Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Mar 15;75(Pt 4):451–455. doi: 10.1107/S2056989019003347

Crystal structure and Hirshfeld surface analysis of 2-(1H-indol-3-yl)ethanaminium acetate hemihydrate

Balakrishnan Rajeswari a, Radhakrishnan Santhi a, Palaniyappan Sivajeyanthi b, Kasthuri Balasubramani b,*
PMCID: PMC6509690  PMID: 31161055

The title mol­ecular salt crystallized with four 2-(1H-indol-3-yl)ethanaminium cations and four acetate anions in the asymmetric unit, together with two water mol­ecules of crystallization.

Keywords: crystal structure, 2-(1H-indol-3-yl)ethanaminium, acetate, trypamine, hydrogen bonding, Hirshfeld surface analysis

Abstract

The title mol­ecular salt, C10H13N2 +·C2H3O2 ·0.5H2O, crystallized with four 2-(1H-indol-3-yl)ethanaminium cations (A, B, C and D) and four acetate anions in the asymmetric unit, together with two water mol­ecules of crystallization. Each cation is linked to an anion by a C—H⋯π inter­action. The alkyl­aminium side chains have folded conformations, with N—C—C—C torsion angles of −58.5 (3), 59.5 (3), −64.6 (3) and −56.0 (3)° for cations A, B, C and D, respectively. In the crystal, the cations and anions are liked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by the water mol­ecules via Owater—H⋯O and N—H⋯Owater hydrogen bonds, forming layers lying parallel to the bc plane. The overall inter­molecular inter­actions were investigated using Hirshfeld surfaces analysis.

Chemical context  

2-(1H-Indol-3-yl)ethanamine (tryptamine) is an alkaloid found in plants and fungi and is a possible inter­mediate in the biosynthetic pathway to the plant hormone indole-3-acetic acid (Takahashi, 1986). It is also found in trace amounts in the mammalian brain, possibly acting as a neuromodulator or neurotransmitter (Jones, 1982). As a relatively strong base (pK a = 10.2), it readily forms salts with a number of organic acids. There are seven known families of serotonin receptors which are tryptamine derivatives, and all of them are neurotransmitters. Hallucinogens all have a high affinity for certain serotonin receptor subtypes and the relative hallucinogenic potencies of various drugs can be gauged by their affinities for these receptors (Glennon et al., 1984; Nichols & Sanders-Bush, 2001; Johnson et al., 1987; Krebs-Thomson et al., 1998). The structures of many hallucinogens are similar to serotonin and have a tryptamine core. Indole analogues, especially of tryptamine derivatives, have been found to be polyamine site antagonists at the N-methyl­daspartate receptor (Worthen et al., 2001). Indole and its derivatives are secondary metabolites that are present in most plants (such as unripe bananas, broccoli and cloves), almost all flower oils (jasmine and orange blossoms) and coal tar (Waseem & Mark, 2005; Lee et al., 2003). In the pharmaceutical field, it has been discovered that it has anti­microbial and anti-inflammatory properties (Mohammad & Moutaery, 2005). The title compound, namely 2-(1H-indol-3-yl)ethanaminium acetate hemihydrate, was synthesized and its crystal structure and Hirshfeld surface analysis are reported herein.

Structural commentary  

The mol­ecular structure of the title salt is shown in Fig. 1. The asymmetric unit contains four crystallographically independent 2-(1H-indol-3-yl)ethanaminium cations, four acetate anions and two water mol­ecules. The cations are protonated at the amine N atoms (N2, N4, N6 and N8) and are each linked to an anion by a C—H⋯π inter­action (Fig. 1 and Table 1). The alkyl­aminium side chain in each cation has a folded conformation; the torsion angles are −58.5 (3)° for N2—C1—C2—C3, 59.5 (3)° for N4—C11—C12—C13, −64.6 (3)° for N6—C21—C22—C23 and −56.0 (3)° for N8—C31—C32—C33. These values are similar to those observed in the majority of 2-(1H-indol-3-yl)ethanaminium salts (see Database survey section, §5). In the structure of tryptamine, determined from powder diffraction data (Nowell et al., 2002), the corresponding angle is ca 60.4°.graphic file with name e-75-00451-scheme1.jpg

Figure 1.

Figure 1

A view of the mol­ecular structure of the title mol­ecular salt, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The C—H⋯π inter­actions linking an anion to a cation are shown as orange arrows (see Table 1). For clarity, the majority of the C-bound H atoms have been omitted.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2, Cg5, Cg8 and Cg11 are the centroids of the benzene rings C5–C10, C15–C20, C25–C30 and C35–C40, respectively. Cg3, Cg6, Cg9 and Cg12 are the centroids of the indole ring systems N1/C3–C10, N3/C13–C20, N5/C23–C30 and N7/C33–C40, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C42—H42BCg2 0.96 2.87 3.621 (3) 135
C44—H44BCg5 0.96 2.74 3.550 (3) 143
C46—H46BCg8 0.96 2.80 3.533 (3) 134
C48—H48BCg11 0.96 2.78 3.629 (3) 147
N1—H1N⋯O4i 0.86 2.08 2.898 (2) 159
N2—H2AN⋯O6 0.89 2.02 2.861 (3) 156
N2—H2BN⋯O8 0.89 1.93 2.778 (2) 158
N2—H2CN⋯O1 0.89 1.92 2.803 (2) 169
N3—H3N⋯O2ii 0.86 2.04 2.864 (3) 161
N4—H4AN⋯O4 0.89 2.03 2.805 (3) 145
N4—H4BN⋯O5i 0.89 1.91 2.777 (2) 163
N4—H4CN⋯O7ii 0.89 2.45 3.186 (3) 140
N5—H5N⋯O7iii 0.86 2.01 2.839 (2) 162
N6—H6AN⋯O4i 0.89 2.57 3.122 (3) 121
N6—H6BN⋯O1 0.89 1.95 2.828 (2) 169
N6—H6CN⋯O5 0.89 2.07 2.936 (3) 165
N7—H7N⋯O6 0.86 2.04 2.867 (3) 161
N8—H8AN⋯O2 0.89 2.09 2.936 (3) 157
N8—H8BN⋯O3ii 0.89 1.85 2.734 (2) 172
N8—H8CN⋯O7 0.89 1.87 2.726 (2) 162
C4—H4⋯O5 0.93 2.40 3.248 (3) 151
C34—H34⋯O1 0.93 2.46 3.347 (3) 159
N4—H4CN⋯O9iv 0.89 2.46 3.003 (3) 120
O9—H9A⋯O8 0.88 (5) 1.97 (5) 2.840 (3) 169 (4)
O9—H9B⋯O6 0.86 (4) 2.02 (4) 2.872 (3) 168 (4)
N6—H6AN⋯O10 0.89 2.22 2.927 (3) 136
O10—H10A⋯O3 0.88 (4) 1.96 (4) 2.822 (3) 166 (3)
O10—H10B⋯O2ii 0.85 (4) 2.07 (4) 2.903 (3) 169 (3)
C9—H9⋯Cg12v 0.93 2.93 3.782 (3) 153
C19—H19⋯Cg9vi 0.93 2.81 3.641 (3) 149
C29—H29⋯Cg3vii 0.93 2.92 3.736 (3) 147
C39—H39⋯Cg6viii 0.96 2.95 3.643 (3) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Supra­molecular features  

In the crystal, the cations and anions are liked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction (Fig. 2 and Table 1). The chains are linked by the water mol­ecules (O9 and O10) via Owater—H⋯O and N—H⋯Owater hydrogen bonds, forming layers lying parallel to the bc plane (Fig. 2 and Table 1). Within the layers, there are a number of C—H⋯π inter­actions present (Table 1).

Figure 2.

Figure 2

A view along the a axis of the crystal packing of the title mol­ecular salt. The N—H⋯O and O—H⋯O hydrogen bonds are shown as dashed lines (see Table 1). For clarity, the C-bound H atoms have been omitted.

Hirshfeld surface analysis  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional (2D) fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface of the title mol­ecular salt mapped over d norm is given in Fig. 3. The red points, which represent closer contacts and negative d norm values on the surface, correspond to the N—H⋯O, O—H⋯O and C—H⋯O inter­actions. The 2D fingerprint plots are given in Fig. 4. They reveal that the principal inter­molecular inter­actions are H⋯H (64.2%), C⋯H/H⋯C (18.8%), O⋯H/H⋯O (15.5%) and N⋯H/H⋯N (1.5%), as shown in Fig. 4.

Figure 3.

Figure 3

Two views of the overall Hirshfeld surface mapped over d norm for the title mol­ecular salt.

Figure 4.

Figure 4

The total two-dimensional fingerprint plot of the crystal and of the relative contributions of the atom pairs to the Hirshfeld surface.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, update November 2018; Groom et al., 2016) for 2-(1H-indol-3-yl)ethanamines yielded 42 hits for structures that include atomic coordinates. In 14 hits, the alkyl­aminium side chain has an extended conformation, with the absolute value of the N—C—C—C torsion angle varying from ca 169.69° in the thio­phene-2-carboxyl­ate salt (CSD refcode LACPUA; Koshima & Honke, 1999) to ca 179.44° in the (2S,3S)-hydrogen tartrate monohydrate salt (SOCMED; Koleva et al., 2009). In 28 hits, the alkyl­aminium side chain has a folded conformation as in the title cations. For example, in the di­phenyl­acetate salt (WODVUG; Koshima et al., 1999), the torsion angle is ca 64.38°, or for the chloride salt (TRYPTA11; Parsons et al., 2015), the torsion angle is ca −59.43°. An analysis showed that only three compounds crystallize with Z′ > 1. They are tris­(tryptaminium) tris­(3,5-di­nitro­benzoate) bis­(quinoline) dihydrate (AWIDAN; Lynch et al., 2016), with Z′ = 3, the benzoate salt (DAMNAH; Terakita et al., 2004), with Z′ = 2, and (cucurbit[6]uril) bis­(tryptamine) dichloride penta­deca­hydrate (DASSOH; Danylyuk & Fedin, 2012), also with Z′ = 2. In DAMNAH, the alkyl­aminium side chain has a folded conformation, while in the other two compounds the side chain is extended.

Synthesis and crystallization  

The title compound was synthesized by the reaction of a 1:1 stoichiometric mixture of tryptamine (0.160 mg, Aldrich) and acetic acid (0.060 mg, Merck) in a hot methano­lic solution (20 ml) with 10 ml of water. After warming for a few minutes over a water bath, the solution was cooled and kept at room temperature. Within a few days, colourless needle-like crystals, suitable for the X-ray analysis, were obtained (yield 65%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The water O-bound H atoms were located in a difference Fourier map and freely refined. The NH and NH3 hydrogens were originally located in a difference Fourier map but for refinement, together with the C-bound H atoms, they were positioned geometrically and refined using a riding model, with N—H = 0.86–0.89 Å and C—H = 0.93–0.97 Å, and with U iso(H) = 1.5U eq(C,N) for methyl and aminium H atoms, and 1.2U eq(C,N) otherwise. The structure was refined as a two-component twin with twin law (02Inline graphic); BASF = 0.074 (1).

Table 2. Experimental details.

Crystal data
Chemical formula C10H13N2 +·C2H3O2 ·0.5H2O
M r 229.27
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 10.8328 (2), 13.2452 (2), 18.1426 (3)
α, β, γ (°) 111.276 (1), 90.182 (1), 90.125 (1)
V3) 2425.70 (7)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.72
Crystal size (mm) 0.10 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker Kappa APEXIII CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.705, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 49248, 9420, 6239
R int 0.069
(sin θ/λ)max−1) 0.619
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.054, 0.142, 1.06
No. of reflections 9420
No. of parameters 620
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.23

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SAINT/XPREP (Bruker, 2016), SHELXL2018 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989019003347/su5480sup1.cif

e-75-00451-sup1.cif (543.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003347/su5480Isup2.hkl

e-75-00451-Isup2.hkl (747.5KB, hkl)

CCDC reference: 1579740

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C10H13N2+·C2H3O2·0.5H2O Z = 8
Mr = 229.27 F(000) = 984
Triclinic, P1 Dx = 1.256 Mg m3
a = 10.8328 (2) Å Cu Kα radiation, λ = 1.54178 Å
b = 13.2452 (2) Å Cell parameters from 9851 reflections
c = 18.1426 (3) Å θ = 3.6–72.4°
α = 111.276 (1)° µ = 0.72 mm1
β = 90.182 (1)° T = 296 K
γ = 90.125 (1)° Needle, yellow
V = 2425.70 (7) Å3 0.10 × 0.10 × 0.05 mm

Data collection

Bruker Kappa APEXIII CMOS diffractometer 6239 reflections with I > 2σ(I)
Radiation source: micro-focus sealed tube Rint = 0.069
ω and φ scan θmax = 72.6°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −13→13
Tmin = 0.705, Tmax = 0.754 k = −16→15
49248 measured reflections l = −21→22
9420 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: mixed
wR(F2) = 0.142 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.6703P] where P = (Fo2 + 2Fc2)/3
9420 reflections (Δ/σ)max = 0.001
620 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin. BASF = 0.074 (1)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.7460 (2) 0.15380 (15) 0.30549 (12) 0.0469 (5)
H1N 0.712448 0.108918 0.323851 0.056*
N2 0.58562 (19) 0.36678 (15) 0.18666 (11) 0.0417 (5)
H2AN 0.556481 0.300879 0.159185 0.063*
H2BN 0.540279 0.416060 0.176314 0.063*
H2CN 0.582104 0.378500 0.238110 0.063*
C1 0.7162 (2) 0.3750 (2) 0.16382 (15) 0.0485 (6)
H1A 0.756250 0.434967 0.204862 0.058*
H1B 0.717643 0.389992 0.115316 0.058*
C2 0.7870 (3) 0.2718 (2) 0.15173 (14) 0.0478 (6)
H2A 0.749936 0.213332 0.108028 0.057*
H2B 0.871094 0.281055 0.137000 0.057*
C3 0.7902 (2) 0.23981 (17) 0.22285 (13) 0.0370 (5)
C4 0.7217 (2) 0.16035 (18) 0.23366 (14) 0.0427 (6)
H4 0.665741 0.116330 0.196956 0.051*
C5 0.8327 (2) 0.23072 (18) 0.34366 (14) 0.0393 (5)
C6 0.8882 (3) 0.2558 (2) 0.41718 (15) 0.0511 (7)
H6 0.867764 0.218304 0.449981 0.061*
C7 0.9740 (3) 0.3378 (2) 0.44000 (17) 0.0581 (7)
H7 1.011505 0.356765 0.489394 0.070*
C8 1.0061 (3) 0.3931 (2) 0.39045 (17) 0.0594 (7)
H8 1.065694 0.447436 0.407008 0.071*
C9 0.9515 (2) 0.3691 (2) 0.31801 (16) 0.0500 (6)
H9 0.973393 0.406875 0.285679 0.060*
C10 0.8626 (2) 0.28713 (17) 0.29309 (14) 0.0378 (5)
N3 0.2703 (2) 0.33098 (16) 0.69103 (13) 0.0488 (5)
H3N 0.303553 0.371522 0.668745 0.059*
N4 0.4274 (2) 0.13833 (15) 0.82987 (12) 0.0486 (5)
H4AN 0.432242 0.124335 0.778135 0.073*
H4BN 0.469902 0.088765 0.841737 0.073*
H4CN 0.458857 0.203729 0.856258 0.073*
C11 0.2965 (3) 0.13525 (19) 0.85230 (15) 0.0477 (6)
H11A 0.292666 0.126283 0.902982 0.057*
H11B 0.256054 0.073273 0.813351 0.057*
C12 0.2288 (3) 0.2371 (2) 0.85778 (14) 0.0498 (7)
H12A 0.144212 0.231717 0.873460 0.060*
H12B 0.266920 0.298267 0.898861 0.060*
C13 0.2276 (2) 0.25876 (17) 0.78232 (14) 0.0398 (6)
C14 0.2985 (2) 0.33206 (18) 0.76495 (15) 0.0461 (6)
H14 0.357747 0.376541 0.798494 0.055*
C15 0.1806 (2) 0.25507 (18) 0.65849 (14) 0.0411 (6)
C16 0.1220 (3) 0.2242 (2) 0.58509 (16) 0.0568 (7)
H16 0.143241 0.255170 0.548317 0.068*
C17 0.0315 (3) 0.1463 (3) 0.56926 (18) 0.0677 (9)
H17 −0.009486 0.124404 0.520839 0.081*
C18 −0.0002 (3) 0.0995 (2) 0.62359 (18) 0.0654 (8)
H18 −0.062175 0.047218 0.611065 0.078*
C19 0.0581 (3) 0.1290 (2) 0.69548 (16) 0.0522 (7)
H19 0.036057 0.096834 0.731362 0.063*
C20 0.1507 (2) 0.20764 (18) 0.71446 (13) 0.0383 (5)
N5 0.2644 (2) −0.14717 (15) 0.19676 (12) 0.0475 (5)
H5N 0.296545 −0.210710 0.177804 0.057*
N6 0.4361 (2) 0.18460 (15) 0.32742 (12) 0.0474 (5)
H6AN 0.461588 0.161044 0.365009 0.071*
H6BN 0.480121 0.242580 0.329878 0.071*
H6CN 0.446204 0.132574 0.280243 0.071*
C21 0.3040 (2) 0.21386 (18) 0.33925 (15) 0.0467 (6)
H21A 0.272952 0.227723 0.293620 0.056*
H21B 0.295285 0.279873 0.385235 0.056*
C22 0.2279 (3) 0.12453 (19) 0.35085 (14) 0.0493 (6)
H22A 0.261412 0.109324 0.395359 0.059*
H22B 0.144073 0.150151 0.364031 0.059*
C23 0.2246 (2) 0.02147 (17) 0.28001 (14) 0.0396 (5)
C24 0.2920 (2) −0.06968 (19) 0.26856 (15) 0.0444 (6)
H24 0.348676 −0.077948 0.304533 0.053*
C25 0.1777 (2) −0.10725 (18) 0.16006 (14) 0.0410 (6)
C26 0.1195 (3) −0.1548 (2) 0.08716 (16) 0.0547 (7)
H26 0.138459 −0.225136 0.054130 0.066*
C27 0.0334 (3) −0.0951 (2) 0.06532 (18) 0.0649 (8)
H27 −0.006303 −0.125367 0.016656 0.078*
C28 0.0043 (3) 0.0098 (3) 0.11456 (19) 0.0646 (8)
H28 −0.055184 0.048063 0.098487 0.077*
C29 0.0618 (3) 0.0581 (2) 0.18678 (17) 0.0531 (7)
H29 0.041862 0.128457 0.219234 0.064*
C30 0.1508 (2) −0.00045 (17) 0.21039 (14) 0.0392 (5)
N7 0.2593 (2) 0.35813 (15) 0.18889 (13) 0.0482 (5)
H7N 0.294125 0.296121 0.167137 0.058*
N8 0.40770 (19) 0.69036 (15) 0.32048 (11) 0.0430 (5)
H8AN 0.438094 0.640145 0.337327 0.065*
H8BN 0.453345 0.750285 0.339608 0.065*
H8CN 0.409079 0.665847 0.267862 0.065*
C31 0.2781 (3) 0.71517 (19) 0.34835 (15) 0.0483 (6)
H31A 0.233100 0.740203 0.311949 0.058*
H31B 0.278233 0.773101 0.399827 0.058*
C32 0.2130 (3) 0.6172 (2) 0.35426 (14) 0.0498 (6)
H32A 0.252725 0.597867 0.395266 0.060*
H32B 0.128300 0.636587 0.370354 0.060*
C33 0.2123 (2) 0.51998 (17) 0.27897 (13) 0.0375 (5)
C34 0.2853 (2) 0.43123 (19) 0.26256 (15) 0.0448 (6)
H34 0.344421 0.421696 0.296698 0.054*
C35 0.1695 (2) 0.39916 (18) 0.15541 (14) 0.0398 (5)
C36 0.1129 (3) 0.3559 (2) 0.08117 (15) 0.0531 (7)
H36 0.136157 0.288782 0.044803 0.064*
C37 0.0219 (3) 0.4157 (3) 0.06369 (17) 0.0623 (8)
H37 −0.017469 0.388519 0.014738 0.075*
C38 −0.0125 (3) 0.5161 (2) 0.11781 (17) 0.0601 (7)
H38 −0.074693 0.554782 0.104500 0.072*
C39 0.0436 (2) 0.5595 (2) 0.19055 (16) 0.0495 (6)
H39 0.019483 0.626784 0.226234 0.059*
C40 0.1370 (2) 0.50153 (17) 0.21034 (13) 0.0357 (5)
O1 0.54686 (17) 0.38518 (13) 0.34369 (10) 0.0480 (4)
O2 0.56930 (18) 0.56213 (13) 0.38279 (11) 0.0557 (5)
C41 0.5852 (2) 0.47330 (18) 0.39205 (13) 0.0359 (5)
C42 0.6554 (3) 0.4733 (2) 0.46310 (15) 0.0605 (8)
H42A 0.635115 0.537044 0.507692 0.091*
H42B 0.742370 0.472921 0.452932 0.091*
H42C 0.633916 0.410031 0.474307 0.091*
O3 0.46376 (17) 0.12110 (13) 0.60828 (10) 0.0495 (4)
O4 0.40630 (17) 0.01048 (13) 0.66873 (9) 0.0482 (4)
C43 0.4023 (2) 0.04290 (16) 0.61187 (13) 0.0350 (5)
C44 0.3194 (3) −0.0161 (2) 0.54327 (14) 0.0501 (6)
H44A 0.341903 0.002369 0.498563 0.075*
H44B 0.235268 0.004489 0.557315 0.075*
H44C 0.327943 −0.092742 0.530034 0.075*
O5 0.46117 (17) 0.04508 (13) 0.16035 (10) 0.0478 (4)
O6 0.42758 (18) 0.18212 (13) 0.12116 (11) 0.0572 (5)
C45 0.4181 (2) 0.08336 (17) 0.11236 (13) 0.0368 (5)
C46 0.3498 (3) 0.0099 (2) 0.04132 (15) 0.0581 (7)
H46A 0.371962 0.027056 −0.004017 0.087*
H46B 0.262618 0.019558 0.050183 0.087*
H46C 0.371140 −0.063933 0.032166 0.087*
O7 0.40477 (17) 0.66077 (12) 0.16375 (9) 0.0493 (5)
O8 0.46056 (17) 0.48909 (12) 0.11445 (10) 0.0497 (5)
C47 0.4017 (2) 0.56810 (17) 0.11097 (13) 0.0341 (5)
C48 0.3219 (3) 0.5520 (2) 0.03979 (14) 0.0508 (7)
H48A 0.326314 0.615251 0.025871 0.076*
H48B 0.238031 0.540220 0.051669 0.076*
H48C 0.350369 0.490185 −0.003708 0.076*
O9 0.4626 (3) 0.2741 (2) 0.00169 (13) 0.0817 (8)
H9A 0.455 (4) 0.342 (4) 0.033 (3) 0.136 (18)*
H9B 0.449 (4) 0.238 (3) 0.032 (2) 0.107 (15)*
O10 0.4565 (3) 0.2236 (2) 0.49644 (13) 0.0767 (7)
H10A 0.447 (3) 0.187 (3) 0.527 (2) 0.094 (12)*
H10B 0.442 (3) 0.288 (3) 0.527 (2) 0.091 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0499 (14) 0.0404 (11) 0.0599 (14) −0.0059 (9) −0.0003 (10) 0.0296 (10)
N2 0.0536 (14) 0.0351 (10) 0.0381 (11) 0.0032 (9) −0.0046 (9) 0.0154 (9)
C1 0.0576 (18) 0.0490 (14) 0.0486 (15) −0.0009 (12) 0.0012 (12) 0.0294 (12)
C2 0.0546 (18) 0.0465 (14) 0.0435 (14) 0.0068 (12) 0.0079 (12) 0.0175 (12)
C3 0.0398 (15) 0.0313 (11) 0.0418 (13) 0.0062 (9) 0.0053 (10) 0.0152 (10)
C4 0.0428 (16) 0.0356 (12) 0.0492 (15) −0.0014 (10) −0.0028 (11) 0.0148 (11)
C5 0.0368 (15) 0.0351 (12) 0.0501 (14) 0.0036 (10) 0.0040 (11) 0.0204 (11)
C6 0.0561 (19) 0.0534 (16) 0.0516 (16) 0.0062 (13) 0.0005 (13) 0.0280 (13)
C7 0.052 (2) 0.0632 (18) 0.0568 (17) 0.0035 (14) −0.0099 (13) 0.0194 (14)
C8 0.054 (2) 0.0535 (16) 0.0666 (19) −0.0137 (13) −0.0072 (14) 0.0170 (14)
C9 0.0482 (18) 0.0444 (14) 0.0597 (17) −0.0087 (11) 0.0045 (13) 0.0218 (13)
C10 0.0367 (14) 0.0324 (12) 0.0463 (13) 0.0047 (9) 0.0071 (10) 0.0169 (10)
N3 0.0525 (15) 0.0417 (12) 0.0615 (14) −0.0002 (10) 0.0090 (11) 0.0296 (10)
N4 0.0584 (15) 0.0350 (11) 0.0520 (13) 0.0050 (9) −0.0072 (10) 0.0154 (9)
C11 0.0624 (19) 0.0430 (14) 0.0420 (14) 0.0011 (12) 0.0011 (12) 0.0207 (11)
C12 0.0600 (19) 0.0484 (15) 0.0400 (14) 0.0129 (12) 0.0065 (12) 0.0148 (12)
C13 0.0430 (15) 0.0322 (12) 0.0437 (13) 0.0099 (10) 0.0051 (11) 0.0131 (10)
C14 0.0462 (17) 0.0324 (12) 0.0577 (16) 0.0029 (10) −0.0016 (12) 0.0138 (11)
C15 0.0401 (15) 0.0390 (13) 0.0482 (14) 0.0084 (10) 0.0069 (11) 0.0208 (11)
C16 0.059 (2) 0.0687 (19) 0.0502 (16) 0.0180 (15) 0.0014 (13) 0.0307 (14)
C17 0.054 (2) 0.078 (2) 0.0608 (19) 0.0103 (16) −0.0148 (15) 0.0130 (16)
C18 0.050 (2) 0.0666 (19) 0.071 (2) −0.0087 (14) −0.0037 (15) 0.0148 (16)
C19 0.0457 (18) 0.0509 (15) 0.0606 (17) −0.0052 (12) 0.0125 (13) 0.0210 (13)
C20 0.0366 (15) 0.0358 (12) 0.0430 (13) 0.0066 (10) 0.0087 (10) 0.0149 (10)
N5 0.0509 (14) 0.0278 (10) 0.0604 (14) 0.0041 (9) −0.0006 (10) 0.0121 (10)
N6 0.0567 (15) 0.0351 (11) 0.0529 (13) −0.0059 (9) −0.0018 (10) 0.0192 (10)
C21 0.0594 (19) 0.0310 (12) 0.0456 (14) 0.0023 (11) 0.0013 (12) 0.0089 (11)
C22 0.0552 (18) 0.0466 (14) 0.0426 (14) −0.0015 (12) 0.0104 (12) 0.0119 (12)
C23 0.0427 (15) 0.0335 (12) 0.0443 (14) −0.0038 (10) 0.0058 (11) 0.0160 (10)
C24 0.0448 (16) 0.0405 (13) 0.0521 (15) −0.0018 (11) −0.0022 (11) 0.0215 (12)
C25 0.0379 (15) 0.0326 (12) 0.0530 (15) −0.0015 (10) 0.0035 (11) 0.0162 (11)
C26 0.056 (2) 0.0452 (15) 0.0574 (17) −0.0081 (12) −0.0026 (13) 0.0114 (13)
C27 0.059 (2) 0.073 (2) 0.0607 (18) −0.0162 (15) −0.0139 (14) 0.0228 (16)
C28 0.050 (2) 0.075 (2) 0.076 (2) 0.0086 (15) −0.0085 (15) 0.0365 (17)
C29 0.0482 (18) 0.0483 (15) 0.0655 (18) 0.0134 (12) 0.0110 (14) 0.0237 (13)
C30 0.0358 (15) 0.0347 (12) 0.0486 (14) −0.0001 (9) 0.0074 (11) 0.0168 (10)
N7 0.0509 (14) 0.0296 (10) 0.0623 (14) 0.0067 (9) 0.0055 (10) 0.0146 (10)
N8 0.0534 (14) 0.0361 (10) 0.0387 (11) −0.0081 (9) −0.0069 (9) 0.0126 (9)
C31 0.0550 (18) 0.0375 (13) 0.0440 (14) −0.0028 (11) 0.0053 (12) 0.0046 (11)
C32 0.0594 (19) 0.0506 (15) 0.0376 (14) −0.0083 (12) 0.0059 (12) 0.0140 (12)
C33 0.0386 (15) 0.0343 (12) 0.0419 (13) −0.0050 (9) 0.0040 (10) 0.0167 (10)
C34 0.0437 (16) 0.0445 (14) 0.0538 (15) −0.0034 (11) −0.0047 (11) 0.0270 (12)
C35 0.0386 (15) 0.0332 (12) 0.0474 (14) −0.0019 (10) 0.0056 (11) 0.0146 (11)
C36 0.058 (2) 0.0460 (15) 0.0479 (15) −0.0137 (12) 0.0020 (13) 0.0085 (12)
C37 0.057 (2) 0.078 (2) 0.0538 (17) −0.0192 (15) −0.0137 (14) 0.0265 (16)
C38 0.0467 (19) 0.075 (2) 0.0681 (19) 0.0042 (14) −0.0044 (14) 0.0377 (16)
C39 0.0463 (17) 0.0464 (14) 0.0587 (17) 0.0109 (12) 0.0085 (13) 0.0223 (13)
C40 0.0361 (14) 0.0315 (11) 0.0409 (13) −0.0005 (9) 0.0070 (10) 0.0146 (10)
O1 0.0616 (13) 0.0366 (9) 0.0447 (10) −0.0074 (8) −0.0071 (8) 0.0136 (8)
O2 0.0727 (14) 0.0408 (10) 0.0631 (12) −0.0089 (9) −0.0059 (9) 0.0303 (9)
C41 0.0383 (15) 0.0369 (13) 0.0344 (12) −0.0009 (9) 0.0039 (10) 0.0151 (10)
C42 0.066 (2) 0.0651 (18) 0.0444 (15) 0.0148 (14) −0.0101 (13) 0.0130 (13)
O3 0.0599 (13) 0.0397 (9) 0.0521 (10) −0.0162 (8) −0.0051 (8) 0.0206 (8)
O4 0.0597 (13) 0.0491 (10) 0.0419 (10) −0.0083 (8) −0.0024 (8) 0.0238 (8)
C43 0.0412 (15) 0.0262 (11) 0.0368 (12) 0.0004 (9) 0.0044 (10) 0.0104 (9)
C44 0.0546 (18) 0.0466 (14) 0.0445 (14) −0.0088 (12) −0.0093 (12) 0.0111 (12)
O5 0.0568 (12) 0.0386 (9) 0.0497 (10) 0.0028 (8) −0.0063 (8) 0.0178 (8)
O6 0.0701 (14) 0.0303 (9) 0.0703 (13) 0.0047 (8) −0.0038 (10) 0.0171 (8)
C45 0.0389 (15) 0.0298 (12) 0.0404 (13) 0.0051 (9) 0.0049 (10) 0.0113 (10)
C46 0.064 (2) 0.0612 (17) 0.0484 (16) −0.0147 (14) −0.0071 (13) 0.0192 (13)
O7 0.0664 (13) 0.0353 (9) 0.0394 (9) 0.0087 (8) −0.0063 (8) 0.0054 (7)
O8 0.0616 (13) 0.0377 (9) 0.0526 (10) 0.0088 (8) −0.0049 (8) 0.0198 (8)
C47 0.0395 (14) 0.0321 (12) 0.0330 (12) 0.0037 (9) 0.0034 (9) 0.0145 (10)
C48 0.0576 (19) 0.0534 (16) 0.0427 (14) −0.0003 (12) −0.0077 (12) 0.0192 (12)
O9 0.138 (2) 0.0510 (14) 0.0508 (13) −0.0057 (13) −0.0047 (13) 0.0119 (11)
O10 0.129 (2) 0.0563 (14) 0.0483 (13) 0.0027 (13) −0.0048 (12) 0.0236 (12)

Geometric parameters (Å, º)

N1—C4 1.362 (3) C23—C30 1.430 (3)
N1—C5 1.372 (3) C24—H24 0.9300
N1—H1N 0.8600 C25—C26 1.390 (4)
N2—C1 1.490 (3) C25—C30 1.409 (3)
N2—H2AN 0.8900 C26—C27 1.372 (4)
N2—H2BN 0.8900 C26—H26 0.9300
N2—H2CN 0.8900 C27—C28 1.389 (4)
C1—C2 1.514 (3) C27—H27 0.9300
C1—H1A 0.9700 C28—C29 1.378 (4)
C1—H1B 0.9700 C28—H28 0.9300
C2—C3 1.498 (3) C29—C30 1.398 (3)
C2—H2A 0.9700 C29—H29 0.9300
C2—H2B 0.9700 N7—C35 1.360 (3)
C3—C4 1.358 (3) N7—C34 1.364 (3)
C3—C10 1.429 (3) N7—H7N 0.8600
C4—H4 0.9300 N8—C31 1.490 (3)
C5—C6 1.387 (3) N8—H8AN 0.8900
C5—C10 1.415 (3) N8—H8BN 0.8900
C6—C7 1.372 (4) N8—H8CN 0.8900
C6—H6 0.9300 C31—C32 1.514 (3)
C7—C8 1.395 (4) C31—H31A 0.9700
C7—H7 0.9300 C31—H31B 0.9700
C8—C9 1.367 (4) C32—C33 1.499 (3)
C8—H8 0.9300 C32—H32A 0.9700
C9—C10 1.395 (3) C32—H32B 0.9700
C9—H9 0.9300 C33—C34 1.359 (3)
N3—C15 1.365 (3) C33—C40 1.431 (3)
N3—C14 1.370 (3) C34—H34 0.9300
N3—H3N 0.8600 C35—C36 1.397 (3)
N4—C11 1.481 (3) C35—C40 1.407 (3)
N4—H4AN 0.8900 C36—C37 1.373 (4)
N4—H4BN 0.8900 C36—H36 0.9300
N4—H4CN 0.8900 C37—C38 1.389 (4)
C11—C12 1.509 (3) C37—H37 0.9300
C11—H11A 0.9700 C38—C39 1.372 (4)
C11—H11B 0.9700 C38—H38 0.9300
C12—C13 1.497 (3) C39—C40 1.394 (3)
C12—H12A 0.9700 C39—H39 0.9300
C12—H12B 0.9700 O1—C41 1.248 (3)
C13—C14 1.361 (3) O2—C41 1.259 (3)
C13—C20 1.433 (3) C41—C42 1.495 (3)
C14—H14 0.9300 C42—H42A 0.9600
C15—C16 1.394 (4) C42—H42B 0.9600
C15—C20 1.412 (3) C42—H42C 0.9600
C16—C17 1.374 (4) O3—C43 1.252 (3)
C16—H16 0.9300 O4—C43 1.254 (3)
C17—C18 1.385 (4) C43—C44 1.500 (3)
C17—H17 0.9300 C44—H44A 0.9600
C18—C19 1.370 (4) C44—H44B 0.9600
C18—H18 0.9300 C44—H44C 0.9600
C19—C20 1.394 (3) O5—C45 1.246 (3)
C19—H19 0.9300 O6—C45 1.263 (3)
N5—C25 1.364 (3) C45—C46 1.495 (3)
N5—C24 1.366 (3) C46—H46A 0.9600
N5—H5N 0.8600 C46—H46B 0.9600
N6—C21 1.480 (3) C46—H46C 0.9600
N6—H6AN 0.8900 O7—C47 1.253 (3)
N6—H6BN 0.8900 O8—C47 1.247 (3)
N6—H6CN 0.8900 C47—C48 1.501 (3)
C21—C22 1.517 (3) C48—H48A 0.9600
C21—H21A 0.9700 C48—H48B 0.9600
C21—H21B 0.9700 C48—H48C 0.9600
C22—C23 1.498 (3) O9—H9A 0.88 (5)
C22—H22A 0.9700 O9—H9B 0.86 (4)
C22—H22B 0.9700 O10—H10A 0.88 (4)
C23—C24 1.363 (3) O10—H10B 0.85 (4)
C4—N1—C5 108.61 (19) C21—C22—H22B 108.8
C4—N1—H1N 125.7 H22A—C22—H22B 107.7
C5—N1—H1N 125.7 C24—C23—C30 106.3 (2)
C1—N2—H2AN 109.5 C24—C23—C22 127.0 (2)
C1—N2—H2BN 109.5 C30—C23—C22 126.8 (2)
H2AN—N2—H2BN 109.5 C23—C24—N5 110.4 (2)
C1—N2—H2CN 109.5 C23—C24—H24 124.8
H2AN—N2—H2CN 109.5 N5—C24—H24 124.8
H2BN—N2—H2CN 109.5 N5—C25—C26 130.7 (2)
N2—C1—C2 111.8 (2) N5—C25—C30 107.7 (2)
N2—C1—H1A 109.3 C26—C25—C30 121.6 (2)
C2—C1—H1A 109.3 C27—C26—C25 118.1 (3)
N2—C1—H1B 109.3 C27—C26—H26 121.0
C2—C1—H1B 109.3 C25—C26—H26 121.0
H1A—C1—H1B 107.9 C26—C27—C28 121.2 (3)
C3—C2—C1 114.13 (19) C26—C27—H27 119.4
C3—C2—H2A 108.7 C28—C27—H27 119.4
C1—C2—H2A 108.7 C29—C28—C27 121.3 (3)
C3—C2—H2B 108.7 C29—C28—H28 119.4
C1—C2—H2B 108.7 C27—C28—H28 119.4
H2A—C2—H2B 107.6 C28—C29—C30 118.8 (2)
C4—C3—C10 106.3 (2) C28—C29—H29 120.6
C4—C3—C2 126.1 (2) C30—C29—H29 120.6
C10—C3—C2 127.6 (2) C29—C30—C25 119.0 (2)
C3—C4—N1 110.9 (2) C29—C30—C23 134.1 (2)
C3—C4—H4 124.6 C25—C30—C23 106.8 (2)
N1—C4—H4 124.6 C35—N7—C34 108.97 (19)
N1—C5—C6 130.8 (2) C35—N7—H7N 125.5
N1—C5—C10 107.4 (2) C34—N7—H7N 125.5
C6—C5—C10 121.8 (2) C31—N8—H8AN 109.5
C7—C6—C5 117.9 (2) C31—N8—H8BN 109.5
C7—C6—H6 121.1 H8AN—N8—H8BN 109.5
C5—C6—H6 121.1 C31—N8—H8CN 109.5
C6—C7—C8 121.2 (3) H8AN—N8—H8CN 109.5
C6—C7—H7 119.4 H8BN—N8—H8CN 109.5
C8—C7—H7 119.4 N8—C31—C32 111.9 (2)
C9—C8—C7 121.2 (3) N8—C31—H31A 109.2
C9—C8—H8 119.4 C32—C31—H31A 109.2
C7—C8—H8 119.4 N8—C31—H31B 109.2
C8—C9—C10 119.3 (2) C32—C31—H31B 109.2
C8—C9—H9 120.4 H31A—C31—H31B 107.9
C10—C9—H9 120.4 C33—C32—C31 114.23 (19)
C9—C10—C5 118.6 (2) C33—C32—H32A 108.7
C9—C10—C3 134.5 (2) C31—C32—H32A 108.7
C5—C10—C3 106.8 (2) C33—C32—H32B 108.7
C15—N3—C14 108.9 (2) C31—C32—H32B 108.7
C15—N3—H3N 125.5 H32A—C32—H32B 107.6
C14—N3—H3N 125.5 C34—C33—C40 106.2 (2)
C11—N4—H4AN 109.5 C34—C33—C32 126.0 (2)
C11—N4—H4BN 109.5 C40—C33—C32 127.7 (2)
H4AN—N4—H4BN 109.5 C33—C34—N7 110.3 (2)
C11—N4—H4CN 109.5 C33—C34—H34 124.8
H4AN—N4—H4CN 109.5 N7—C34—H34 124.8
H4BN—N4—H4CN 109.5 N7—C35—C36 130.6 (2)
N4—C11—C12 111.9 (2) N7—C35—C40 107.7 (2)
N4—C11—H11A 109.2 C36—C35—C40 121.7 (2)
C12—C11—H11A 109.2 C37—C36—C35 117.8 (2)
N4—C11—H11B 109.2 C37—C36—H36 121.1
C12—C11—H11B 109.2 C35—C36—H36 121.1
H11A—C11—H11B 107.9 C36—C37—C38 121.2 (3)
C13—C12—C11 113.95 (19) C36—C37—H37 119.4
C13—C12—H12A 108.8 C38—C37—H37 119.4
C11—C12—H12A 108.8 C39—C38—C37 121.3 (3)
C13—C12—H12B 108.8 C39—C38—H38 119.3
C11—C12—H12B 108.8 C37—C38—H38 119.3
H12A—C12—H12B 107.7 C38—C39—C40 119.3 (2)
C14—C13—C20 106.3 (2) C38—C39—H39 120.4
C14—C13—C12 126.7 (2) C40—C39—H39 120.4
C20—C13—C12 127.0 (2) C39—C40—C35 118.8 (2)
C13—C14—N3 110.3 (2) C39—C40—C33 134.4 (2)
C13—C14—H14 124.8 C35—C40—C33 106.7 (2)
N3—C14—H14 124.8 O1—C41—O2 122.8 (2)
N3—C15—C16 130.4 (2) O1—C41—C42 118.7 (2)
N3—C15—C20 107.6 (2) O2—C41—C42 118.5 (2)
C16—C15—C20 122.0 (2) C41—C42—H42A 109.5
C17—C16—C15 117.3 (3) C41—C42—H42B 109.5
C17—C16—H16 121.3 H42A—C42—H42B 109.5
C15—C16—H16 121.3 C41—C42—H42C 109.5
C16—C17—C18 121.7 (3) H42A—C42—H42C 109.5
C16—C17—H17 119.2 H42B—C42—H42C 109.5
C18—C17—H17 119.2 O3—C43—O4 124.2 (2)
C19—C18—C17 121.1 (3) O3—C43—C44 117.6 (2)
C19—C18—H18 119.4 O4—C43—C44 118.1 (2)
C17—C18—H18 119.4 C43—C44—H44A 109.5
C18—C19—C20 119.5 (3) C43—C44—H44B 109.5
C18—C19—H19 120.2 H44A—C44—H44B 109.5
C20—C19—H19 120.2 C43—C44—H44C 109.5
C19—C20—C15 118.4 (2) H44A—C44—H44C 109.5
C19—C20—C13 134.8 (2) H44B—C44—H44C 109.5
C15—C20—C13 106.8 (2) O5—C45—O6 123.2 (2)
C25—N5—C24 108.81 (19) O5—C45—C46 118.9 (2)
C25—N5—H5N 125.6 O6—C45—C46 117.9 (2)
C24—N5—H5N 125.6 C45—C46—H46A 109.5
C21—N6—H6AN 109.5 C45—C46—H46B 109.5
C21—N6—H6BN 109.5 H46A—C46—H46B 109.5
H6AN—N6—H6BN 109.5 C45—C46—H46C 109.5
C21—N6—H6CN 109.5 H46A—C46—H46C 109.5
H6AN—N6—H6CN 109.5 H46B—C46—H46C 109.5
H6BN—N6—H6CN 109.5 O8—C47—O7 123.9 (2)
N6—C21—C22 111.64 (19) O8—C47—C48 118.5 (2)
N6—C21—H21A 109.3 O7—C47—C48 117.63 (19)
C22—C21—H21A 109.3 C47—C48—H48A 109.5
N6—C21—H21B 109.3 C47—C48—H48B 109.5
C22—C21—H21B 109.3 H48A—C48—H48B 109.5
H21A—C21—H21B 108.0 C47—C48—H48C 109.5
C23—C22—C21 113.92 (19) H48A—C48—H48C 109.5
C23—C22—H22A 108.8 H48B—C48—H48C 109.5
C21—C22—H22A 108.8 H9A—O9—H9B 105 (4)
C23—C22—H22B 108.8 H10A—O10—H10B 102 (3)
N2—C1—C2—C3 −58.5 (3) N6—C21—C22—C23 −64.6 (3)
C1—C2—C3—C4 103.1 (3) C21—C22—C23—C24 100.7 (3)
C1—C2—C3—C10 −75.4 (3) C21—C22—C23—C30 −78.6 (3)
C10—C3—C4—N1 −0.3 (3) C30—C23—C24—N5 −0.5 (3)
C2—C3—C4—N1 −179.0 (2) C22—C23—C24—N5 −179.8 (2)
C5—N1—C4—C3 0.0 (3) C25—N5—C24—C23 −0.1 (3)
C4—N1—C5—C6 −179.4 (2) C24—N5—C25—C26 −179.2 (3)
C4—N1—C5—C10 0.2 (3) C24—N5—C25—C30 0.6 (3)
N1—C5—C6—C7 179.5 (2) N5—C25—C26—C27 179.2 (3)
C10—C5—C6—C7 −0.1 (4) C30—C25—C26—C27 −0.6 (4)
C5—C6—C7—C8 −0.9 (4) C25—C26—C27—C28 −0.3 (4)
C6—C7—C8—C9 1.2 (4) C26—C27—C28—C29 0.7 (5)
C7—C8—C9—C10 −0.4 (4) C27—C28—C29—C30 −0.2 (4)
C8—C9—C10—C5 −0.7 (4) C28—C29—C30—C25 −0.7 (4)
C8—C9—C10—C3 −178.5 (3) C28—C29—C30—C23 −177.9 (3)
N1—C5—C10—C9 −178.8 (2) N5—C25—C30—C29 −178.7 (2)
C6—C5—C10—C9 0.9 (3) C26—C25—C30—C29 1.1 (4)
N1—C5—C10—C3 −0.4 (2) N5—C25—C30—C23 −0.9 (3)
C6—C5—C10—C3 179.3 (2) C26—C25—C30—C23 179.0 (2)
C4—C3—C10—C9 178.4 (3) C24—C23—C30—C29 178.2 (3)
C2—C3—C10—C9 −2.9 (4) C22—C23—C30—C29 −2.4 (4)
C4—C3—C10—C5 0.4 (2) C24—C23—C30—C25 0.8 (3)
C2—C3—C10—C5 179.1 (2) C22—C23—C30—C25 −179.8 (2)
N4—C11—C12—C13 59.5 (3) N8—C31—C32—C33 −56.0 (3)
C11—C12—C13—C14 −102.8 (3) C31—C32—C33—C34 103.2 (3)
C11—C12—C13—C20 78.1 (3) C31—C32—C33—C40 −76.4 (3)
C20—C13—C14—N3 0.6 (3) C40—C33—C34—N7 −0.8 (3)
C12—C13—C14—N3 −178.7 (2) C32—C33—C34—N7 179.5 (2)
C15—N3—C14—C13 −0.8 (3) C35—N7—C34—C33 0.9 (3)
C14—N3—C15—C16 179.9 (2) C34—N7—C35—C36 179.4 (2)
C14—N3—C15—C20 0.6 (3) C34—N7—C35—C40 −0.5 (3)
N3—C15—C16—C17 −178.2 (3) N7—C35—C36—C37 178.8 (3)
C20—C15—C16—C17 1.0 (4) C40—C35—C36—C37 −1.3 (4)
C15—C16—C17—C18 −0.3 (4) C35—C36—C37—C38 0.3 (4)
C16—C17—C18—C19 −0.3 (5) C36—C37—C38—C39 0.3 (5)
C17—C18—C19—C20 0.2 (4) C37—C38—C39—C40 0.1 (4)
C18—C19—C20—C15 0.5 (4) C38—C39—C40—C35 −1.1 (4)
C18—C19—C20—C13 178.5 (3) C38—C39—C40—C33 −178.9 (3)
N3—C15—C20—C19 178.3 (2) N7—C35—C40—C39 −178.4 (2)
C16—C15—C20—C19 −1.1 (3) C36—C35—C40—C39 1.7 (3)
N3—C15—C20—C13 −0.3 (2) N7—C35—C40—C33 0.0 (2)
C16—C15—C20—C13 −179.6 (2) C36—C35—C40—C33 −179.9 (2)
C14—C13—C20—C19 −178.4 (3) C34—C33—C40—C39 178.5 (3)
C12—C13—C20—C19 0.9 (4) C32—C33—C40—C39 −1.8 (4)
C14—C13—C20—C15 −0.2 (2) C34—C33—C40—C35 0.5 (2)
C12—C13—C20—C15 179.1 (2) C32—C33—C40—C35 −179.8 (2)

Hydrogen-bond geometry (Å, º)

Cg2, Cg5, Cg8 and Cg11 are the centroids of the benzene rings C5-C10, C15-C20, C25-C30 and C35-C40, respectively. Cg3, Cg6, Cg9 and Cg12 are the centroids of the indole ring systems N1/C3-C10, N3/C13-C20, N5/C23-C30 and N7/C33-C40, respectively.

D—H···A D—H H···A D···A D—H···A
C42—H42B···Cg2 0.96 2.87 3.621 (3) 135
C44—H44B···Cg5 0.96 2.74 3.550 (3) 143
C46—H46B···Cg8 0.96 2.80 3.533 (3) 134
C48—H48B···Cg11 0.96 2.78 3.629 (3) 147
N1—H1N···O4i 0.86 2.08 2.898 (2) 159
N2—H2AN···O6 0.89 2.02 2.861 (3) 156
N2—H2BN···O8 0.89 1.93 2.778 (2) 158
N2—H2CN···O1 0.89 1.92 2.803 (2) 169
N3—H3N···O2ii 0.86 2.04 2.864 (3) 161
N4—H4AN···O4 0.89 2.03 2.805 (3) 145
N4—H4BN···O5i 0.89 1.91 2.777 (2) 163
N4—H4CN···O7ii 0.89 2.45 3.186 (3) 140
N5—H5N···O7iii 0.86 2.01 2.839 (2) 162
N6—H6AN···O4i 0.89 2.57 3.122 (3) 121
N6—H6BN···O1 0.89 1.95 2.828 (2) 169
N6—H6CN···O5 0.89 2.07 2.936 (3) 165
N7—H7N···O6 0.86 2.04 2.867 (3) 161
N8—H8AN···O2 0.89 2.09 2.936 (3) 157
N8—H8BN···O3ii 0.89 1.85 2.734 (2) 172
N8—H8CN···O7 0.89 1.87 2.726 (2) 162
C4—H4···O5 0.93 2.40 3.248 (3) 151
C34—H34···O1 0.93 2.46 3.347 (3) 159
N4—H4CN···O9iv 0.89 2.46 3.003 (3) 120
O9—H9A···O8 0.88 (5) 1.97 (5) 2.840 (3) 169 (4)
O9—H9B···O6 0.86 (4) 2.02 (4) 2.872 (3) 168 (4)
N6—H6AN···O10 0.89 2.22 2.927 (3) 136
O10—H10A···O3 0.88 (4) 1.96 (4) 2.822 (3) 166 (3)
O10—H10B···O2ii 0.85 (4) 2.07 (4) 2.903 (3) 169 (3)
C9—H9···Cg12v 0.93 2.93 3.782 (3) 153
C19—H19···Cg9vi 0.93 2.81 3.641 (3) 149
C29—H29···Cg3vii 0.93 2.92 3.736 (3) 147
C37—H37···Cg6viii 0.93 2.83 3.692 (3) 155

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z; (iv) x, y, z+1; (v) x+1, y, z; (vi) −x, −y, −z+1; (vii) x−1, y, z; (viii) −x, −y+1, −z+1.

References

  1. Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Danylyuk, O. & Fedin, V. P. (2012). Cryst. Growth Des. 12, 550–555.
  3. Glennon, R. A., Titeler, M. & McKenney, J. D. (1984). Life Sci. 35, 2505–2511. [DOI] [PubMed]
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Johnson, M. P., Hoffman, A. J., Nichols, D. E. & Mathis, C. A. (1987). Neuropharmacology, 26, 1803–1806. [DOI] [PubMed]
  6. Jones, R. S. G. (1982). Prog. Neurobiol. 19, 117–139. [DOI] [PubMed]
  7. Koleva, B. B., Kolev, T., Mayer-Figge, H., Seidel, R. W., Spiteller, M. & Sheldrick, W. S. (2009). Struct. Chem. 20, 565–567. [DOI] [PubMed]
  8. Koshima, H. & Honke, S. (1999). J. Org. Chem. 64, 790–793. [DOI] [PubMed]
  9. Koshima, H., Honke, S. & Fujita, J. (1999). J. Org. Chem. 64, 3916–3921. [DOI] [PubMed]
  10. Krebs-Thomson, K., Paulus, M. P. & Geyer, M. A. (1998). Neuropsychopharmacology, 18, 339–351. [DOI] [PubMed]
  11. Lee, S. K., Yi, K. Y., Kim, S. K., Suh, J., Kim, N. J., Yoo, S., Lee, B. H., Seo, H. W., Kim, S. O. & Lim, H. (2003). Eur. J. Med. Chem. 38, 459–471. [DOI] [PubMed]
  12. Lynch, D. E., Smith, G., Keene, T. D. & Horton, P. N. (2016). Acta Cryst. C72, 738–742. [DOI] [PubMed]
  13. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  14. Mohammad, T. & Moutaery, A. A. (2005). Exp. Toxicol. Pathol. 56, 119–129.
  15. Nichols, C. D. & Sanders-Bush, E. (2001). Heffter Rev. Psychedelic Res. 2, 73–79.
  16. Nowell, H., Attfield, J. P. & Cole, J. C. (2002). Acta Cryst. B58, 835–840. [DOI] [PubMed]
  17. Parsons, S., McCall, K. & Robertson, N. (2015). CSD Communication (Private Communication). CCDC, Cambridge, England.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Takahashi, N. (1986). In Chemistry of Plant Hormones. Florida: CRC Press.
  23. Terakita, A., Matsunaga, H., Ueda, T., Eguchi, T., Echigoya, M., Umemoto, K. & Godo, M. (2004). Chem. Pharm. Bull. 52, 546–551. [DOI] [PubMed]
  24. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
  25. Waseem, G. & Mark, T. H. (2005). Life Sci. 78, 442–453.
  26. Worthen, D. R., Gibson, D. A., Rogers, D. T., Bence, A. K., Fu, M., Littleton, J. M. & Crooks, P. A. (2001). Brain Res. 890, 343–346. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989019003347/su5480sup1.cif

e-75-00451-sup1.cif (543.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003347/su5480Isup2.hkl

e-75-00451-Isup2.hkl (747.5KB, hkl)

CCDC reference: 1579740

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES