Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Mar 7;75(Pt 4):428–431. doi: 10.1107/S2056989019003086

Crystal structure of bis­[bis­(1,4,7-tri­aza­cyclo­nonane-κ3 N,N′,N′′)chromium(III)] tris­(tetra­chlorido­zincate) monohydrate from synchrotron X-ray data

Dohyun Moon a, Jong-Ha Choi b,*
PMCID: PMC6509691  PMID: 31161050

Each CrIII cation in the title compound is coordinated by the six N atoms from two 1,4,7-tri­aza­cyclo­nonane (tacn) ligands, displaying a distorted octa­hedral environment. The crystal packing is stabilized by extensive hydrogen-bonding inter­actions involving the N—H groups of the tacn ligands, O—H groups or O atoms of the water mol­ecules and Cl atoms of the [ZnCl4]2− anions.

Keywords: crystal structure; 1,4,7-tri­aza­cyclo­nona­ne; tetra­chlorido­zincate; chromium(III) complex; hydrogen bonding; synchrotron radiation

Abstract

The structure of the title compound, [Cr(tacn)2]2[ZnCl4]3·H2O (tacn is 1,4,7-tri­aza­cyclo­nonane; C6H15N3), has been determined from synchrotron X-ray data. Each CrIII cation is coordinated by the six N atoms from the two tacn ligands, displaying a distorted octa­hedral geometry. Three distorted tetra­hedral [ZnCl4]2− anions and one lattice water mol­ecule lie outside this coordination sphere. The Cr—N bond lengths are in the range 2.0621 (11) to 2.0851 (12) Å, while the mean inner N—Cr—N bond angle is 82.51 (5)°. The crystal packing is stabilized by hydrogen-bonding inter­actions with the N—H groups of the tacn ligands and the water O—H groups acting as donors, and the O atoms of the water mol­ecules and Cl atoms of the [ZnCl4]2− anions as acceptors. Overall these contacts lead to the formation of a three-dimensional network.

Chemical context  

The 1,4,7-tri­aza­cyclo­nonane (tacn, C6H15N3) ligand can coordinate facially to many transition metal ions in various oxidation states (Chaudhuri & Wieghardt, 1987). The macrocycle tacn is tridentate, a pure σ-donor with no π-acceptor capability. In particular, the preparation, spectroscopic properties and ligand field analysis of a [Cr(tacn)2]3+ complex with a chloride anion have been described (Wieghardt et al., 1983; Lee & Hoggard, 1991). Counter-anionic species play very important roles in the coordination chemistry and supra­molecular chemistry of such complexes (Fabbrizzi & Poggi, 2013; Santos-Figueroa et al., 2013). The crystal structure of [Cr(tacn)2]Br5·5H2O (Scarborough et al., 2011) has been reported, but a [Cr(tacn)2]3+ complex with a [ZnCl4]2− counter-anion is not known.graphic file with name e-75-00428-scheme1.jpg

The title compound is another example of a [Cr(tacn)2]3+ complex but with a different counter-anion. In order to confirm that the crystal is a salt of the [ZnCl4]2− anion, we report here the mol­ecular and crystal structure of the new complex [Cr(tacn)2]2[ZnCl4]3·H2O, (I) determined from synchrotron X-ray data.

Structural commentary  

The X-ray structural determination of (I) was carried out at 100 (2) K with synchrotron radiation to confirm its exact geometry and composition. The structure consists of two independent [Cr(tacn)2]3+ cations, three [ZnCl4]2− anions and one lattice water mol­ecule. Fig. 1 shows an ellipsoid plot of the asymmetric unit of compound (I) with the atomic labelling scheme. The CrIII cation in both [Cr1A(tacn)2]3+ and [Cr2B(tacn)2]3+ is coordinated by the six N atoms from the two tacn ligands, displaying a distorted octa­hedral geometry. The Cr—N(tacn) bond distances for [Cr1A(tacn)2]3+ and [Cr2B(tacn)2]3+ are in the ranges 2.0709 (11) to 2.0828 (11) Å and 2.0621 (11) to 2.0851 (11) Å, respectively, in good agreement with the observed values in [Cr(tacn)2]Br3·5H2O [2.073 (1) Å; Scarborough et al., 2011] and [Cr(chxn)3][ZnCl4]Cl·3H2O [2.0737 (12)–2.0928 (12) Å; chxn = trans-1,2-cyclohexanediamine, C6H14N2; Moon & Choi, 2016]. However, the bond lengths and bond angles of the two discrete [Cr(tacn)2]3+ cations are slightly different from each other. In general, three metrics of the bond angles for [M(tacn)2]n+ cations are used. The angles are N—M—Nintra for the intra­ligand angles, and N—M—Ntrans and N—M—Ninter for trans and cis inter­ligand angles, respectively (Lord et al., 2009). The mean N—M—Nintra, N—M—Ntrans and N—M—Ninter for [Cr1A(tacn)2]3+ are 82.35 (5), 178.60 (5) and 97.64 (5)° while the three corres­ponding angles for [Cr2B(tacn)2]3+ are 82.66 (5), 177.13 (5) and 97.36 (5)°, respectively. These values for each of the three types of angles may be compared with the literature values for [M(tacn)2]n+ (M = Mn2+, Fe2+, Fe3+, Co2+, Co3+ and Ni2+; Lord et al., 2009). All five-membered chelate rings of the tacn ligands have the stable gauche conformations. Three tetra­hedral [ZnCl4]2− anions and an additional water mol­ecule remain outside the coordination sphere of Cr3+. Each ZnCl4 2− anion has a slightly distorted tetra­hedral coordination geometry because of the influence of hydrogen bonding on the Zn—Cl lengths and the Cl—Zn–Cl angles. The Zn—Cl bond lengths involved in hydrogen bonds were all found to have longer bonds than those not involved.

Figure 1.

Figure 1

The structures of the mol­ecular components in the asymmetric unit of the title complex (I), drawn with displacement ellipsoids at the 70% probability level. Dashed lines represent hydrogen-bonding inter­actions. The H atoms on the C atoms have been omitted for clarity.

Supra­molecular features  

Extensive hydrogen-bonding inter­actions occur in the crystal structure (Table 1). The supra­molecular architecture involves hydrogen-bonding inter­actions with the N—H groups from each of the tacn ligands, the O—H groups of the lattice water mol­ecules acting as donors, and Cl atoms of the [ZnCl4]2− anions and the O atoms of the water mol­ecules acting as acceptors, giving rise to a three-dimensional network structure. The network comprises columns of mol­ecules that form along the a-axis direction (Fig. 2). These hydrogen-bonded networks help to stabilize the crystal structure.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5A—H5A⋯O1W 1.00 2.46 3.1535 (19) 126
N2B—H2B⋯Cl1E 1.00 2.25 3.1608 (12) 151
N4B—H4B⋯Cl2D 1.00 2.24 3.1179 (12) 146
O1W—H2OW⋯Cl3D 0.96 (1) 2.44 (1) 3.3163 (16) 152 (2)
N1A—H1A⋯Cl4C i 1.00 2.23 3.2091 (13) 167
N4A—H4A⋯Cl1C i 1.00 2.29 3.2377 (12) 158
N2A—H2A⋯Cl2C ii 1.00 2.42 3.2981 (13) 146
N6A—H6A⋯Cl4C ii 1.00 2.23 3.1811 (13) 159
N3A—H3A⋯Cl1C iii 1.00 2.62 3.4416 (13) 140
N5A—H5A⋯Cl1C iii 1.00 2.50 3.2875 (13) 136
N1B—H1B⋯Cl2D iv 1.00 2.42 3.2707 (12) 143
N3B—H3B⋯Cl4E iv 1.00 2.36 3.2884 (12) 154
N5B—H5B⋯Cl1E iv 1.00 2.46 3.2932 (12) 141
N6B—H6B⋯Cl4D iv 1.00 2.35 3.2935 (12) 157
O1W—H1OW⋯Cl2C v 0.95 (1) 2.32 (1) 3.2520 (15) 166 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

The crystal packing of complex (I) viewed perpendicular to the ac plane. Dashed lines represent O—H⋯Cl (purple), N—H⋯O (blue) and N—H⋯Cl (cyan) hydrogen-bonding inter­actions.

Database survey  

A search of the Cambridge Structural Database (Version 5.39, Aug 2018 with four updates; Groom et al., 2016) gave 11 hits for trivalent metal complexes containing two tacn (C6H15N3) ligands. The structures of [Ni(tacn)2](NO3)Cl·H2O (Zompa & Margulis, 1978), [Fe(tacn)2]Cl3·5H2O (Boeyens et al., 1985), [Pd(tacn)2](PF6)3 (Blake et al., 1988) and [Co(tacn)2](ClO4)3 (Wang et al., 2002) have been published previously. However, only one structure containing the [Cr(tacn)3]3+ form is present (Scarborough et al., 2011). Each metal ion in all of these complexes is sandwiched between two tridentate tacn macrocycles. Until now, no structure of any salt of [Cr(tacn)2]3+ with the [ZnCl4]2− anion has been deposited.

Synthesis and crystallization  

Commercially available (Sigma–Aldrich) 1,4,7-tri­aza­cyclo­nonane was used as provided. All other chemicals were the best AR grade available. The starting material [Cr(tacn)2]Cl3 was prepared according to the literature (Wieghardt et al., 1983). The crude trichloride salt (0.10 g) was dissolved in 7 mL of 0.5 M HCl at 313 K. 5 mL of a 1 M HCl solution containing 0.25 g of solid ZnCl2 were added to this solution. The resulting mixture was filtered, and allowed to stand at room temperature for two days to give plate-like yellow crystals of the title tetra­chlorido­zincate(II) salt suitable for single-crystal X-ray diffraction.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Non-hydrogen atoms were refined anisotropically. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99 Å and N—H = 1.00 Å, and with U iso(H) values of 1.2U eq of the parent atoms. The O-bound H atoms of the water mol­ecules were assigned based on a difference-Fourier map, and were refined with distance restraints of 0.95 (10) Å (using the DFIX and DANG commands), and U iso(H) values of 1.5U eq of the oxygen atom.

Table 2. Experimental details.

Crystal data
Chemical formula [Cr(C6H15N3)2]2[ZnCl4]3·H2O
M r 1260.36
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 100
a, b, c (Å) 17.281 (4), 16.753 (3), 33.405 (7)
V3) 9671 (3)
Z 8
Radiation type Synchrotron, λ = 0.62998 Å
μ (mm−1) 1.86
Crystal size (mm) 0.15 × 0.10 × 0.08
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski et al., 1997)
T min, T max 0.768, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 95478, 13601, 12445
R int 0.050
(sin θ/λ)max−1) 0.696
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.025, 0.071, 1.06
No. of reflections 13601
No. of parameters 493
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.01, −0.96

Computer programs: PAL BL2D-SMDC (Shin et al., 2016), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2018 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), DIAMOND (Putz & Brandenburg, 2014) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019003086/sj5569sup1.cif

e-75-00428-sup1.cif (4.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003086/sj5569Isup2.hkl

e-75-00428-Isup2.hkl (1.1MB, hkl)

CCDC reference: 1900397

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Cr(C6H15N3)2]2[ZnCl4]3·H2O Dx = 1.731 Mg m3
Mr = 1260.36 Synchrotron radiation, λ = 0.62998 Å
Orthorhombic, Pbca Cell parameters from 295495 reflections
a = 17.281 (4) Å θ = 0.4–33.6°
b = 16.753 (3) Å µ = 1.86 mm1
c = 33.405 (7) Å T = 100 K
V = 9671 (3) Å3 Plate, yellow
Z = 8 0.15 × 0.10 × 0.08 mm
F(000) = 5120

Data collection

ADSC Q210 CCD area detector diffractometer 12445 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnet Rint = 0.050
ω scan θmax = 26.0°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski et al., 1997) h = −24→24
Tmin = 0.768, Tmax = 1.000 k = −23→23
95478 measured reflections l = −46→46
13601 independent reflections

Refinement

Refinement on F2 3 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0409P)2 + 5.110P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.006
13601 reflections Δρmax = 1.01 e Å3
493 parameters Δρmin = −0.96 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cr1A 0.82954 (2) 0.48430 (2) 0.74710 (2) 0.00703 (4)
N1A 0.73238 (6) 0.48954 (7) 0.78330 (3) 0.0113 (2)
H1A 0.687279 0.506644 0.766621 0.014*
N2A 0.87599 (6) 0.55581 (6) 0.79209 (3) 0.0112 (2)
H2A 0.915224 0.592659 0.780136 0.013*
N3A 0.86016 (7) 0.39319 (6) 0.78636 (3) 0.0116 (2)
H3A 0.874864 0.344914 0.770486 0.014*
N4A 0.79614 (7) 0.57390 (6) 0.70780 (3) 0.01109 (19)
H4A 0.764457 0.614134 0.722638 0.013*
N5A 0.78444 (7) 0.41078 (7) 0.70289 (3) 0.0131 (2)
H5A 0.761936 0.362150 0.715765 0.016*
N6A 0.92602 (6) 0.48125 (7) 0.70986 (3) 0.0126 (2)
H6A 0.973683 0.486302 0.726647 0.015*
C1A 0.74241 (8) 0.54831 (8) 0.81699 (4) 0.0149 (2)
H1A1 0.752269 0.519256 0.842286 0.018*
H1A2 0.694404 0.579882 0.820294 0.018*
C2A 0.80979 (8) 0.60390 (8) 0.80808 (4) 0.0152 (2)
H2A1 0.793951 0.644436 0.788136 0.018*
H2A2 0.825747 0.631907 0.832836 0.018*
C3A 0.91411 (8) 0.50600 (8) 0.82401 (4) 0.0153 (2)
H3A1 0.880148 0.503350 0.847837 0.018*
H3A2 0.963528 0.531163 0.832107 0.018*
C4A 0.92954 (8) 0.42221 (9) 0.80863 (4) 0.0161 (3)
H4A1 0.975126 0.422542 0.790678 0.019*
H4A2 0.940669 0.386092 0.831365 0.019*
C5A 0.79365 (8) 0.37205 (8) 0.81358 (4) 0.0141 (2)
H5A1 0.803434 0.393743 0.840678 0.017*
H5A2 0.789349 0.313284 0.815748 0.017*
C6A 0.71858 (8) 0.40602 (8) 0.79736 (4) 0.0147 (2)
H6A1 0.699861 0.372786 0.774846 0.018*
H6A2 0.678589 0.405796 0.818579 0.018*
C7A 0.74887 (8) 0.54068 (8) 0.67381 (4) 0.0159 (2)
H7A1 0.780731 0.539014 0.649191 0.019*
H7A2 0.703905 0.575871 0.668727 0.019*
C8A 0.72081 (8) 0.45739 (9) 0.68380 (4) 0.0171 (3)
H8A1 0.676127 0.460616 0.702275 0.021*
H8A2 0.703626 0.430144 0.659046 0.021*
C9A 0.84575 (9) 0.38539 (8) 0.67355 (4) 0.0170 (3)
H9A1 0.839435 0.415422 0.648233 0.020*
H9A2 0.839895 0.327834 0.667553 0.020*
C10A 0.92552 (9) 0.40078 (8) 0.69058 (4) 0.0173 (3)
H10C 0.938524 0.359294 0.710587 0.021*
H10D 0.964601 0.398797 0.668937 0.021*
C11A 0.92473 (8) 0.54815 (8) 0.67986 (4) 0.0150 (2)
H11A 0.908068 0.527532 0.653463 0.018*
H11B 0.977349 0.570786 0.676931 0.018*
C12A 0.86932 (9) 0.61256 (8) 0.69379 (4) 0.0149 (2)
H12C 0.892906 0.643434 0.715918 0.018*
H12D 0.858029 0.649697 0.671493 0.018*
Cr2B 0.37785 (2) 0.24725 (2) 0.50148 (2) 0.00596 (4)
N1B 0.30089 (6) 0.15782 (6) 0.51771 (3) 0.00828 (18)
H1B 0.262173 0.150115 0.495797 0.010*
N2B 0.45967 (6) 0.16291 (7) 0.51723 (3) 0.01044 (19)
H2B 0.505894 0.169844 0.499566 0.013*
N3B 0.37847 (6) 0.26919 (7) 0.56267 (3) 0.00966 (19)
H3B 0.365415 0.326551 0.567453 0.012*
N4B 0.45940 (6) 0.33063 (7) 0.48468 (3) 0.01023 (19)
H4B 0.506540 0.322634 0.501568 0.012*
N5B 0.30051 (6) 0.33765 (6) 0.48693 (3) 0.00844 (18)
H5B 0.262920 0.344899 0.509396 0.010*
N6B 0.37491 (6) 0.22685 (7) 0.43992 (3) 0.00947 (19)
H6B 0.360772 0.169847 0.434887 0.011*
C1B 0.34251 (7) 0.08032 (7) 0.52523 (4) 0.0118 (2)
H1B1 0.313751 0.036070 0.512406 0.014*
H1B2 0.344478 0.069835 0.554383 0.014*
C2B 0.42428 (8) 0.08337 (8) 0.50860 (4) 0.0136 (2)
H2B1 0.455922 0.040725 0.520962 0.016*
H2B2 0.423093 0.074245 0.479324 0.016*
C3B 0.48497 (8) 0.17292 (8) 0.56018 (4) 0.0137 (2)
H3B1 0.541986 0.168265 0.561918 0.016*
H3B2 0.461894 0.130150 0.576784 0.016*
C4B 0.45967 (7) 0.25416 (8) 0.57609 (4) 0.0130 (2)
H4B1 0.462384 0.254683 0.605687 0.016*
H4B2 0.494325 0.296402 0.565691 0.016*
C5B 0.32037 (7) 0.21759 (8) 0.58400 (4) 0.0116 (2)
H5B1 0.294559 0.248872 0.605307 0.014*
H5B2 0.347052 0.171820 0.596692 0.014*
C6B 0.26045 (7) 0.18728 (8) 0.55445 (4) 0.0103 (2)
H6B1 0.230193 0.143422 0.566681 0.012*
H6B2 0.224320 0.230879 0.547310 0.012*
C7B 0.42574 (8) 0.41035 (8) 0.49455 (4) 0.0132 (2)
H7B1 0.456972 0.452904 0.481828 0.016*
H7B2 0.426943 0.418697 0.523886 0.016*
C8B 0.34263 (7) 0.41501 (7) 0.47962 (4) 0.0118 (2)
H8B1 0.315365 0.458898 0.493589 0.014*
H8B2 0.342533 0.427027 0.450607 0.014*
C9B 0.25820 (7) 0.30974 (8) 0.45055 (4) 0.0111 (2)
H9B1 0.227682 0.354205 0.439070 0.013*
H9B2 0.222138 0.266153 0.457783 0.013*
C10B 0.31657 (7) 0.28003 (8) 0.42001 (4) 0.0118 (2)
H10A 0.289480 0.250080 0.398651 0.014*
H10B 0.343222 0.326058 0.407548 0.014*
C11B 0.45521 (7) 0.24149 (8) 0.42513 (4) 0.0124 (2)
H11C 0.455822 0.242191 0.395500 0.015*
H11D 0.490099 0.198424 0.434418 0.015*
C12B 0.48249 (8) 0.32173 (8) 0.44140 (4) 0.0130 (2)
H12A 0.539462 0.325548 0.438979 0.016*
H12B 0.459285 0.365434 0.425469 0.016*
Zn1C 0.07329 (2) 0.67835 (2) 0.74676 (2) 0.01331 (4)
Cl1C 0.19073 (2) 0.72564 (2) 0.76712 (2) 0.01642 (7)
Cl2C −0.02687 (2) 0.72432 (2) 0.78306 (2) 0.02366 (8)
Cl3C 0.06377 (3) 0.71107 (2) 0.68204 (2) 0.02680 (9)
Cl4C 0.07302 (2) 0.54414 (2) 0.75772 (2) 0.01610 (7)
Zn2D 0.65175 (2) 0.39591 (2) 0.58225 (2) 0.01018 (4)
Cl1D 0.57342 (2) 0.49024 (2) 0.60669 (2) 0.02659 (9)
Cl2D 0.62528 (2) 0.36622 (2) 0.51676 (2) 0.01529 (6)
Cl3D 0.64207 (2) 0.28477 (2) 0.62022 (2) 0.01465 (6)
Cl4D 0.77816 (2) 0.43965 (2) 0.57568 (2) 0.01200 (6)
Zn3E 0.65313 (2) 0.10971 (2) 0.41217 (2) 0.00947 (4)
Cl1E 0.62418 (2) 0.13302 (2) 0.47869 (2) 0.01281 (6)
Cl2E 0.64032 (2) 0.22326 (2) 0.37751 (2) 0.01410 (6)
Cl3E 0.57773 (2) 0.01372 (2) 0.38615 (2) 0.02218 (8)
Cl4E 0.78037 (2) 0.06714 (2) 0.41790 (2) 0.01168 (6)
O1W 0.62401 (9) 0.32554 (8) 0.71692 (4) 0.0364 (3)
H1OW 0.5882 (13) 0.2988 (15) 0.7337 (6) 0.055*
H2OW 0.6101 (14) 0.3130 (15) 0.6899 (3) 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cr1A 0.00877 (10) 0.00634 (9) 0.00597 (9) 0.00020 (7) 0.00093 (6) 0.00002 (6)
N1A 0.0098 (5) 0.0151 (5) 0.0089 (5) 0.0009 (4) 0.0007 (4) −0.0011 (4)
N2A 0.0135 (5) 0.0105 (5) 0.0097 (5) −0.0015 (4) −0.0022 (4) 0.0003 (4)
N3A 0.0149 (5) 0.0089 (5) 0.0110 (5) 0.0010 (4) 0.0036 (4) 0.0025 (4)
N4A 0.0155 (5) 0.0095 (4) 0.0083 (4) 0.0034 (4) 0.0001 (4) −0.0006 (4)
N5A 0.0183 (5) 0.0110 (5) 0.0101 (5) −0.0032 (4) 0.0027 (4) −0.0027 (4)
N6A 0.0128 (5) 0.0115 (5) 0.0134 (5) 0.0017 (4) 0.0041 (4) 0.0023 (4)
C1A 0.0173 (6) 0.0166 (6) 0.0107 (5) 0.0043 (5) 0.0018 (5) −0.0042 (5)
C2A 0.0230 (7) 0.0109 (5) 0.0117 (6) 0.0031 (5) −0.0009 (5) −0.0039 (4)
C3A 0.0154 (6) 0.0177 (6) 0.0128 (6) −0.0013 (5) −0.0054 (5) 0.0037 (5)
C4A 0.0134 (6) 0.0174 (6) 0.0174 (6) 0.0024 (5) −0.0020 (5) 0.0075 (5)
C5A 0.0178 (6) 0.0129 (5) 0.0115 (5) −0.0023 (5) 0.0044 (5) 0.0030 (4)
C6A 0.0141 (6) 0.0174 (6) 0.0126 (6) −0.0050 (5) 0.0030 (5) 0.0006 (5)
C7A 0.0186 (6) 0.0189 (6) 0.0104 (5) 0.0028 (5) −0.0037 (5) −0.0008 (5)
C8A 0.0166 (6) 0.0227 (7) 0.0120 (6) −0.0034 (5) −0.0017 (5) −0.0036 (5)
C9A 0.0284 (7) 0.0103 (5) 0.0124 (6) 0.0005 (5) 0.0074 (5) −0.0030 (4)
C10A 0.0231 (7) 0.0117 (6) 0.0171 (6) 0.0074 (5) 0.0089 (5) 0.0015 (5)
C11A 0.0180 (6) 0.0119 (6) 0.0152 (6) −0.0019 (5) 0.0062 (5) 0.0038 (5)
C12A 0.0237 (7) 0.0076 (5) 0.0134 (6) −0.0016 (5) 0.0017 (5) 0.0023 (4)
Cr2B 0.00346 (9) 0.00755 (9) 0.00689 (9) 0.00014 (6) 0.00000 (6) 0.00075 (6)
N1B 0.0063 (4) 0.0082 (4) 0.0103 (4) 0.0000 (4) 0.0001 (4) 0.0014 (3)
N2B 0.0066 (5) 0.0135 (5) 0.0112 (5) 0.0028 (4) 0.0004 (4) 0.0017 (4)
N3B 0.0070 (5) 0.0129 (5) 0.0090 (5) −0.0008 (4) −0.0002 (4) −0.0006 (4)
N4B 0.0062 (4) 0.0137 (5) 0.0107 (5) −0.0031 (4) −0.0007 (4) 0.0018 (4)
N5B 0.0063 (4) 0.0089 (4) 0.0101 (4) 0.0007 (4) 0.0005 (4) 0.0011 (4)
N6B 0.0075 (5) 0.0118 (5) 0.0091 (4) 0.0003 (4) 0.0003 (4) −0.0012 (4)
C1B 0.0117 (6) 0.0086 (5) 0.0151 (6) 0.0019 (4) −0.0007 (4) 0.0020 (4)
C2B 0.0128 (6) 0.0106 (5) 0.0173 (6) 0.0048 (5) 0.0017 (5) 0.0002 (5)
C3B 0.0085 (5) 0.0204 (6) 0.0121 (5) 0.0021 (5) −0.0017 (4) 0.0036 (5)
C4B 0.0078 (5) 0.0199 (6) 0.0112 (5) −0.0031 (5) −0.0022 (4) 0.0015 (5)
C5B 0.0085 (5) 0.0169 (6) 0.0093 (5) −0.0017 (4) 0.0019 (4) 0.0014 (4)
C6B 0.0055 (5) 0.0139 (5) 0.0116 (5) −0.0002 (4) 0.0019 (4) 0.0008 (4)
C7B 0.0137 (6) 0.0107 (5) 0.0153 (6) −0.0050 (5) −0.0002 (5) −0.0006 (4)
C8B 0.0123 (6) 0.0082 (5) 0.0151 (6) −0.0011 (4) 0.0010 (4) 0.0021 (4)
C9B 0.0058 (5) 0.0152 (5) 0.0121 (5) 0.0004 (4) −0.0019 (4) 0.0008 (4)
C10B 0.0086 (5) 0.0168 (6) 0.0100 (5) 0.0015 (4) −0.0016 (4) 0.0009 (4)
C11B 0.0077 (5) 0.0176 (6) 0.0119 (5) 0.0019 (5) 0.0029 (4) 0.0001 (4)
C12B 0.0089 (5) 0.0185 (6) 0.0116 (5) −0.0023 (4) 0.0019 (4) 0.0021 (4)
Zn1C 0.01218 (8) 0.00967 (8) 0.01807 (8) 0.00023 (6) 0.00177 (5) 0.00160 (5)
Cl1C 0.01393 (14) 0.00883 (13) 0.02650 (17) 0.00090 (10) −0.00337 (12) 0.00088 (11)
Cl2C 0.01734 (16) 0.01496 (15) 0.0387 (2) −0.00191 (12) 0.00984 (14) −0.00832 (14)
Cl3C 0.0391 (2) 0.02137 (17) 0.01994 (17) −0.01329 (15) −0.00752 (15) 0.00866 (13)
Cl4C 0.01283 (15) 0.01041 (14) 0.02507 (16) 0.00074 (11) 0.00208 (12) 0.00425 (11)
Zn2D 0.00835 (7) 0.01209 (7) 0.01009 (7) 0.00124 (5) 0.00181 (5) 0.00072 (5)
Cl1D 0.0306 (2) 0.02487 (18) 0.02429 (18) 0.01727 (15) 0.01784 (15) 0.01057 (14)
Cl2D 0.00648 (13) 0.02672 (17) 0.01266 (14) −0.00212 (11) −0.00121 (10) −0.00219 (11)
Cl3D 0.01435 (14) 0.01330 (14) 0.01629 (14) −0.00026 (11) 0.00357 (11) 0.00350 (11)
Cl4D 0.01005 (13) 0.01445 (13) 0.01150 (13) −0.00155 (10) 0.00138 (10) −0.00169 (10)
Zn3E 0.00872 (7) 0.01067 (7) 0.00903 (7) −0.00129 (5) −0.00122 (5) 0.00038 (5)
Cl1E 0.00677 (13) 0.02058 (15) 0.01107 (13) 0.00090 (11) 0.00149 (10) −0.00140 (11)
Cl2E 0.01364 (13) 0.01323 (13) 0.01543 (14) 0.00019 (11) −0.00224 (11) 0.00407 (10)
Cl3E 0.02649 (18) 0.01875 (16) 0.02131 (16) −0.01179 (13) −0.01415 (14) 0.00553 (12)
Cl4E 0.00968 (13) 0.01421 (13) 0.01113 (12) 0.00120 (10) 0.00010 (10) −0.00091 (10)
O1W 0.0434 (8) 0.0350 (7) 0.0307 (7) −0.0181 (6) −0.0078 (6) −0.0003 (6)

Geometric parameters (Å, º)

Cr1A—N1A 2.0709 (11) N1B—C1B 1.5053 (16)
Cr1A—N5A 2.0750 (11) N1B—H1B 1.0000
Cr1A—N4A 2.0761 (11) N2B—C2B 1.4942 (17)
Cr1A—N6A 2.0807 (11) N2B—C3B 1.5092 (17)
Cr1A—N3A 2.0808 (11) N2B—H2B 1.0000
Cr1A—N2A 2.0828 (11) N3B—C4B 1.4943 (16)
N1A—C6A 1.4951 (17) N3B—C5B 1.5043 (16)
N1A—C1A 1.5053 (17) N3B—H3B 1.0000
N1A—H1A 1.0000 N4B—C7B 1.4936 (17)
N2A—C2A 1.4977 (17) N4B—C12B 1.5070 (17)
N2A—C3A 1.5058 (17) N4B—H4B 1.0000
N2A—H2A 1.0000 N5B—C9B 1.4933 (16)
N3A—C4A 1.4923 (18) N5B—C8B 1.5064 (16)
N3A—C5A 1.5076 (17) N5B—H5B 1.0000
N3A—H3A 1.0000 N6B—C11B 1.4933 (16)
N4A—C12A 1.4958 (18) N6B—C10B 1.5008 (16)
N4A—C7A 1.5053 (17) N6B—H6B 1.0000
N4A—H4A 1.0000 C1B—C2B 1.5193 (18)
N5A—C8A 1.4919 (18) C1B—H1B1 0.9900
N5A—C9A 1.5048 (17) C1B—H1B2 0.9900
N5A—H5A 1.0000 C2B—H2B1 0.9900
N6A—C10A 1.4942 (18) C2B—H2B2 0.9900
N6A—C11A 1.5036 (17) C3B—C4B 1.525 (2)
N6A—H6A 1.0000 C3B—H3B1 0.9900
C1A—C2A 1.520 (2) C3B—H3B2 0.9900
C1A—H1A1 0.9900 C4B—H4B1 0.9900
C1A—H1A2 0.9900 C4B—H4B2 0.9900
C2A—H2A1 0.9900 C5B—C6B 1.5181 (18)
C2A—H2A2 0.9900 C5B—H5B1 0.9900
C3A—C4A 1.518 (2) C5B—H5B2 0.9900
C3A—H3A1 0.9900 C6B—H6B1 0.9900
C3A—H3A2 0.9900 C6B—H6B2 0.9900
C4A—H4A1 0.9900 C7B—C8B 1.5224 (19)
C4A—H4A2 0.9900 C7B—H7B1 0.9900
C5A—C6A 1.5168 (19) C7B—H7B2 0.9900
C5A—H5A1 0.9900 C8B—H8B1 0.9900
C5A—H5A2 0.9900 C8B—H8B2 0.9900
C6A—H6A1 0.9900 C9B—C10B 1.5184 (18)
C6A—H6A2 0.9900 C9B—H9B1 0.9900
C7A—C8A 1.514 (2) C9B—H9B2 0.9900
C7A—H7A1 0.9900 C10B—H10A 0.9900
C7A—H7A2 0.9900 C10B—H10B 0.9900
C8A—H8A1 0.9900 C11B—C12B 1.5247 (19)
C8A—H8A2 0.9900 C11B—H11C 0.9900
C9A—C10A 1.513 (2) C11B—H11D 0.9900
C9A—H9A1 0.9900 C12B—H12A 0.9900
C9A—H9A2 0.9900 C12B—H12B 0.9900
C10A—H10C 0.9900 Zn1C—Cl3C 2.2365 (6)
C10A—H10D 0.9900 Zn1C—Cl2C 2.2492 (5)
C11A—C12A 1.5159 (19) Zn1C—Cl4C 2.2780 (6)
C11A—H11A 0.9900 Zn1C—Cl1C 2.2825 (5)
C11A—H11B 0.9900 Zn2D—Cl1D 2.2353 (5)
C12A—H12C 0.9900 Zn2D—Cl3D 2.2592 (5)
C12A—H12D 0.9900 Zn2D—Cl2D 2.2896 (6)
Cr2B—N4B 2.0621 (11) Zn2D—Cl4D 2.3145 (5)
Cr2B—N2B 2.0670 (11) Zn3E—Cl2E 2.2379 (5)
Cr2B—N1B 2.0755 (11) Zn3E—Cl3E 2.2447 (5)
Cr2B—N3B 2.0772 (12) Zn3E—Cl1E 2.3112 (6)
Cr2B—N5B 2.0776 (11) Zn3E—Cl4E 2.3195 (5)
Cr2B—N6B 2.0851 (11) O1W—H1OW 0.947 (9)
N1B—C6B 1.4962 (16) O1W—H2OW 0.956 (9)
N1A—Cr1A—N5A 97.83 (5) N4B—Cr2B—N6B 81.91 (4)
N1A—Cr1A—N4A 96.50 (5) N2B—Cr2B—N6B 98.96 (4)
N5A—Cr1A—N4A 82.79 (5) N1B—Cr2B—N6B 97.11 (4)
N1A—Cr1A—N6A 178.59 (5) N3B—Cr2B—N6B 178.66 (4)
N5A—Cr1A—N6A 82.00 (5) N5B—Cr2B—N6B 82.71 (4)
N4A—Cr1A—N6A 82.09 (5) C6B—N1B—C1B 111.76 (10)
N1A—Cr1A—N3A 82.49 (4) C6B—N1B—Cr2B 105.99 (7)
N5A—Cr1A—N3A 96.24 (5) C1B—N1B—Cr2B 111.10 (8)
N4A—Cr1A—N3A 178.51 (5) C6B—N1B—H1B 109.3
N6A—Cr1A—N3A 98.92 (5) C1B—N1B—H1B 109.3
N1A—Cr1A—N2A 82.35 (5) Cr2B—N1B—H1B 109.3
N5A—Cr1A—N2A 178.68 (5) C2B—N2B—C3B 113.66 (10)
N4A—Cr1A—N2A 98.49 (5) C2B—N2B—Cr2B 106.28 (8)
N6A—Cr1A—N2A 97.85 (5) C3B—N2B—Cr2B 111.36 (8)
N3A—Cr1A—N2A 82.48 (5) C2B—N2B—H2B 108.5
C6A—N1A—C1A 113.31 (10) C3B—N2B—H2B 108.5
C6A—N1A—Cr1A 105.85 (8) Cr2B—N2B—H2B 108.5
C1A—N1A—Cr1A 111.77 (8) C4B—N3B—C5B 112.82 (10)
C6A—N1A—H1A 108.6 C4B—N3B—Cr2B 105.67 (8)
C1A—N1A—H1A 108.6 C5B—N3B—Cr2B 111.16 (8)
Cr1A—N1A—H1A 108.6 C4B—N3B—H3B 109.0
C2A—N2A—C3A 112.31 (10) C5B—N3B—H3B 109.0
C2A—N2A—Cr1A 105.80 (8) Cr2B—N3B—H3B 109.0
C3A—N2A—Cr1A 111.14 (8) C7B—N4B—C12B 113.80 (10)
C2A—N2A—H2A 109.2 C7B—N4B—Cr2B 106.23 (8)
C3A—N2A—H2A 109.2 C12B—N4B—Cr2B 112.02 (8)
Cr1A—N2A—H2A 109.2 C7B—N4B—H4B 108.2
C4A—N3A—C5A 112.86 (11) C12B—N4B—H4B 108.2
C4A—N3A—Cr1A 106.23 (8) Cr2B—N4B—H4B 108.2
C5A—N3A—Cr1A 111.01 (8) C9B—N5B—C8B 111.97 (10)
C4A—N3A—H3A 108.9 C9B—N5B—Cr2B 106.09 (8)
C5A—N3A—H3A 108.9 C8B—N5B—Cr2B 110.75 (8)
Cr1A—N3A—H3A 108.9 C9B—N5B—H5B 109.3
C12A—N4A—C7A 112.51 (10) C8B—N5B—H5B 109.3
C12A—N4A—Cr1A 106.01 (8) Cr2B—N5B—H5B 109.3
C7A—N4A—Cr1A 111.14 (8) C11B—N6B—C10B 112.35 (10)
C12A—N4A—H4A 109.0 C11B—N6B—Cr2B 106.06 (8)
C7A—N4A—H4A 109.0 C10B—N6B—Cr2B 110.86 (8)
Cr1A—N4A—H4A 109.0 C11B—N6B—H6B 109.2
C8A—N5A—C9A 112.86 (11) C10B—N6B—H6B 109.2
C8A—N5A—Cr1A 105.70 (8) Cr2B—N6B—H6B 109.2
C9A—N5A—Cr1A 111.53 (9) N1B—C1B—C2B 110.75 (10)
C8A—N5A—H5A 108.9 N1B—C1B—H1B1 109.5
C9A—N5A—H5A 108.9 C2B—C1B—H1B1 109.5
Cr1A—N5A—H5A 108.9 N1B—C1B—H1B2 109.5
C10A—N6A—C11A 112.65 (11) C2B—C1B—H1B2 109.5
C10A—N6A—Cr1A 105.97 (8) H1B1—C1B—H1B2 108.1
C11A—N6A—Cr1A 111.62 (8) N2B—C2B—C1B 109.88 (10)
C10A—N6A—H6A 108.8 N2B—C2B—H2B1 109.7
C11A—N6A—H6A 108.8 C1B—C2B—H2B1 109.7
Cr1A—N6A—H6A 108.8 N2B—C2B—H2B2 109.7
N1A—C1A—C2A 110.02 (10) C1B—C2B—H2B2 109.7
N1A—C1A—H1A1 109.7 H2B1—C2B—H2B2 108.2
C2A—C1A—H1A1 109.7 N2B—C3B—C4B 110.32 (10)
N1A—C1A—H1A2 109.7 N2B—C3B—H3B1 109.6
C2A—C1A—H1A2 109.7 C4B—C3B—H3B1 109.6
H1A1—C1A—H1A2 108.2 N2B—C3B—H3B2 109.6
N2A—C2A—C1A 108.99 (10) C4B—C3B—H3B2 109.6
N2A—C2A—H2A1 109.9 H3B1—C3B—H3B2 108.1
C1A—C2A—H2A1 109.9 N3B—C4B—C3B 108.37 (10)
N2A—C2A—H2A2 109.9 N3B—C4B—H4B1 110.0
C1A—C2A—H2A2 109.9 C3B—C4B—H4B1 110.0
H2A1—C2A—H2A2 108.3 N3B—C4B—H4B2 110.0
N2A—C3A—C4A 110.46 (11) C3B—C4B—H4B2 110.0
N2A—C3A—H3A1 109.6 H4B1—C4B—H4B2 108.4
C4A—C3A—H3A1 109.6 N3B—C5B—C6B 109.85 (10)
N2A—C3A—H3A2 109.6 N3B—C5B—H5B1 109.7
C4A—C3A—H3A2 109.6 C6B—C5B—H5B1 109.7
H3A1—C3A—H3A2 108.1 N3B—C5B—H5B2 109.7
N3A—C4A—C3A 109.19 (11) C6B—C5B—H5B2 109.7
N3A—C4A—H4A1 109.8 H5B1—C5B—H5B2 108.2
C3A—C4A—H4A1 109.8 N1B—C6B—C5B 108.97 (10)
N3A—C4A—H4A2 109.8 N1B—C6B—H6B1 109.9
C3A—C4A—H4A2 109.8 C5B—C6B—H6B1 109.9
H4A1—C4A—H4A2 108.3 N1B—C6B—H6B2 109.9
N3A—C5A—C6A 110.40 (10) C5B—C6B—H6B2 109.9
N3A—C5A—H5A1 109.6 H6B1—C6B—H6B2 108.3
C6A—C5A—H5A1 109.6 N4B—C7B—C8B 109.93 (10)
N3A—C5A—H5A2 109.6 N4B—C7B—H7B1 109.7
C6A—C5A—H5A2 109.6 C8B—C7B—H7B1 109.7
H5A1—C5A—H5A2 108.1 N4B—C7B—H7B2 109.7
N1A—C6A—C5A 109.08 (11) C8B—C7B—H7B2 109.7
N1A—C6A—H6A1 109.9 H7B1—C7B—H7B2 108.2
C5A—C6A—H6A1 109.9 N5B—C8B—C7B 111.02 (10)
N1A—C6A—H6A2 109.9 N5B—C8B—H8B1 109.4
C5A—C6A—H6A2 109.9 C7B—C8B—H8B1 109.4
H6A1—C6A—H6A2 108.3 N5B—C8B—H8B2 109.4
N4A—C7A—C8A 110.37 (11) C7B—C8B—H8B2 109.4
N4A—C7A—H7A1 109.6 H8B1—C8B—H8B2 108.0
C8A—C7A—H7A1 109.6 N5B—C9B—C10B 108.91 (10)
N4A—C7A—H7A2 109.6 N5B—C9B—H9B1 109.9
C8A—C7A—H7A2 109.6 C10B—C9B—H9B1 109.9
H7A1—C7A—H7A2 108.1 N5B—C9B—H9B2 109.9
N5A—C8A—C7A 109.90 (11) C10B—C9B—H9B2 109.9
N5A—C8A—H8A1 109.7 H9B1—C9B—H9B2 108.3
C7A—C8A—H8A1 109.7 N6B—C10B—C9B 110.07 (10)
N5A—C8A—H8A2 109.7 N6B—C10B—H10A 109.6
C7A—C8A—H8A2 109.7 C9B—C10B—H10A 109.6
H8A1—C8A—H8A2 108.2 N6B—C10B—H10B 109.6
N5A—C9A—C10A 110.38 (11) C9B—C10B—H10B 109.6
N5A—C9A—H9A1 109.6 H10A—C10B—H10B 108.2
C10A—C9A—H9A1 109.6 N6B—C11B—C12B 108.31 (10)
N5A—C9A—H9A2 109.6 N6B—C11B—H11C 110.0
C10A—C9A—H9A2 109.6 C12B—C11B—H11C 110.0
H9A1—C9A—H9A2 108.1 N6B—C11B—H11D 110.0
N6A—C10A—C9A 108.73 (11) C12B—C11B—H11D 110.0
N6A—C10A—H10C 109.9 H11C—C11B—H11D 108.4
C9A—C10A—H10C 109.9 N4B—C12B—C11B 110.32 (10)
N6A—C10A—H10D 109.9 N4B—C12B—H12A 109.6
C9A—C10A—H10D 109.9 C11B—C12B—H12A 109.6
H10C—C10A—H10D 108.3 N4B—C12B—H12B 109.6
N6A—C11A—C12A 109.59 (10) C11B—C12B—H12B 109.6
N6A—C11A—H11A 109.8 H12A—C12B—H12B 108.1
C12A—C11A—H11A 109.8 Cl3C—Zn1C—Cl2C 112.37 (2)
N6A—C11A—H11B 109.8 Cl3C—Zn1C—Cl4C 113.395 (16)
C12A—C11A—H11B 109.8 Cl2C—Zn1C—Cl4C 104.464 (16)
H11A—C11A—H11B 108.2 Cl3C—Zn1C—Cl1C 105.567 (16)
N4A—C12A—C11A 108.78 (10) Cl2C—Zn1C—Cl1C 113.879 (19)
N4A—C12A—H12C 109.9 Cl4C—Zn1C—Cl1C 107.248 (14)
C11A—C12A—H12C 109.9 Cl1D—Zn2D—Cl3D 109.431 (19)
N4A—C12A—H12D 109.9 Cl1D—Zn2D—Cl2D 112.432 (17)
C11A—C12A—H12D 109.9 Cl3D—Zn2D—Cl2D 110.039 (18)
H12C—C12A—H12D 108.3 Cl1D—Zn2D—Cl4D 112.48 (2)
N4B—Cr2B—N2B 93.72 (5) Cl3D—Zn2D—Cl4D 112.585 (14)
N4B—Cr2B—N1B 176.42 (4) Cl2D—Zn2D—Cl4D 99.600 (13)
N2B—Cr2B—N1B 83.01 (5) Cl2E—Zn3E—Cl3E 110.568 (18)
N4B—Cr2B—N3B 98.30 (4) Cl2E—Zn3E—Cl1E 109.412 (16)
N2B—Cr2B—N3B 82.34 (4) Cl3E—Zn3E—Cl1E 111.573 (16)
N1B—Cr2B—N3B 82.76 (4) Cl2E—Zn3E—Cl4E 113.441 (14)
N4B—Cr2B—N5B 83.23 (5) Cl3E—Zn3E—Cl4E 111.220 (19)
N2B—Cr2B—N5B 176.31 (4) Cl1E—Zn3E—Cl4E 100.238 (13)
N1B—Cr2B—N5B 100.08 (5) H1OW—O1W—H2OW 106.9 (17)
N3B—Cr2B—N5B 96.00 (4)
C6A—N1A—C1A—C2A 136.07 (11) C6B—N1B—C1B—C2B −132.97 (11)
Cr1A—N1A—C1A—C2A 16.58 (13) Cr2B—N1B—C1B—C2B −14.81 (13)
C3A—N2A—C2A—C1A −72.26 (13) C3B—N2B—C2B—C1B 75.82 (13)
Cr1A—N2A—C2A—C1A 49.17 (11) Cr2B—N2B—C2B—C1B −47.02 (12)
N1A—C1A—C2A—N2A −43.73 (14) N1B—C1B—C2B—N2B 41.19 (14)
C2A—N2A—C3A—C4A 135.60 (12) C2B—N2B—C3B—C4B −134.90 (11)
Cr1A—N2A—C3A—C4A 17.29 (13) Cr2B—N2B—C3B—C4B −14.90 (12)
C5A—N3A—C4A—C3A −73.41 (13) C5B—N3B—C4B—C3B 71.42 (13)
Cr1A—N3A—C4A—C3A 48.46 (12) Cr2B—N3B—C4B—C3B −50.24 (11)
N2A—C3A—C4A—N3A −43.79 (14) N2B—C3B—C4B—N3B 43.29 (14)
C4A—N3A—C5A—C6A 134.71 (11) C4B—N3B—C5B—C6B −138.31 (11)
Cr1A—N3A—C5A—C6A 15.58 (13) Cr2B—N3B—C5B—C6B −19.81 (12)
C1A—N1A—C6A—C5A −73.30 (13) C1B—N1B—C6B—C5B 72.33 (13)
Cr1A—N1A—C6A—C5A 49.53 (11) Cr2B—N1B—C6B—C5B −48.85 (11)
N3A—C5A—C6A—N1A −43.29 (14) N3B—C5B—C6B—N1B 45.71 (13)
C12A—N4A—C7A—C8A 134.34 (12) C12B—N4B—C7B—C8B 76.77 (13)
Cr1A—N4A—C7A—C8A 15.63 (13) Cr2B—N4B—C7B—C8B −46.95 (11)
C9A—N5A—C8A—C7A −73.87 (13) C9B—N5B—C8B—C7B −131.91 (11)
Cr1A—N5A—C8A—C7A 48.28 (12) Cr2B—N5B—C8B—C7B −13.72 (12)
N4A—C7A—C8A—N5A −42.73 (15) N4B—C7B—C8B—N5B 40.46 (14)
C8A—N5A—C9A—C10A 134.71 (12) C8B—N5B—C9B—C10B 72.14 (13)
Cr1A—N5A—C9A—C10A 15.90 (13) Cr2B—N5B—C9B—C10B −48.78 (11)
C11A—N6A—C10A—C9A −72.64 (13) C11B—N6B—C10B—C9B −138.96 (11)
Cr1A—N6A—C10A—C9A 49.68 (12) Cr2B—N6B—C10B—C9B −20.48 (12)
N5A—C9A—C10A—N6A −43.54 (14) N5B—C9B—C10B—N6B 46.21 (13)
C10A—N6A—C11A—C12A 137.57 (12) C10B—N6B—C11B—C12B 71.60 (13)
Cr1A—N6A—C11A—C12A 18.49 (13) Cr2B—N6B—C11B—C12B −49.67 (11)
C7A—N4A—C12A—C11A −71.67 (13) C7B—N4B—C12B—C11B −134.99 (11)
Cr1A—N4A—C12A—C11A 50.00 (11) Cr2B—N4B—C12B—C11B −14.47 (13)
N6A—C11A—C12A—N4A −45.37 (14) N6B—C11B—C12B—N4B 42.52 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N5A—H5A···O1W 1.00 2.46 3.1535 (19) 126
N2B—H2B···Cl1E 1.00 2.25 3.1608 (12) 151
N4B—H4B···Cl2D 1.00 2.24 3.1179 (12) 146
O1W—H2OW···Cl3D 0.96 (1) 2.44 (1) 3.3163 (16) 152 (2)
N1A—H1A···Cl4Ci 1.00 2.23 3.2091 (13) 167
N4A—H4A···Cl1Ci 1.00 2.29 3.2377 (12) 158
N2A—H2A···Cl2Cii 1.00 2.42 3.2981 (13) 146
N6A—H6A···Cl4Cii 1.00 2.23 3.1811 (13) 159
N3A—H3A···Cl1Ciii 1.00 2.62 3.4416 (13) 140
N5A—H5A···Cl1Ciii 1.00 2.50 3.2875 (13) 136
N1B—H1B···Cl2Div 1.00 2.42 3.2707 (12) 143
N3B—H3B···Cl4Eiv 1.00 2.36 3.2884 (12) 154
N5B—H5B···Cl1Eiv 1.00 2.46 3.2932 (12) 141
N6B—H6B···Cl4Div 1.00 2.35 3.2935 (12) 157
O1W—H1OW···Cl2Cv 0.95 (1) 2.32 (1) 3.2520 (15) 166 (2)

Symmetry codes: (i) x+1/2, y, −z+3/2; (ii) x+1, y, z; (iii) −x+1, y−1/2, −z+3/2; (iv) x−1/2, −y+1/2, −z+1; (v) −x+1/2, y−1/2, z.

Funding Statement

This work was funded by Andong National University grant 2018 Research Fund. Ministry of Science ICT and Future Planning grant . Pohang University of Science and Technology grant .

References

  1. Blake, A. J., Gordon, L. M., Holder, A. J., Hyde, T. I., Reid, G. & Schröder, M. (1988). J. Chem. Soc. Chem. Commun. pp. 1452–1454.
  2. Boeyens, J. C. A., Forbes, A., Hancock, R. D. & Wieghardt, K. (1985). Inorg. Chem. 24, 2926–2931.
  3. Chaudhuri, P. & Wieghardt, K. (1987). Prog. Inorg. Chem. 35, 329–1436.
  4. Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699. [DOI] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Lee, K.-W. & Hoggard, P. E. (1991). Transition Met. Chem. 16, 377–384.
  7. Lord, R. L., Schultz, F. A. & Baik, M.-H. (2009). J. Am. Chem. Soc. 131, 6189–6197. [DOI] [PubMed]
  8. Moon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 671–674. [DOI] [PMC free article] [PubMed]
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  11. Santos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R. & Sancenón, F. (2013). Chem. Soc. Rev. 42, 3489–3613. [DOI] [PubMed]
  12. Scarborough, S. C., Sproules, S., Weyhermüller, T., DeBeer, S. & Wieghardt, K. (2011). Inorg. Chem. 50, 12446–12462. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. [DOI] [PubMed]
  16. Wang, Q., Yan, S., Liao, D., Jiang, Z., Cheng, P., Leng, X. & Wang, H. (2002). J. Mol. Struct. 608, 49–53.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Wieghardt, K., Schmidt, W., Herrmann, W. & Kueppers, H. J. (1983). Inorg. Chem. 22, 2953–2956.
  19. Zompa, L. J. & Margulis, T. N. (1978). Inorg. Chim. Acta, 28, L157–L159.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019003086/sj5569sup1.cif

e-75-00428-sup1.cif (4.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003086/sj5569Isup2.hkl

e-75-00428-Isup2.hkl (1.1MB, hkl)

CCDC reference: 1900397

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES