Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Mar 26;75(Pt 4):492–498. doi: 10.1107/S2056989019003700

Crystal structure and Hirshfeld surface analysis of two 5,11-methano­benzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxa­diazo­cine derivatives

Mustafa Kemal Gumus a, Sevgi Kansiz b,*, Cigdem Yuksektepe Ataol c, Necmi Dege b, Igor O Fritsky d,*
PMCID: PMC6509692  PMID: 31161063

In the crystals of 9-bromo-2,5-dimethyl-11,12-di­hydro-5H-5,11-methano­benzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxa­diazo­cine (I) and 7-meth­oxy-5-methyl-2-(pyridin-4-yl)-11,12-di­hydro-5H-5,11-methano­benzo[g] [1,2,4]triazolo[1,5-c][1,3,5]oxa­diazo­cine (II), N—H⋯N hydrogen bonds link the mol­ecules to form inversion dimers in I and chains along the [010] direction in II.

Keywords: crystal structure, Biginelli condensation, benzoxa­diazo­cine, hydrogen bonding, C—H⋯π inter­actions, C—Br⋯π inter­actions, Hirshfeld surface analysis

Abstract

In the title compounds, 9-bromo-2,5-dimethyl-11,12-di­hydro-5H-5,11-methano­benzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxa­diazo­cine, C13H13BrN4O (I), and 7-meth­oxy-5-methyl-2-(pyridin-4-yl)-11,12-di­hydro-5H-5,11-methano­benzo[g][1,2,4]tri­azolo[1,5-c][1,3,5]oxa­diazo­cine, C18H17N5O2 (II), the triazole ring is inclined to the benzene ring by 85.15 (9) and 76.98 (5)° in compounds I and II, respectively. In II, the pyridine ring is almost coplanar with the triazole ring, having a dihedral angle of 4.19 (8)°. In the crystal of I, pairs of N—H⋯N hydrogen bonds link the mol­ecules to form inversion dimers with an R 2 2(8) ring motif. The dimers are linked by C—H⋯π and C—Br⋯π inter­actions forming layers parallel to the bc plane. In the crystal of II, mol­ecules are linked by N—H⋯N and C—H⋯O hydrogen bonds forming chains propagating along the b-axis direction. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, and the mol­ecular electrostatic potential surface was also analysed. The Hirshfeld surface analysis of I suggests that the most significant contributions to the crystal packing are H⋯H (42.4%) and O⋯H/H⋯O (17.9%) contacts. For compound II, the H⋯H (48.5%), C⋯H/H⋯C (19.6%) and N⋯H/H⋯N (16.9%) inter­actions are the most important contributions.

Chemical context  

In organic synthesis, a useful method to develop a chemical complexity from simple starting building blocks is the application of multicomponent reactions (MCRs) (Dömling et al., 2012; Van der Heijden et al., 2013). When amino­azoles having at least two non-equivalent reaction centres are used as building blocks , the method is generally characterized by ambiguous selectivity and different reaction outcomes (Murlykina et al., 2018). According to Sedash et al., Biginelli-like MCRs of 3-amino-1,2,4-triazole with aldehydes and α-carbonyl CH-acids may generate several types of heterocyclic products (Sedash et al., 2012). The same starting compound with acetone and a 2-hy­droxy­benzaldehyde derivative under acidic conditions leads to the formation of different products (Gorobets et al., 2010; Kondratiuk et al., 2016; Gümüş et al., 2017; Komykhov et al., 2017).

Continuing our studies on the synthesis and crystal structure analyses of derivatives of a new type of oxygen-bridged Biginelli compound (Aydemir et al., 2018; Gümüş et al., 2017, 2018a ,b ), two new novel Biginelli-like assemblies of 3-amino-5-methyl-1,2,4-triazole/5-amino-3-(pyridin-4-yl)-1,2,4-triazole with acetone and 5-bromo­salicyl­aldehyde/o-vanillin have been developed to offer easy access to the title compounds, I and II, examples of this new class of heterocycles.graphic file with name e-75-00492-scheme1.jpg

Structural commentary  

The mol­ecular structures of compounds I and II are illustrated in Figs. 1 and 2, respectively. The conformations of the two compounds are very similar, as shown by the structural overlap of the two compounds [r.m.s. deviation = 0.005 Å (Mercury; Macrae et al., 2008)], illustrated in Fig. 3. In I, the triazole ring (N2–N4/C11/C12) is inclined to the benzene ring (C1–C6) by 85.12 (12)°, compared to 76.96 (8)° in II. In the central 6-oxa-2,4λ2-di­aza­bicyclo­[3.3.1]nonane moiety, ring (N1/N4/C7–C9/C11) has a half-chair conformation in both compounds, while ring O1/C5–C9 has an envelope conformation, with atom C8 as the flap, in both compounds. The mean planes of these two rings are almost normal to each other, with a dihedral angle of 86.94 (11)° in I and 88.69 (8)° in II. In compound II, the pyridine ring (N5/C13–C17) is almost coplanar with the triazole ring, having a dihedral angle of 4.19 (8)°. The bond lengths and angles in the title compounds are very close to those observed for similar compounds, for example, the pyridin-3-yl analogue of compound II (Gümüş et al., 2018); see also section Database survey.

Figure 1.

Figure 1

The mol­ecular structure of compound I, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound II, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3.

Figure 3

A view of the structural overlap of mol­ecules I and II (in red), having an r.m.s. deviation of 0.005 Å (Mercury; Macrae et al., 2008).

Supra­molecular features  

In the crystal of I, mol­ecules are linked by a pair of N—H⋯N hydrogen bonds, forming inversion dimers with an Inline graphic(8) ring motif (Table 1 and Fig. 4). The dimers are linked by C—H⋯π and C—Br⋯π inter­actions forming layers parallel to the bc plane (Table 1 and Fig. 4).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 and Cg4 are the centroids of rings N2–N4/C11/C12 and C1–C6.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.83 (2) 2.13 (2) 2.949 (3) 174 (2)
C8—H8ACg4ii 0.97 2.86 3.823 (3) 175
C2—Br1⋯Cg1iii 1.89 (1) 3.40 (1) 4.724 (3) 124 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 4.

Figure 4

A view along the a axis of the crystal packing of compound I. Dashed lines denote the inter­molecular N—H⋯N hydrogen bonds, forming an inversion dimer with an Inline graphic(8) ring motif (Table 1). C—H⋯π and C—Br⋯π inter­actions are shown as blue arrows (Table 1).

In the crystal of II, mol­ecules are connected via inter­molecular N—H⋯N and C—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction (Table 2 and Fig. 5). Within the chains there are Inline graphic(10), Inline graphic(11) and Inline graphic(9) ring motifs present (Table 2 and Fig. 5).

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3i 0.83 (2) 2.53 (2) 3.356 (2) 169 (2)
C1—H1⋯O1i 0.93 2.53 3.426 (2) 163
C7—H7⋯O2i 0.98 2.35 3.264 (2) 155

Symmetry code: (i) Inline graphic.

Figure 5.

Figure 5

A view along the a axis of the crystal packing of compound II. Dashed lines denote inter­molecular hydrogen bonds (Table 2).

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016) for the triazolo-benzoxa­diazo­cine skeleton yielded 4 hits, namely 7-eth­oxy-5-methyl-11,12-di­hydro-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine (HUVCEH; Gorobets et al., 2010), 7-eth­oxy-5-methyl-2-(pyridin-3-yl)-11,12-di­hydro-5H-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine (RETCAX; Aydemir et al., 2018), 7-meth­oxy-5-methyl-2-phenyl-11,12-di­hydro-5H-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine (SILBEX; Gümüş et al., 2018b ), with two independent mol­ecules in the asymmetric unit, and 7-meth­oxy-5-methyl-2-(pyridin-3-yl)-11,12-di­hydro-5H-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine (WEX­YUM; Gümüş et al., 2018a ), also with two independent mol­ecules per asymmetric unit.

The conformations of all four compounds resemble those of compounds I and II, with the dihedral angle between the triazole and benzene rings varying from ca 71.20 to 87.37°, compared to 85.12 (12) and 76.96 (8)° in compounds I and II, respectively.

The geometrical parameters of the four compounds are very similar to each other and to those of compounds I and II. The C9—O1 and C5—O1 bond lengths are 1.456 (3) and 1.375 (3) Å, respectively, in I and 1.441 (2) and 1.385 (2) Å in II, compared to ca 1.445 and 1.374 Å in HUVCEH, 1.444 and 1.390 Å in RETCAX, 1.343/1.436 and 1.381/1.381 Å in SILBEX, and 1.429/1.444 and 1.377/1.380 Å in WEXYUW. In addition, the N3—N4 bond length is 1.388 (3) Å in I and 1.381 (2) Å in II, compared to ca 1.385, 1.389, 1.376/1.382 and 1.379/1.381 Å in HUVCEH, RETCAX, SILBEX and WEXYUW, respectively.

Hirshfeld surface analysis  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional (2D) fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional (3D) d norm surfaces mapped over a fixed colour scale of −0.378 (red) to 1.282 Å (blue) for compound I and from −0.259 (red) to 1.216 Å (blue) for compound II. The red spots on the surface indicate the inter­molecular contacts involved in the hydrogen bonds. In Fig. 6(a), the identified red spot is attributed to the H⋯N close contacts. Also in Fig. 6(a), the N—H⋯N contacts are shown in the d norm mapped surface as deep-red depression areas showing the inter­action between the neighbouring mol­ecules for compound I. Similarly, the red spots on the surface correspond to C—H⋯O and N—H⋯N hydrogen bonds in compound II (Fig. 6 b).

Figure 6.

Figure 6

d norm mapped on Hirshfeld surfaces for visualizing the inter­molecular inter­actions of (a) compound I and (b) compound II.

Fig. 7(a) shows the 2D fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface of compound I represented in normal mode. 2D fingerprint plots provide information about the major and minor percentage contribution of the inter­atomic contacts in compound I. The blue colour refers to the frequency of occurrence of the (di, de) pair and the grey colour is the outline of the full fingerprint (Zaini et al., 2019). The fingerprint plots (Fig. 7 b) show that the H⋯H contacts clearly make the most significant contribution to the Hirshfeld surface (42.4%). In addition, C⋯H/H⋯C, N⋯H/H⋯N and Br⋯H/H⋯Br contacts contribute 17.9, 14.6 and 14.1%, respectively, to the Hirshfeld surface. Much weaker O⋯H/H⋯O (5.0%), Br⋯N/N⋯Br (2.7%), Br⋯C/C⋯Br (1.8%) and Br⋯Br (1.0%) contacts also occur. In particular, the O⋯H/H⋯O contacts indicate the presence of inter­molecular C—H⋯O inter­actions.

Figure 7.

Figure 7

2D fingerprint plots for compound I, with a d norm view and the relative contributions of the atom pairs to the Hirshfeld surface.

Similarly, for compound II, the H⋯H inter­actions appear in the middle of the scattered points in the 2D fingerprint plots with a contribution to the overall Hirshfeld surface of 48.5% (Fig. 8 b). The contribution from the N⋯H/H⋯N contacts, corresponding to the N—H⋯N inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond inter­action (16.9%) (Fig. 8 d). The whole fingerprint region and all other inter­actions are displayed in Fig. 8.

Figure 8.

Figure 8

2D fingerprint plots for compound II, with a d norm view and the relative contributions of the atom pairs to the Hirshfeld surface.

Views of the mol­ecular electrostatic potential, in the range −0.0500 to 0.0500 a.u. using the STO-3G basis set at the Hartree–Fock level of theory, for compounds I and II are shown in Figs. 9(a) and 9(b), respectively. In Fig. 9(a), the N—H⋯N hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively. Also, in Figs. 9(a) and 9(b), the N—H⋯N and C—H⋯O contacts in compounds I and II are given in the mol­ecular electrostatic potential mapped surface showing the inter­action between neighbouring mol­ecules.

Figure 9.

Figure 9

The view of the three-dimensional Hirshfeld surface of (a) compound I and (b) compound II, plotted over the electrostatic potential surface.

Synthesis and crystallization  

The synthesis of the title compounds (Fig. 10) has been described by Gümüş et al. (2017). 3-Amino-5-methyl-1,2,4-triazole/3-amino-5-(pyridin-4-yl)-1,2,4-triazole (1.0 mmol), 5-bromo­salicyl­aldehyde (1.0 mmol) for compound I [o-vanillin (1.0 mmol) for compound II], acetone (0.22 ml, 3.0 mmol), and absolute EtOH (2.0 ml) were mixed in a microwave process vial, then a 4 N solution of HCl in dioxane (0.07 ml, 0.3 mmol) was added. The mixtures were irradiated at 423 K for 30 min. The reaction mixtures were cooled by an air flow and stirred for 24 h at room temperature for complete precipitation of the products. The precipitates were filtered off, washed with EtOH (1.0 ml) and Et2O (3 × 1.0 ml), and then dried. The compounds were obtained in the form of white solids. They were recrystallized from ethanol yielding colourless prismatic crystals for both compounds I and II.

Figure 10.

Figure 10

The synthesis of (a) compound I and (b) compound II.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. For compound I, the nitro­gen-bound H atom was located in a difference Fourier map and refined subject to a restraint of N—H = 0.86 (2) Å, while for compound II, the nitro­gen-bound H atom was also located in a difference Fourier map and was freely refined. For both compounds, the C-bound H atoms were positioned geom­etrically and refined using a riding model, with C—H = 0.93–0.97 Å and U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) otherwise.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C13H13BrN4O C18H17N5O2
M r 321.18 335.36
Crystal system, space group Triclinic, P Inline graphic Orthorhombic, P b c a
Temperature (K) 296 296
a, b, c (Å) 6.1446 (6), 9.7407 (8), 11.6801 (11) 11.2814 (6), 12.6299 (6), 22.0008 (15)
α, β, γ (°) 109.657 (7), 92.325 (8), 91.664 (7) 90, 90, 90
V3) 657.13 (11) 3134.7 (3)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.13 0.10
Crystal size (mm) 0.34 × 0.19 × 0.11 0.31 × 0.22 × 0.15
 
Data collection
Diffractometer Stoe IPDS 2 Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002) Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.477, 0.748 0.975, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 12939, 4242, 2223 23575, 4432, 1789
R int 0.051 0.086
(sin θ/λ)max−1) 0.729 0.698
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.115, 0.98 0.039, 0.073, 0.80
No. of reflections 4242 4432
No. of parameters 178 231
No. of restraints 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.70 0.16, −0.14

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT2017 (Sheldrick, 2015a ), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b ), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989019003700/su5490sup1.cif

e-75-00492-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003700/su5490Isup2.hkl

e-75-00492-Isup2.hkl (337.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019003700/su5490IIsup3.hkl

e-75-00492-IIsup3.hkl (353.4KB, hkl)

CCDC references: 1903781, 1882558

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund) and the Council of Higher Education of Turkey, Mevlana Exchange Program (MEV-2016-027).

supplementary crystallographic information

9-Bromo-2,5-dimethyl-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (I) . Crystal data

C13H13BrN4O Z = 2
Mr = 321.18 F(000) = 324
Triclinic, P1 Dx = 1.623 Mg m3
a = 6.1446 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.7407 (8) Å Cell parameters from 9169 reflections
c = 11.6801 (11) Å θ = 2.4–31.5°
α = 109.657 (7)° µ = 3.13 mm1
β = 92.325 (8)° T = 296 K
γ = 91.664 (7)° Prism, colourless
V = 657.13 (11) Å3 0.34 × 0.19 × 0.11 mm

9-Bromo-2,5-dimethyl-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (I) . Data collection

Stoe IPDS 2 diffractometer 4242 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2223 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.051
rotation method scans θmax = 31.2°, θmin = 2.4°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −8→8
Tmin = 0.477, Tmax = 0.748 k = −14→13
12939 measured reflections l = −16→16

9-Bromo-2,5-dimethyl-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (I) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: mixed
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0513P)2] where P = (Fo2 + 2Fc2)/3
4242 reflections (Δ/σ)max < 0.001
178 parameters Δρmax = 0.28 e Å3
1 restraint Δρmin = −0.70 e Å3

9-Bromo-2,5-dimethyl-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

9-Bromo-2,5-dimethyl-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.50800 (8) −0.00902 (3) 0.68588 (4) 0.09386 (19)
O1 0.1825 (3) 0.59496 (18) 0.89977 (14) 0.0477 (4)
N1 0.5602 (3) 0.5822 (2) 0.66868 (17) 0.0408 (4)
H1A 0.613 (4) 0.519 (2) 0.6116 (19) 0.041 (7)*
N2 0.2699 (3) 0.63495 (19) 0.54765 (16) 0.0406 (4)
N3 0.0498 (3) 0.7412 (2) 0.70145 (17) 0.0452 (4)
N4 0.2379 (3) 0.69449 (19) 0.74411 (16) 0.0392 (4)
C1 0.5355 (4) 0.2973 (3) 0.7486 (2) 0.0473 (5)
H1 0.669578 0.280839 0.713372 0.057*
C2 0.4059 (5) 0.1815 (3) 0.7523 (2) 0.0532 (6)
C3 0.2065 (5) 0.2025 (3) 0.8038 (2) 0.0541 (6)
H3 0.120166 0.123167 0.805244 0.065*
C4 0.1360 (4) 0.3423 (3) 0.8533 (2) 0.0483 (6)
H4 0.002492 0.357929 0.889189 0.058*
C5 0.2649 (4) 0.4592 (2) 0.84915 (19) 0.0414 (5)
C6 0.4666 (4) 0.4381 (2) 0.79711 (19) 0.0402 (5)
C7 0.6010 (4) 0.5663 (2) 0.7867 (2) 0.0415 (5)
H7 0.756370 0.552230 0.799071 0.050*
C8 0.5347 (4) 0.7044 (3) 0.8840 (2) 0.0465 (5)
H8A 0.576019 0.701721 0.964269 0.056*
H8B 0.607448 0.789210 0.874330 0.056*
C9 0.2895 (4) 0.7133 (2) 0.87046 (19) 0.0433 (5)
C10 0.1984 (5) 0.8514 (3) 0.9542 (2) 0.0613 (7)
H10A 0.042029 0.844207 0.945156 0.092*
H10B 0.251676 0.933353 0.933786 0.092*
H10C 0.243425 0.864266 1.037001 0.092*
C11 0.3650 (4) 0.6328 (2) 0.65048 (19) 0.0355 (4)
C12 0.0793 (4) 0.7029 (2) 0.5845 (2) 0.0437 (5)
C13 −0.0777 (5) 0.7335 (3) 0.4974 (3) 0.0612 (7)
H13A −0.030509 0.821212 0.483641 0.092*
H13B −0.219248 0.745678 0.530443 0.092*
H13C −0.085106 0.653506 0.421778 0.092*

9-Bromo-2,5-dimethyl-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1300 (4) 0.04262 (16) 0.1075 (3) 0.01035 (16) 0.0421 (2) 0.01877 (15)
O1 0.0489 (10) 0.0537 (9) 0.0436 (9) 0.0088 (7) 0.0140 (7) 0.0188 (7)
N1 0.0360 (10) 0.0454 (9) 0.0406 (10) 0.0051 (8) 0.0096 (8) 0.0129 (8)
N2 0.0446 (11) 0.0401 (9) 0.0375 (9) 0.0031 (8) 0.0050 (8) 0.0134 (7)
N3 0.0408 (11) 0.0513 (10) 0.0448 (11) 0.0092 (8) 0.0046 (9) 0.0170 (8)
N4 0.0369 (10) 0.0436 (9) 0.0364 (9) 0.0062 (8) 0.0065 (8) 0.0118 (7)
C1 0.0491 (14) 0.0480 (12) 0.0449 (13) 0.0068 (10) 0.0054 (10) 0.0152 (10)
C2 0.0699 (18) 0.0412 (11) 0.0495 (14) 0.0020 (11) 0.0044 (13) 0.0163 (10)
C3 0.0623 (17) 0.0528 (13) 0.0510 (14) −0.0091 (12) 0.0021 (12) 0.0237 (11)
C4 0.0442 (14) 0.0637 (14) 0.0422 (12) −0.0030 (11) 0.0054 (10) 0.0249 (11)
C5 0.0450 (13) 0.0485 (11) 0.0329 (10) 0.0042 (10) 0.0029 (9) 0.0164 (9)
C6 0.0393 (13) 0.0452 (11) 0.0363 (11) 0.0010 (9) −0.0012 (9) 0.0145 (9)
C7 0.0326 (12) 0.0454 (11) 0.0458 (12) 0.0020 (9) 0.0009 (9) 0.0147 (9)
C8 0.0479 (14) 0.0454 (11) 0.0423 (12) −0.0034 (10) −0.0057 (10) 0.0111 (9)
C9 0.0495 (14) 0.0434 (11) 0.0350 (11) 0.0058 (10) 0.0063 (10) 0.0098 (9)
C10 0.0732 (19) 0.0571 (14) 0.0457 (14) 0.0131 (13) 0.0099 (13) 0.0051 (11)
C11 0.0351 (12) 0.0344 (9) 0.0367 (11) −0.0019 (8) 0.0059 (9) 0.0114 (8)
C12 0.0441 (13) 0.0452 (11) 0.0433 (13) 0.0040 (10) 0.0045 (10) 0.0163 (9)
C13 0.0602 (18) 0.0716 (17) 0.0561 (15) 0.0146 (14) 0.0005 (13) 0.0267 (13)

9-Bromo-2,5-dimethyl-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (I) . Geometric parameters (Å, º)

Br1—C2 1.892 (2) C4—C5 1.383 (3)
O1—C5 1.375 (3) C4—H4 0.9300
O1—C9 1.456 (3) C5—C6 1.393 (3)
N1—C11 1.346 (3) C6—C7 1.518 (3)
N1—C7 1.451 (3) C7—C8 1.519 (3)
N1—H1A 0.825 (16) C7—H7 0.9800
N2—C11 1.321 (3) C8—C9 1.517 (4)
N2—C12 1.374 (3) C8—H8A 0.9700
N3—C12 1.311 (3) C8—H8B 0.9700
N3—N4 1.388 (3) C9—C10 1.511 (3)
N4—C11 1.350 (3) C10—H10A 0.9600
N4—C9 1.445 (3) C10—H10B 0.9600
C1—C2 1.375 (4) C10—H10C 0.9600
C1—C6 1.383 (3) C12—C13 1.482 (4)
C1—H1 0.9300 C13—H13A 0.9600
C2—C3 1.377 (4) C13—H13B 0.9600
C3—C4 1.378 (4) C13—H13C 0.9600
C3—H3 0.9300
C5—O1—C9 116.13 (17) C8—C7—H7 109.7
C11—N1—C7 115.79 (18) C9—C8—C7 108.11 (18)
C11—N1—H1A 119.1 (17) C9—C8—H8A 110.1
C7—N1—H1A 114.7 (17) C7—C8—H8A 110.1
C11—N2—C12 103.07 (18) C9—C8—H8B 110.1
C12—N3—N4 101.80 (18) C7—C8—H8B 110.1
C11—N4—N3 109.66 (17) H8A—C8—H8B 108.4
C11—N4—C9 125.84 (19) N4—C9—O1 109.02 (17)
N3—N4—C9 124.48 (18) N4—C9—C10 111.4 (2)
C2—C1—C6 120.1 (2) O1—C9—C10 105.3 (2)
C2—C1—H1 119.9 N4—C9—C8 106.70 (19)
C6—C1—H1 119.9 O1—C9—C8 109.36 (18)
C1—C2—C3 121.2 (2) C10—C9—C8 114.9 (2)
C1—C2—Br1 118.6 (2) C9—C10—H10A 109.5
C3—C2—Br1 120.20 (19) C9—C10—H10B 109.5
C2—C3—C4 119.4 (2) H10A—C10—H10B 109.5
C2—C3—H3 120.3 C9—C10—H10C 109.5
C4—C3—H3 120.3 H10A—C10—H10C 109.5
C3—C4—C5 119.7 (2) H10B—C10—H10C 109.5
C3—C4—H4 120.2 N2—C11—N1 128.76 (19)
C5—C4—H4 120.2 N2—C11—N4 110.04 (19)
O1—C5—C4 116.1 (2) N1—C11—N4 121.19 (19)
O1—C5—C6 122.9 (2) N3—C12—N2 115.4 (2)
C4—C5—C6 121.0 (2) N3—C12—C13 122.9 (2)
C1—C6—C5 118.6 (2) N2—C12—C13 121.7 (2)
C1—C6—C7 120.8 (2) C12—C13—H13A 109.5
C5—C6—C7 120.5 (2) C12—C13—H13B 109.5
N1—C7—C6 110.99 (18) H13A—C13—H13B 109.5
N1—C7—C8 108.26 (18) C12—C13—H13C 109.5
C6—C7—C8 108.33 (19) H13A—C13—H13C 109.5
N1—C7—H7 109.7 H13B—C13—H13C 109.5
C6—C7—H7 109.7
C12—N3—N4—C11 0.2 (2) C11—N4—C9—O1 −97.7 (2)
C12—N3—N4—C9 178.8 (2) N3—N4—C9—O1 84.0 (2)
C6—C1—C2—C3 0.0 (4) C11—N4—C9—C10 146.5 (2)
C6—C1—C2—Br1 −179.53 (18) N3—N4—C9—C10 −31.8 (3)
C1—C2—C3—C4 −0.4 (4) C11—N4—C9—C8 20.3 (3)
Br1—C2—C3—C4 179.14 (19) N3—N4—C9—C8 −158.00 (19)
C2—C3—C4—C5 0.8 (4) C5—O1—C9—N4 70.6 (2)
C9—O1—C5—C4 −165.8 (2) C5—O1—C9—C10 −169.73 (19)
C9—O1—C5—C6 14.7 (3) C5—O1—C9—C8 −45.7 (2)
C3—C4—C5—O1 179.6 (2) C7—C8—C9—N4 −51.2 (2)
C3—C4—C5—C6 −0.8 (3) C7—C8—C9—O1 66.6 (2)
C2—C1—C6—C5 0.0 (3) C7—C8—C9—C10 −175.2 (2)
C2—C1—C6—C7 −176.2 (2) C12—N2—C11—N1 −178.0 (2)
O1—C5—C6—C1 179.9 (2) C12—N2—C11—N4 0.7 (2)
C4—C5—C6—C1 0.4 (3) C7—N1—C11—N2 −167.4 (2)
O1—C5—C6—C7 −3.9 (3) C7—N1—C11—N4 14.1 (3)
C4—C5—C6—C7 176.6 (2) N3—N4—C11—N2 −0.6 (2)
C11—N1—C7—C6 72.2 (2) C9—N4—C11—N2 −179.14 (19)
C11—N1—C7—C8 −46.6 (2) N3—N4—C11—N1 178.19 (18)
C1—C6—C7—N1 81.8 (3) C9—N4—C11—N1 −0.4 (3)
C5—C6—C7—N1 −94.2 (2) N4—N3—C12—N2 0.3 (3)
C1—C6—C7—C8 −159.5 (2) N4—N3—C12—C13 −178.2 (2)
C5—C6—C7—C8 24.5 (3) C11—N2—C12—N3 −0.6 (3)
N1—C7—C8—C9 66.4 (2) C11—N2—C12—C13 177.9 (2)
C6—C7—C8—C9 −54.0 (2)

9-Bromo-2,5-dimethyl-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (I) . Hydrogen-bond geometry (Å, º)

Cg1 and Cg4 are the centroids of rings N2-N4/C11/C12 and C1-C6.

D—H···A D—H H···A D···A D—H···A
N1—H1A···N2i 0.83 (2) 2.13 (2) 2.949 (3) 174 (2)
C8—H8A···Cg4ii 0.97 2.86 3.823 (3) 175
C2—Br1···Cg1iii 1.89 (1) 3.40 (1) 4.724 (3) 124 (1)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) x, y−1, z.

7-Methoxy-5-methyl-2-(pyridin-4-yl)-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (II) . Crystal data

C18H17N5O2 Dx = 1.421 Mg m3
Mr = 335.36 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 10886 reflections
a = 11.2814 (6) Å θ = 1.6–30.1°
b = 12.6299 (6) Å µ = 0.10 mm1
c = 22.0008 (15) Å T = 296 K
V = 3134.7 (3) Å3 Prisim, colorless
Z = 8 0.31 × 0.22 × 0.15 mm
F(000) = 1408

7-Methoxy-5-methyl-2-(pyridin-4-yl)-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (II) . Data collection

Stoe IPDS 2 diffractometer 4432 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 1789 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.086
rotation method scans θmax = 29.7°, θmin = 1.9°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −15→15
Tmin = 0.975, Tmax = 0.986 k = −15→17
23575 measured reflections l = −30→29

7-Methoxy-5-methyl-2-(pyridin-4-yl)-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (II) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: mixed
wR(F2) = 0.073 H atoms treated by a mixture of independent and constrained refinement
S = 0.80 w = 1/[σ2(Fo2) + (0.0216P)2] where P = (Fo2 + 2Fc2)/3
4432 reflections (Δ/σ)max = 0.001
231 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.14 e Å3

7-Methoxy-5-methyl-2-(pyridin-4-yl)-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

7-Methoxy-5-methyl-2-(pyridin-4-yl)-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.29552 (8) 1.00618 (8) 0.68647 (4) 0.0441 (3)
O2 0.13197 (9) 0.92768 (9) 0.61850 (5) 0.0507 (3)
N1 0.28301 (15) 1.24578 (13) 0.77525 (6) 0.0595 (4)
H1A 0.2548 (17) 1.3017 (16) 0.7892 (9) 0.081 (7)*
N2 0.22677 (12) 1.14540 (11) 0.86379 (6) 0.0491 (3)
N3 0.29188 (11) 0.98503 (10) 0.82932 (5) 0.0453 (3)
N4 0.31364 (11) 1.06389 (11) 0.78728 (6) 0.0455 (3)
N5 0.13813 (13) 0.89571 (14) 1.04161 (7) 0.0604 (4)
C1 0.13984 (16) 1.25155 (14) 0.64423 (8) 0.0553 (5)
H1 0.144023 1.324469 0.649710 0.066*
C2 0.05311 (15) 1.20940 (16) 0.60829 (9) 0.0625 (5)
H2 −0.001899 1.253997 0.589972 0.075*
C3 0.04590 (14) 1.10106 (15) 0.59873 (8) 0.0531 (5)
H3 −0.013911 1.073106 0.574462 0.064*
C4 0.12779 (13) 1.03541 (13) 0.62538 (7) 0.0425 (4)
C5 0.21547 (13) 1.07829 (12) 0.66266 (6) 0.0403 (4)
C6 0.22189 (14) 1.18600 (12) 0.67265 (7) 0.0437 (4)
C7 0.31960 (15) 1.23155 (13) 0.71187 (7) 0.0518 (5)
H7 0.345007 1.299766 0.695115 0.062*
C8 0.42279 (14) 1.15486 (13) 0.71098 (8) 0.0528 (4)
H8A 0.455901 1.150691 0.670365 0.063*
H8B 0.484397 1.178879 0.738475 0.063*
C9 0.37794 (13) 1.04721 (13) 0.73060 (7) 0.0436 (4)
C10 0.47358 (13) 0.96458 (14) 0.73722 (7) 0.0548 (5)
H10A 0.531162 0.988226 0.766340 0.082*
H10B 0.438977 0.899338 0.750878 0.082*
H10C 0.511468 0.953579 0.698666 0.082*
C11 0.27338 (14) 1.15751 (13) 0.80925 (7) 0.0465 (4)
C12 0.24111 (13) 1.03928 (13) 0.87389 (7) 0.0439 (4)
C13 0.20625 (13) 0.98919 (13) 0.93123 (7) 0.0441 (4)
C14 0.16193 (14) 1.04894 (15) 0.97868 (7) 0.0545 (5)
H14 0.153807 1.121901 0.974754 0.065*
C15 0.12990 (15) 0.99893 (17) 1.03192 (8) 0.0610 (5)
H15 0.100395 1.040698 1.063278 0.073*
C16 0.18286 (15) 0.84001 (17) 0.99569 (8) 0.0589 (5)
H16 0.191250 0.767376 1.001142 0.071*
C17 0.21758 (14) 0.88170 (13) 0.94085 (8) 0.0527 (4)
H17 0.248277 0.838119 0.910630 0.063*
C18 0.04328 (16) 0.87855 (15) 0.58270 (9) 0.0687 (6)
H18A 0.054849 0.803252 0.583059 0.103*
H18B 0.048312 0.904149 0.541693 0.103*
H18C −0.033421 0.894966 0.599078 0.103*

7-Methoxy-5-methyl-2-(pyridin-4-yl)-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0497 (6) 0.0416 (7) 0.0411 (6) 0.0029 (5) −0.0089 (5) −0.0003 (5)
O2 0.0551 (7) 0.0467 (8) 0.0502 (7) −0.0023 (6) −0.0106 (6) −0.0008 (6)
N1 0.0996 (13) 0.0358 (10) 0.0432 (8) 0.0024 (9) 0.0045 (8) −0.0013 (8)
N2 0.0637 (9) 0.0436 (9) 0.0399 (8) −0.0009 (7) 0.0013 (7) 0.0009 (7)
N3 0.0543 (8) 0.0409 (8) 0.0407 (7) −0.0029 (7) −0.0002 (7) 0.0032 (7)
N4 0.0598 (8) 0.0372 (8) 0.0395 (7) −0.0011 (6) 0.0015 (6) 0.0025 (7)
N5 0.0608 (10) 0.0736 (12) 0.0466 (9) −0.0055 (8) −0.0015 (8) 0.0085 (9)
C1 0.0714 (11) 0.0424 (11) 0.0521 (10) 0.0062 (10) 0.0014 (10) 0.0024 (9)
C2 0.0645 (12) 0.0555 (13) 0.0674 (13) 0.0164 (10) −0.0051 (11) 0.0123 (11)
C3 0.0497 (10) 0.0591 (13) 0.0506 (11) 0.0030 (9) −0.0065 (9) 0.0065 (10)
C4 0.0467 (9) 0.0406 (11) 0.0401 (9) 0.0008 (8) 0.0027 (8) 0.0030 (8)
C5 0.0440 (9) 0.0399 (10) 0.0368 (8) 0.0035 (8) 0.0021 (7) 0.0045 (8)
C6 0.0546 (10) 0.0398 (10) 0.0367 (9) −0.0001 (8) 0.0040 (8) 0.0047 (8)
C7 0.0702 (11) 0.0413 (11) 0.0439 (10) −0.0078 (9) 0.0021 (9) 0.0046 (9)
C8 0.0561 (10) 0.0547 (11) 0.0474 (10) −0.0123 (9) −0.0010 (8) 0.0012 (9)
C9 0.0470 (9) 0.0455 (10) 0.0383 (9) −0.0034 (8) −0.0031 (8) −0.0013 (8)
C10 0.0514 (10) 0.0635 (12) 0.0495 (10) 0.0068 (9) −0.0091 (8) −0.0024 (9)
C11 0.0626 (11) 0.0357 (10) 0.0412 (9) −0.0013 (8) −0.0047 (8) −0.0011 (9)
C12 0.0464 (9) 0.0420 (10) 0.0433 (9) −0.0034 (7) −0.0034 (7) −0.0004 (8)
C13 0.0437 (8) 0.0465 (11) 0.0421 (9) −0.0062 (8) −0.0027 (7) −0.0009 (8)
C14 0.0634 (11) 0.0524 (12) 0.0477 (10) −0.0035 (9) 0.0001 (8) −0.0016 (10)
C15 0.0673 (12) 0.0705 (15) 0.0451 (11) −0.0039 (11) 0.0003 (9) −0.0036 (11)
C16 0.0628 (11) 0.0551 (12) 0.0588 (12) −0.0040 (10) −0.0003 (10) 0.0117 (10)
C17 0.0587 (11) 0.0476 (11) 0.0518 (10) −0.0046 (9) 0.0050 (9) 0.0004 (9)
C18 0.0694 (12) 0.0669 (14) 0.0697 (13) −0.0007 (10) −0.0176 (10) −0.0199 (11)

7-Methoxy-5-methyl-2-(pyridin-4-yl)-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (II) . Geometric parameters (Å, º)

O1—C5 1.3854 (16) C5—C6 1.380 (2)
O1—C9 1.4408 (17) C6—C7 1.513 (2)
O2—C4 1.3698 (18) C7—C8 1.514 (2)
O2—C18 1.4165 (18) C7—H7 0.9800
N1—C11 1.347 (2) C8—C9 1.514 (2)
N1—C7 1.465 (2) C8—H8A 0.9700
N1—H1A 0.83 (2) C8—H8B 0.9700
N2—C11 1.3190 (19) C9—C10 1.508 (2)
N2—C12 1.368 (2) C10—H10A 0.9600
N3—C12 1.3263 (18) C10—H10B 0.9600
N3—N4 1.3812 (17) C10—H10C 0.9600
N4—C11 1.3557 (19) C12—C13 1.465 (2)
N4—C9 1.4580 (19) C13—C17 1.380 (2)
N5—C15 1.324 (2) C13—C14 1.382 (2)
N5—C16 1.330 (2) C14—C15 1.379 (2)
C1—C2 1.366 (2) C14—H14 0.9300
C1—C6 1.390 (2) C15—H15 0.9300
C1—H1 0.9300 C16—C17 1.374 (2)
C2—C3 1.387 (2) C16—H16 0.9300
C2—H2 0.9300 C17—H17 0.9300
C3—C4 1.373 (2) C18—H18A 0.9600
C3—H3 0.9300 C18—H18B 0.9600
C4—C5 1.395 (2) C18—H18C 0.9600
C5—O1—C9 116.04 (12) H8A—C8—H8B 108.4
C4—O2—C18 118.18 (13) O1—C9—N4 107.90 (11)
C11—N1—C7 116.73 (15) O1—C9—C10 106.13 (13)
C11—N1—H1A 117.7 (14) N4—C9—C10 111.92 (13)
C7—N1—H1A 124.2 (14) O1—C9—C8 110.29 (12)
C11—N2—C12 102.37 (14) N4—C9—C8 106.29 (13)
C12—N3—N4 101.50 (12) C10—C9—C8 114.20 (13)
C11—N4—N3 109.31 (12) C9—C10—H10A 109.5
C11—N4—C9 126.70 (13) C9—C10—H10B 109.5
N3—N4—C9 123.85 (13) H10A—C10—H10B 109.5
C15—N5—C16 115.15 (16) C9—C10—H10C 109.5
C2—C1—C6 120.34 (17) H10A—C10—H10C 109.5
C2—C1—H1 119.8 H10B—C10—H10C 109.5
C6—C1—H1 119.8 N2—C11—N1 129.30 (16)
C1—C2—C3 120.96 (17) N2—C11—N4 110.90 (14)
C1—C2—H2 119.5 N1—C11—N4 119.79 (15)
C3—C2—H2 119.5 N3—C12—N2 115.92 (14)
C4—C3—C2 119.44 (17) N3—C12—C13 121.98 (15)
C4—C3—H3 120.3 N2—C12—C13 122.07 (15)
C2—C3—H3 120.3 C17—C13—C14 117.07 (15)
O2—C4—C3 125.16 (15) C17—C13—C12 122.13 (15)
O2—C4—C5 115.23 (14) C14—C13—C12 120.79 (15)
C3—C4—C5 119.61 (15) C15—C14—C13 119.10 (17)
C6—C5—O1 123.62 (14) C15—C14—H14 120.4
C6—C5—C4 120.92 (14) C13—C14—H14 120.4
O1—C5—C4 115.43 (13) N5—C15—C14 124.69 (18)
C5—C6—C1 118.71 (15) N5—C15—H15 117.7
C5—C6—C7 120.25 (14) C14—C15—H15 117.7
C1—C6—C7 121.00 (15) N5—C16—C17 124.92 (19)
N1—C7—C6 112.58 (14) N5—C16—H16 117.5
N1—C7—C8 107.90 (14) C17—C16—H16 117.5
C6—C7—C8 108.02 (14) C16—C17—C13 119.04 (17)
N1—C7—H7 109.4 C16—C17—H17 120.5
C6—C7—H7 109.4 C13—C17—H17 120.5
C8—C7—H7 109.4 O2—C18—H18A 109.5
C9—C8—C7 108.29 (13) O2—C18—H18B 109.5
C9—C8—H8A 110.0 H18A—C18—H18B 109.5
C7—C8—H8A 110.0 O2—C18—H18C 109.5
C9—C8—H8B 110.0 H18A—C18—H18C 109.5
C7—C8—H8B 110.0 H18B—C18—H18C 109.5
C12—N3—N4—C11 −0.82 (15) N3—N4—C9—O1 83.17 (16)
C12—N3—N4—C9 175.09 (13) C11—N4—C9—C10 141.94 (15)
C6—C1—C2—C3 −0.9 (3) N3—N4—C9—C10 −33.24 (19)
C1—C2—C3—C4 −0.6 (3) C11—N4—C9—C8 16.63 (19)
C18—O2—C4—C3 −2.0 (2) N3—N4—C9—C8 −158.54 (13)
C18—O2—C4—C5 178.11 (13) C7—C8—C9—O1 65.73 (16)
C2—C3—C4—O2 −178.52 (15) C7—C8—C9—N4 −50.97 (16)
C2—C3—C4—C5 1.3 (2) C7—C8—C9—C10 −174.87 (13)
C9—O1—C5—C6 9.08 (19) C12—N2—C11—N1 179.12 (17)
C9—O1—C5—C4 −172.98 (12) C12—N2—C11—N4 0.13 (17)
O2—C4—C5—C6 179.17 (14) C7—N1—C11—N2 −169.22 (16)
C3—C4—C5—C6 −0.7 (2) C7—N1—C11—N4 9.7 (2)
O2—C4—C5—O1 1.17 (19) N3—N4—C11—N2 0.44 (18)
C3—C4—C5—O1 −178.69 (13) C9—N4—C11—N2 −175.31 (13)
O1—C5—C6—C1 177.12 (13) N3—N4—C11—N1 −178.66 (14)
C4—C5—C6—C1 −0.7 (2) C9—N4—C11—N1 5.6 (2)
O1—C5—C6—C7 −0.5 (2) N4—N3—C12—N2 0.97 (17)
C4—C5—C6—C7 −178.34 (13) N4—N3—C12—C13 −177.03 (13)
C2—C1—C6—C5 1.5 (2) C11—N2—C12—N3 −0.73 (18)
C2—C1—C6—C7 179.10 (15) C11—N2—C12—C13 177.26 (14)
C11—N1—C7—C6 73.9 (2) N3—C12—C13—C17 −4.0 (2)
C11—N1—C7—C8 −45.3 (2) N2—C12—C13—C17 178.14 (15)
C5—C6—C7—N1 −94.62 (18) N3—C12—C13—C14 174.98 (14)
C1—C6—C7—N1 87.80 (19) N2—C12—C13—C14 −2.9 (2)
C5—C6—C7—C8 24.4 (2) C17—C13—C14—C15 −1.1 (2)
C1—C6—C7—C8 −153.16 (15) C12—C13—C14—C15 179.90 (15)
N1—C7—C8—C9 67.08 (17) C16—N5—C15—C14 1.2 (3)
C6—C7—C8—C9 −54.88 (16) C13—C14—C15—N5 −0.1 (3)
C5—O1—C9—N4 74.33 (15) C15—N5—C16—C17 −1.1 (3)
C5—O1—C9—C10 −165.55 (12) N5—C16—C17—C13 0.0 (3)
C5—O1—C9—C8 −41.36 (16) C14—C13—C17—C16 1.1 (2)
C11—N4—C9—O1 −101.66 (17) C12—C13—C17—C16 −179.85 (14)

7-Methoxy-5-methyl-2-(pyridin-4-yl)-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N3i 0.83 (2) 2.53 (2) 3.356 (2) 169 (2)
C1—H1···O1i 0.93 2.53 3.426 (2) 163
C7—H7···O2i 0.98 2.35 3.264 (2) 155

Symmetry code: (i) −x+1/2, y+1/2, z.

References

  1. Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367–370. [DOI] [PMC free article] [PubMed]
  2. Dömling, A., Wang, W. & Wang, K. (2012). Chem. Rev. 112, 3083–3135. [DOI] [PMC free article] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gorobets, N. Y., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095–2098.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261–1267.
  7. Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018a). J. Mol. Struct. 1168, 280–290.
  8. Gümüş, M. K., Kansız, S., Dege, N. & Kalibabchuk, V. A. (2018b). Acta Cryst. E74, 1211–1214. [DOI] [PMC free article] [PubMed]
  9. Heijden, G. van der, Ruijter, E. & Orru, R. V. A. (2013). Synlett, 24, 666–685.
  10. Komykhov, S. A., Bondarenko, A. A., Musatov, V. I., Diachkov, M. V., Gorobets, N. Y. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 378–380.
  11. Kondratiuk, M., Gorobets, N. Y., Sedash, Y. V., Gümüş, M. K. & Desenko, S. M. (2016). Molbank, 2016, M898.
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  14. Murlykina, M. V., Morozova, A. D., Zviagin, I. M., Sakhno, Y. I., Desenko, S. M. & Chebanov, V. A. (2018). Frontiers Chem. 6, article 527. [DOI] [PMC free article] [PubMed]
  15. Sedash, Y. V., Gorobets, N. Y., Chebanov, V. A., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2012). RSC Adv. 2, 6719–6728.
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  21. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  23. Zaini, M. F., Razak, I. A., Anis, M. Z. & Arshad, S. (2019). Acta Cryst. E75, 58–63. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989019003700/su5490sup1.cif

e-75-00492-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003700/su5490Isup2.hkl

e-75-00492-Isup2.hkl (337.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019003700/su5490IIsup3.hkl

e-75-00492-IIsup3.hkl (353.4KB, hkl)

CCDC references: 1903781, 1882558

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES