C11—C12—C13 119.7 (7) F2B—C15—F3B 99.5 (14)
O2—C1—C6 122.2 (6) F3A—C15—F1A 100.6 (11)
O2—C1—C2 118.1 (6) F2A—C15—F1A 98.8 (11)
C6—C1—C2 119.7 (6) F1B—C15—C10 116.4 (12)
C5—C6—C1 118.6 (6) F3A—C15—C10 118.3 (10)
C5—C6—C7 121.1 (6) F2A—C15—C10 116.5 (9)
C1—C6—C7 120.2 (6) F2B—C15—C10 111.7 (10)
N1—C7—C6 122.1 (6) F3B—C15—C10 113.9 (13)
N1—C7—H7 119.0 F1A—C15—C10 111.1 (10)
C6—C7—H7 119.0 O3—C14—H14A 109.5
C11—C10—C9 122.2 (7) O3—C14—H14B 109.5
C11—C10—C15 119.2 (8) H14A—C14—H14B 109.5
C9—C10—C15 118.5 (8) O3—C14—H14C 109.5
C4—C5—C6 122.2 (7) H14A—C14—H14C 109.5
C4—C5—H5 118.9 H14B—C14—H14C 109.5
C6—C5—H5 118.9
C7—N1—C8—C9 −5.5 (11) O3—C12—C11—C10 −179.1 (6)
C7—N1—C8—C13 173.7 (7) C13—C12—C11—C10 0.5 (11)
C12—C13—C8—C9 −0.8 (11) C11—C10—C9—C8 −1.7 (11)
C12—C13—C8—N1 179.9 (6) C15—C10—C9—C8 180.0 (8)
C14—O3—C12—C11 179.2 (7) N1—C8—C9—C10 −179.0 (6)
C14—O3—C12—C13 −0.3 (11) C13—C8—C9—C10 1.7 (11)
C8—C13—C12—O3 179.1 (7) O1—C2—C3—C4 179.2 (7)
C8—C13—C12—C11 −0.3 (11) C1—C2—C3—C4 −0.2 (12)
C3—C2—C1—O2 179.6 (7) C6—C5—C4—C3 1.5 (11)
O1—C2—C1—O2 0.0 (9) C2—C3—C4—C5 −1.0 (12)
C3—C2—C1—C6 1.1 (11) C11—C10—C15—F1B 141.8 (17)
O1—C2—C1—C6 −178.4 (6) C9—C10—C15—F1B −40 (2)
O2—C1—C6—C5 −179.1 (6) C11—C10—C15—F3A −28.9 (18)
C2—C1—C6—C5 −0.7 (10) C9—C10—C15—F3A 149.5 (13)
O2—C1—C6—C7 0.3 (10) C11—C10—C15—F2A −161.1 (11)
C2—C1—C6—C7 178.6 (6) C9—C10—C15—F2A 17.3 (17)
C8—N1—C7—C6 178.7 (6) C11—C10—C15—F2B −95.2 (15)
C5—C6—C7—N1 −178.7 (7) C9—C10—C15—F2B 83.2 (14)
C1—C6—C7—N1 2.0 (10) C11—C10—C15—F3B 16.6 (18)
C1—C6—C5—C4 −0.6 (11) C9—C10—C15—F3B −165.0 (13)
C7—C6—C5—C4 −179.9 (6) C11—C10—C15—F1A 86.8 (12)
C9—C10—C11—C12 0.6 (11) C9—C10—C15—F1A −94.9 (13)
C15—C10—C11—C12 178.9 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O1i 0.82 1.99 2.770 (4) 159
O1—H1···O2i 0.82 2.72 3.190 (6) 118
O2—H2···N1 0.82 1.85 2.581 (7) 147
C9—H9···F2A 0.93 2.44 2.757 (12) 100
C11—H11···F3B 0.93 2.39 2.725 (18) 101

Symmetry code: (i) −x−1, −y, z−1/2.

Funding Statement

This work was funded by Ondokuz Mayis Üniversitesi grant PYO.FEN.1904.18.019.

References

  1. Akkaya, A., Erşahin, F., Ağar, E., Şenel, İ. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3555.
  2. Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, I. (2006). Acta Cryst. E62, o298–o299.
  3. Demir Kanmazalp, S., Macit, M. & Dege, N. (2019). J. Mol. Struct. 1179, 181–191.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Grigoras, M., Catanescu, O. & Simonescu, C. I. (2001). Rev. Roum. Chim. 46, 927–939.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gül, Z. S., Erşah˙in, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2854.
  8. Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.
  9. Karadayı, N., Şahin, S., Köysal, Y., Coşkun, E. & Büyükgüngör, O. (2015). Acta Cryst. E71, o466–o467. [DOI] [PMC free article] [PubMed]
  10. Koşar, B., Albayrak, C., Odabaşoĝlu, M. & Büyükgüngör, O. (2010). Turk. J. Chem. 34, 481–487.
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  12. Schiff, H. (1881). Justus Liebigs Ann. Chem. 210, 114–123.
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
  17. Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635. [DOI] [PubMed]
  18. Tüfekçi, M., Bingöl Alpaslan, Y., Macit, M. & Erdönmez, A. (2009). Acta Cryst. E65, o2704. [DOI] [PMC free article] [PubMed]
  19. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
  20. Ünver, H., Boyacıoğlu, B., Zeyrek, C. T., Yıldız, M., Demir, N., Yıldırım, N., Karaosmanoğlu, O., Sivas, H. & Elmalı, A. (2016). J. Mol. Struct. 1125, 162–176.
  21. Vančo, J., Švajlenová, O., Račanská, E. J., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155–161. [DOI] [PubMed]
  22. Yang, M.-H., Yan, G.-B. & Zheng, Y.-F. (2007). Acta Cryst. E63, o3202.
  23. Yıldız, M., Karpuz, O., Zeyrek, C. T., Boyacıoğlu, B., Dal, H., Demir, N., Yıldırım, N. & Ünver, H. (2015). J. Mol. Struct. 1094, 148–160.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019003220/wm5488sup1.cif

e-75-00470-sup1.cif (267.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003220/wm5488Isup2.hkl

e-75-00470-Isup2.hkl (171.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019003220/wm5488Isup3.cml

CCDC reference: 1892713

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES