Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Mar 26;75(Pt 4):482–488. doi: 10.1107/S2056989019003736

The crystal structures of two new coumarin derivatives: 2-(4-{2-[(2-oxo-2H-chromen-4-yl)­oxy]acet­yl}piperazin-1-yl)acetamide and N-(2,4-di­meth­oxy­benz­yl)-2-[(2-oxo-2H-chromen-4-yl)­oxy]acetamide

S Syed Abuthahir a, M NizamMohideen a,*, V Viswanathan b, M Govindhan c,d, K Subramanian c
PMCID: PMC6509693  PMID: 31161061

The crystal structures of two 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetamide derivatives are described and the inter­molecular contacts in the crystals analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.

Keywords: crystal structure, chromen, piperazine, acetamide, pyran, hydrogen bonding, C—H⋯π inter­actions, offset π–π inter­actions, Hirshfeld surface analysis

Abstract

The title compounds, 2-(4-{2-[(2-oxo-2H-chromen-4-yl)­oxy]acet­yl}piperazin-1-yl)acetamide, C17H19N3O5, (I), and N-(2,4-di­meth­oxy­benz­yl)-2-[(2-oxo-2H-chromen-4-yl)­oxy]acetamide, C20H19NO6, (II), are new coumarin derivatives. In compound (I), the six-membered piperazine adopts a chair conformation. The dihedral angles between the mean planes of the chromene ring and amide plane is 82.65 (7)° in (I) and 26.2 (4)° in (II). The dihedral angles between the mean planes of the chromene ring and the four planar C atoms of the piperazine ring in (I) and the benzene ring in (II) are 87.66 (6) and 65.0 (4)°, respectively. There are short intra­molecular contacts in both mol­ecules forming S(5) ring motifs, viz. N—H⋯N and C—H⋯O in (I), and N—H⋯O and C—H⋯N in (II). In the crystals of both compounds, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains along [1Inline graphic0] in (I) and [010] in (II). The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ab plane in the crystals of both compounds. In the crystal of (I), there are also C—H⋯π and offset π–π inter­actions [inter­centroid distance = 3.691 (1) Å] present within the layers. In the crystal of (II), there are only weak offset π–π inter­actions [inter­centroid distance = 3.981 (6) Å] present within the layers. The inter­molecular contacts in the crystals of both compounds have been analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.

Chemical context  

Coumarin and its derivatives represent one of the most active classes of compounds possessing a wide spectrum of biological activity. The synthesis, and pharmacological and other properties of coumarin derivatives have been studied and reviewed (Kumar et al., 2015; Kubrak et al., 2017; Srikrishna et al., 2018; Venugopala et al., 2013). Many of these compounds have proven to be active as anti­bacterial, anti­fungal, anti-inflammatory, anti­coagulant, anti-HIV and anti­tumor agents. One of the title compounds, 2-(4-{2-[(2-oxo-2H-chromen-4-yl)­oxy]acet­yl}piperazin-1-yl)acetamide (I), has been shown to exhibit anti­microbial as well as anti­oxidant activity (Govindhan, Subramanian, Chennakesava Rao et al., 2015; Govindhan, Subramanian, Sridharan et al., 2015). In view of the importance of their natural occurrence, biological activities, pharmacological and medicinal activities, and utility as synthetic inter­mediates, we have synthesized the title 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetamide derivatives, and report herein their crystal structures and Hirshfeld surface analysis.graphic file with name e-75-00482-scheme1.jpg

Structural commentary  

The mol­ecular structures of compounds (I) and (II) are illus­trated in Figs. 1 and 2, respectively. In (I), the piperazine ring (N1/N2/C12–C15) is attached to the 2-[(2-oxochroman-4-yl)­oxy]acetaldehyde moiety on atom N1 and to an acetamide moiety on atom N2. It has a chair conformation [puckering parameters: total amplitude Q = 0.561 (2) Å, θ = 0.67 (2)° and φ = 149 (2)°], and is positioned anti with respect to the C—N rotamer of the amide. Nevertheless, because the asymmetry of the chromene residue, the anti conformation can assume a cis or trans geometry with respect to the relative position of the carbonyl O atom of the carboxamide and the C10—C11 and C16—C17 bonds. Both compounds exhibit a cis relation between these bonds, as can be seen in Figs. 1 and 2. This mol­ecular conformation permits the formation of intra­molecular hydrogen bonds (Tables 1 and 2), which enhance the relative planarity of each compound. Specifically for each compound, as a result of the presence of the imidic nitro­gen atom, the mol­ecules display intra­molecular N—H⋯N and N—H⋯O hydrogen bonds, between the amide nitro­gen and the nitro­gen atom N2 of the piperazine ring for compound (I), and oxygen atom O3 for (II), forming S(5) ring motifs. In addition, the carbonyl oxygen atom O4 acts as the acceptor for a weak inter­action with a hydrogen bond of the exocyclic piperazine ring, forming a second S(5) ring motif in (I), and the amide nitro­gen atom N1 acts as the acceptor for a weak inter­action with a hydrogen bond of the exocyclic benzene ring, forming a second S(5) ring motif in (II).

Figure 1.

Figure 1

The mol­ecular structure of compound (I), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular contacts (Table 1) are shown as dashed lines.

Figure 2.

Figure 2

The mol­ecular structure of compound (II), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular contacts (Table 2) are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯N2 0.86 2.41 2.7716 (15) 106
C12—H12A⋯O4 0.97 2.35 2.7473 (15) 104
N3—H3A⋯O4i 0.86 2.05 2.8886 (15) 166
C8—H8⋯O2ii 0.93 2.56 3.3953 (16) 150
C10—H10A⋯O5iii 0.97 2.49 3.4506 (18) 173
C10—H10B⋯O2ii 0.97 2.42 3.3346 (16) 157
C14—H14A⋯O2ii 0.97 2.54 3.4012 (17) 148
C14—H14BCg1i 0.97 2.80 3.614 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 2.31 2.669 (2) 105
C14—H14⋯N1 0.93 2.59 2.923 (2) 101
N1—H1⋯O4i 0.86 2.09 2.900 (2) 156
C3—H3⋯O5ii 0.93 2.49 3.419 (2) 175
C5—H5⋯O4i 0.93 2.43 3.307 (2) 157
C15—H15⋯O4iii 0.93 2.51 3.399 (2) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

The values of the dihedral angles between the mean planes of the planar chromene ring system (O1/C1–C9; r.m.s. deviations = 0.008 Å for both compounds) and the amide plane (C10/C11/O4/N1) are 82.65 (7) and 26.2 (4)° in compounds (I) and (II), respectively. In (I), the dihedral angle between the mean planes of the chromene ring and the four C atoms (C12–C15) of the piperazine ring is 87.66 (6)°, while in (II) the benzene ring (C13–C18) is inclined to the mean plane of the chromene ring by 65.0 (4)°. Atom O2 deviates from the coumarin ring mean plane by 0.051 (1) Å in (I) and −0.043 (9) Å in (II).

It is inter­esting to compare the intra­molecular hydrogen bonding present in the title compounds with that of the analogous 4-oxo-N-(substituted phen­yl)-4H-chromene-2-carboxamides (Reis et al., 2013; Gomes et al., 2013). It can be seen that the effect of the 2/3 positional isomerism is to ‘reflect’ their relative positions while the effect of the cis/trans conformations is a ‘twofold rotation’ of the rings around the Camide—Cchromene bond. These particular differences in conformation may condition the ability for docking when pharmacological activities are considered.

Supra­molecular features  

In the crystal of (I), mol­ecules are linked by N3—H3A⋯O4i hydrogen bonds, forming chains along the [1Inline graphic0] direction, see Fig. 3 and Table 1. The chains are linked by C—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane (Fig. 3 and Table 1). The C14—H14A⋯O2ii hydrogen bond generates an inversion dimer with an Inline graphic(22) ring motif; within the ring C8—H8⋯O2ii and C10—H10B⋯O2ii hydrogen bonds link the mol­ecules into Inline graphic(8) and Inline graphic(14) rings, respectively. These rings are linked by C(10) and C(7) chains formed via the C10—H10A⋯O5iii and N3—H3A⋯O4i hydrogen bonds, respectively. A C—H⋯π inter­action is also present within the layer (Table 1). An offset π–π contact between inversion-related chromene rings further stabilizes the crystal structure [Cg2⋯Cg2iv = 3.691 (1) Å, inter­planar distance = 3.490 (1) Å, offset = 1.20 Å; Cg2 is the centroid of the O1/C1–C9 ring; symmetry code: (iv) −x + 1, −y + 1, −z + 1].

Figure 3.

Figure 3

A view along the c axis of the crystal packing of compound (I). The hydrogen bonds (Table 1) are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.

In the crystal of (II), mol­ecules are linked by N1—H1⋯O4i hydrogen bonds, forming chains along the [010] direction, see Fig. 4 and Table 2. The chains are linked by C3—H3⋯O5ii, C5—H5⋯O4i and C15—H15⋯O4iii hydrogen bonds, forming layers parallel to the ab plane (Fig. 4 and Table 2). Within the layer there are no C—H⋯π inter­actions present, only weak offset π–π inter­actions involving the benzene ring of the chromene ring system and the di­meth­oxy­benzene ring [Cg2⋯Cg3iv = 3.981 (6) Å, inter­planar distances = 3.638 (4) and 3.508 (4) Å, offset 0 1.88 Å; Cg2 and Cg3 are the centroids of rings C1–C6 and C13–C18, respectively; symmetry code: (iv) −x + 1, y + Inline graphic, −z + 1].

Figure 4.

Figure 4

A view along the a axis of the crystal packing of compound (II). The hydrogen bonds (Table 2) are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.

Hirshfeld surface analysis  

A recent article by Tiekink and collaborators (Tan et al., 2019) reviews and describes the uses and utility of Hirshfeld surface analysis (Spackman & Jayatilaka, 2009), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007), to analyse inter­molecular contacts in crystals. The various calculations were performed with CrystalExplorer17 (Turner et al., 2017).

The Hirshfeld surfaces of compounds (I) and (II) mapped over d norm are given in Fig. 5, and the inter­molecular contacts are illustrated in Fig. 6 for (I) and Fig. 7 for (II). They are colour-mapped with the normalized contact distance, d norm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The d norm surface was mapped over a fixed colour scale of −0.544 (red) to 1.418 (blue) for compound (I) and −0.501 (red) to 1.672 (blue) for compound (II), where the red spots indicate the inter­molecular contacts involved in the hydrogen bonding.

Figure 5.

Figure 5

The Hirshfeld surfaces of compounds (a) (I) and (b) (II), mapped over d norm

Figure 6.

Figure 6

A view of the Hirshfeld surface mapped over d norm of compound (I), showing the various inter­molecular contacts in the crystal.

Figure 7.

Figure 7

A view of the Hirshfeld surface mapped over d norm of compound (II), showing the various inter­molecular contacts in the crystal.

The fingerprint plots are given in Figs. 8 and 9. For compound (I), they reveal that the principal inter­molecular contacts are H⋯H at 41.3% (Fig. 8 b) and O⋯H/H⋯O at 35.3% (Fig. 8 c), followed by the C⋯H/H⋯C contacts at 11.8% (Fig. 8 d). For compound (II), they reveal a similar trend, with the principal inter­molecular contacts being H⋯H at 41.8% (Fig. 9 b) and O⋯H/H⋯O at 32.4% (Fig. 9 c), followed by the C⋯H/H⋯C contacts at 16.7% (Fig. 9 d). In both compounds, the H⋯H inter­molecular contacts predominate, followed by the O⋯H/H⋯O contacts. However the C⋯H/H⋯C contacts are significantly different 11.8% cf. 16.7% for (I) and (II), respectively.

Figure 8.

Figure 8

The full two-dimensional fingerprint plot for compound (I), and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) C⋯C and (f) N⋯H/H⋯N contacts.

Figure 9.

Figure 9

The full two-dimensional fingerprint plot for compound (II), and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯·H/H⋯C, (e) C⋯C and (f) N⋯H/H⋯N contacts.

Database survey  

A search of the Cambridge Structural Database (CSD, V5.40, update February 2019; Groom et al., 2016) for 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetamide derivatives gave two hits. They include 2-[(2-oxo-2H-chromen-4-yl)­oxy]-N-(1-phenyl­eth­yl)acetamide (CSD refcode PUWMEB; Govindhan, Subramanian, Chennakesava Rao et al., 2015) and N-(3,5-di­methyl­adamantan-1-yl)-2-[(2-oxo-2H-chromen-4-yl)­oxy]prop­an­a­mide (SEFRAY; Rambabu et al., 2012).

A search for linear and angular pyran­ocoumarin (psoralene class) structures gave 35 hits. They include four reports, CSD refcodes AMYROL [Kato, 1970: seselin (smyrolin)]; AMYROL01 [Bauri et al., 2006; seselin (redetermination)]; FUGVOS [Thailambal & Pattabhi, 1987: 2,3-dihy­droxy-9-hy­droxy-2(1-hy­droxy-1-methyl­eth­yl)-7H-furo-[3,2-g]-[1]-benzo­pyran-7-one; bromo­hydroxy­seselin (Bauri et al., 2017a ); di­bromo­mometh­oxy­seselin (DMS) (Bauri et al., 2017b )], and a number of structures with various substituents at C3 and C4, many of which are natural products.

A CSD search found five coumarin ester structures with substituents at the 7 position (Ramasubbu et al., 1982; Gnanaguru et al., 1985; Parveen et al., 2011; Zhuo et al., 2014; Ji et al., 2017). In these structures and those of meta-substituted coumarin esters (Abou et al., 2012, 2013; Bibila Mayaya Bisseyou et al., 2013; Zhang et al., 2014; Gomes et al., 2016; Ziki et al., 2016, 2017), the pyrone rings all show three long (in the range 1.37–1.46 Å) and one short (1.32–1.34 Å) C—C distances, suggesting that the electronic density is preferentially located in the short C—C bond at the pyrone ring. This pattern is clearly repeated here with C1—C6 = 1.3883 (18) and 1.394 (11) Å, C6—C7 = 1.4538 (15) and 1.398 (12) Å, C7—C8 = 1.3444 (17) and 1.352 (12) Å and C8—C9 = 1.4338 (18) and 1.433 (12) Å.

Intra­molecular C—H⋯O short contacts similar to that observed in the title compounds were found in five compounds in the CSD: LISLAB, 1-(1-pyrrolidinylcarbon­yl)cyclo­propyl sulfamate (Morin et al., 2007), PEQHAU, 2-[30-(400-chloro­phen­yl)-40,60-di­meth­oxy­indol-70-yl]glyoxyl-1-pyrrolidine (Black et al., 1997), QIBBEJ, [2-hy­droxy-5-(2-hy­droxy­benzo­yl)phen­yl](pyrrolidin-1-yl)-methanone (Holtz et al., 2007), SINHAZ, 2-meth­oxy-1-(1-pyrrolidinylcarbon­yl)naphthalene (Sakamoto et al., 2007) and TAJDIR, (4S,5S)-4,5-bispyrrolidinylcarbon­yl)-2,2-dimethyl-1,3-dioxolane (Garcia et al., 1991).

Synthesis and crystallization  

Compound (I) To a solution of 1 equiv. of 4-(2-(piperazine-1-yl)eth­oxy)-2H-chromen-2-one (1.0 g) in di­chloro­methane (10 ml) at 273–278 K were added tri­ethyl­amine (0.7 g, 2.0 equiv.) followed by iodo­acetamide (1.0 g, 0.5 equiv.), and the reaction mixture was stirred at the same temperature for 1 h. On completion of the reaction (monitored by TLC), the reaction mixture was diluted with di­chloro­methane and water (10 ml). The organic layer was separated and washed with brine solution. It was then dried over anhydrous sodium sulfate, filtered and then evaporated under reduced pressure giving compound (I) as a white solid, which was then washed with hexane and dried under vacuum. Colourless block-like crystals of compound (I) were obtained by slow evaporation of a solution in chloro­form (4 ml) and methanol (1 ml).

Compound (II) N,N-Diiso­propyl­ethyl­amine (DIPEA; 1.82 g, 3.1 equiv.) was added to a mixture of 2-(2-oxo-2H-chromen-4-yl­oxy)acetic acid (1.0 g, 1.0 equiv.), 1-ethyl-3-(3-di­methyl­amino­prop­yl)carbodi­imide (EDCI; 1.0 g, 1.2 equiv.), 1-hy­droxy­benzotriazole hydrate (HOBt; 0.61 g, 1.0 equiv.), 2,4-di­meth­oxy­benzyl­amine (0.8 g, 1.0 equiv.) in N,N-di­methyl­formamide (5 ml) at 273–278 K. The temperature of the mixture was raised to ambient temperature and stirred for 8 h. Progress of the reaction was monitored by TLC (mobile phase: ethyl acetate/hexa­ne). After completion of the reaction, the mixture was poured into ice–water and compound (II) was obtained as a white solid. It was then filtered, washed with hexane and dried under vacuum. Colourless block-like crystals of compound (II) were obtained by slow evaporation of a solution in chloro­form (5 ml).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. For both compounds the H atoms were positioned geometrically and constrained to ride on their parent atoms: N—H = 0.86 Å and C–H = 0.93—0.97Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(N, C) for other H atoms.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C17H19N3O5 C20H19NO6
M r 345.35 369.36
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21
Temperature (K) 293 296
a, b, c (Å) 8.5260 (3), 8.8415 (3), 11.9462 (4) 7.2779 (2), 8.5759 (3), 14.4099 (5)
α, β, γ (°) 88.660 (2), 69.568 (2), 70.724 (2) 90, 93.796 (5), 90
V3) 792.27 (5) 897.41 (5)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.11 0.10
Crystal size (mm) 0.25 × 0.24 × 0.20 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.756, 0.824 0.763, 0.852
No. of measured, independent and observed [I > 2σ(I)] reflections 12022, 3382, 2947 4058, 2630, 1623
R int 0.027 0.088
(sin θ/λ)max−1) 0.637 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.110, 1.04 0.083, 0.243, 0.98
No. of reflections 3382 2630
No. of parameters 227 247
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.18 0.28, −0.29

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS2018 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989019003736/su5482sup1.cif

e-75-00482-sup1.cif (526.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003736/su5482Isup2.hkl

e-75-00482-Isup2.hkl (269.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019003736/su5482IIsup3.hkl

e-75-00482-IIsup3.hkl (210.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019003736/su5482Isup4.cml

Supporting information file. DOI: 10.1107/S2056989019003736/su5482IIsup5.cml

CCDC references: 1891497, 1891496

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the SAIF, IIT Madras, for the data collection.

supplementary crystallographic information

2-(4-{2-[(2-Oxo-2H-chromen-4-yl)oxy]acetyl}piperazin-1-yl)acetamide (I) . Crystal data

C17H19N3O5 Z = 2
Mr = 345.35 F(000) = 364
Triclinic, P1 Dx = 1.448 Mg m3
a = 8.5260 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.8415 (3) Å Cell parameters from 3382 reflections
c = 11.9462 (4) Å θ = 1.8–26.9°
α = 88.660 (2)° µ = 0.11 mm1
β = 69.568 (2)° T = 293 K
γ = 70.724 (2)° Block, colourless
V = 792.27 (5) Å3 0.25 × 0.24 × 0.20 mm

2-(4-{2-[(2-Oxo-2H-chromen-4-yl)oxy]acetyl}piperazin-1-yl)acetamide (I) . Data collection

Bruker Kappa APEXII CCD diffractometer 2947 reflections with I > 2σ(I)
ω and φ scans Rint = 0.027
Absorption correction: multi-scan (SADABS; Bruker, 2008) θmax = 26.9°, θmin = 1.8°
Tmin = 0.756, Tmax = 0.824 h = −10→10
12022 measured reflections k = −11→11
3382 independent reflections l = −15→15

2-(4-{2-[(2-Oxo-2H-chromen-4-yl)oxy]acetyl}piperazin-1-yl)acetamide (I) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2007P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3382 reflections Δρmax = 0.30 e Å3
227 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: (SHELXL2018; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.020 (4)

2-(4-{2-[(2-Oxo-2H-chromen-4-yl)oxy]acetyl}piperazin-1-yl)acetamide (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-(4-{2-[(2-Oxo-2H-chromen-4-yl)oxy]acetyl}piperazin-1-yl)acetamide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.57138 (16) 0.24849 (15) 0.44898 (11) 0.0326 (3)
C2 0.72086 (18) 0.15454 (16) 0.47279 (13) 0.0396 (3)
H2 0.713439 0.076848 0.526334 0.047*
C3 0.87983 (18) 0.17916 (17) 0.41538 (13) 0.0426 (3)
H3 0.980829 0.116794 0.430161 0.051*
C4 0.89217 (18) 0.29534 (18) 0.33584 (13) 0.0419 (3)
H4 1.000730 0.310220 0.297651 0.050*
C5 0.74271 (16) 0.38890 (16) 0.31349 (12) 0.0355 (3)
H5 0.750512 0.467720 0.260957 0.043*
C6 0.57975 (15) 0.36540 (14) 0.36965 (11) 0.0297 (3)
C7 0.41622 (16) 0.45736 (14) 0.35108 (11) 0.0298 (3)
C8 0.26528 (16) 0.42648 (15) 0.40841 (12) 0.0359 (3)
H8 0.162437 0.483635 0.393790 0.043*
C9 0.25981 (17) 0.30714 (16) 0.49166 (13) 0.0385 (3)
C10 0.28057 (16) 0.68340 (15) 0.26066 (12) 0.0328 (3)
H10A 0.295441 0.787474 0.249025 0.039*
H10B 0.176835 0.696178 0.332561 0.039*
C11 0.25178 (15) 0.62523 (14) 0.15331 (11) 0.0316 (3)
C12 0.11451 (17) 0.69477 (15) 0.00279 (11) 0.0342 (3)
H12A 0.191175 0.585566 −0.031236 0.041*
H12B 0.137190 0.766053 −0.059147 0.041*
C13 −0.07778 (17) 0.70594 (14) 0.04377 (13) 0.0358 (3)
H13A −0.104008 0.680104 −0.024677 0.043*
H13B −0.097577 0.627835 0.100571 0.043*
C14 −0.15445 (17) 0.91151 (15) 0.20136 (11) 0.0349 (3)
H14A −0.176974 0.839746 0.262958 0.042*
H14B −0.231186 1.020451 0.236057 0.042*
C15 0.03821 (17) 0.90093 (14) 0.16159 (12) 0.0348 (3)
H15A 0.058654 0.980127 0.105913 0.042*
H15B 0.064622 0.924109 0.230622 0.042*
C16 −0.38171 (17) 0.87031 (15) 0.14408 (15) 0.0423 (3)
H16A −0.401742 0.814610 0.215885 0.051*
H16B −0.396724 0.810638 0.083757 0.051*
C17 −0.52246 (17) 1.03707 (16) 0.17290 (14) 0.0419 (3)
N1 0.15528 (13) 0.73936 (12) 0.10337 (9) 0.0319 (2)
N2 −0.19807 (13) 0.86796 (11) 0.10060 (9) 0.0308 (2)
N3 −0.47248 (16) 1.15212 (14) 0.11445 (12) 0.0465 (3)
H3A −0.547778 1.248448 0.125737 0.056*
H3B −0.364686 1.130611 0.065147 0.056*
O1 0.41560 (12) 0.22028 (11) 0.50832 (9) 0.0416 (2)
O2 0.12892 (14) 0.27595 (14) 0.55044 (11) 0.0566 (3)
O3 0.43529 (11) 0.57057 (11) 0.27551 (9) 0.0382 (2)
O4 0.31673 (15) 0.48319 (11) 0.11304 (10) 0.0529 (3)
O5 −0.67279 (15) 1.05727 (14) 0.24444 (14) 0.0753 (4)

2-(4-{2-[(2-Oxo-2H-chromen-4-yl)oxy]acetyl}piperazin-1-yl)acetamide (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0309 (6) 0.0317 (6) 0.0322 (6) −0.0043 (5) −0.0139 (5) 0.0023 (5)
C2 0.0411 (7) 0.0344 (6) 0.0401 (7) −0.0007 (5) −0.0225 (6) 0.0044 (5)
C3 0.0347 (7) 0.0414 (7) 0.0480 (8) 0.0031 (5) −0.0252 (6) −0.0034 (6)
C4 0.0283 (6) 0.0502 (8) 0.0437 (8) −0.0067 (6) −0.0150 (6) −0.0027 (6)
C5 0.0309 (6) 0.0402 (7) 0.0330 (7) −0.0080 (5) −0.0128 (5) 0.0042 (5)
C6 0.0275 (6) 0.0309 (6) 0.0280 (6) −0.0032 (5) −0.0132 (5) 0.0006 (5)
C7 0.0298 (6) 0.0305 (6) 0.0285 (6) −0.0061 (5) −0.0141 (5) 0.0057 (5)
C8 0.0282 (6) 0.0379 (7) 0.0415 (7) −0.0068 (5) −0.0173 (5) 0.0110 (5)
C9 0.0312 (6) 0.0395 (7) 0.0431 (7) −0.0089 (5) −0.0146 (5) 0.0109 (6)
C10 0.0287 (6) 0.0318 (6) 0.0394 (7) −0.0072 (5) −0.0177 (5) 0.0130 (5)
C11 0.0277 (6) 0.0270 (6) 0.0371 (7) −0.0049 (4) −0.0129 (5) 0.0088 (5)
C12 0.0354 (6) 0.0293 (6) 0.0328 (6) −0.0015 (5) −0.0153 (5) 0.0001 (5)
C13 0.0385 (7) 0.0252 (6) 0.0436 (7) −0.0057 (5) −0.0195 (6) −0.0003 (5)
C14 0.0347 (6) 0.0295 (6) 0.0336 (7) −0.0003 (5) −0.0142 (5) 0.0009 (5)
C15 0.0372 (7) 0.0236 (5) 0.0443 (7) −0.0008 (5) −0.0243 (6) −0.0003 (5)
C16 0.0325 (7) 0.0316 (6) 0.0635 (9) −0.0104 (5) −0.0192 (6) 0.0099 (6)
C17 0.0281 (6) 0.0363 (7) 0.0591 (9) −0.0070 (5) −0.0171 (6) 0.0049 (6)
N1 0.0322 (5) 0.0250 (5) 0.0363 (6) −0.0012 (4) −0.0179 (4) 0.0017 (4)
N2 0.0278 (5) 0.0250 (5) 0.0388 (6) −0.0047 (4) −0.0153 (4) 0.0032 (4)
N3 0.0340 (6) 0.0324 (6) 0.0650 (8) −0.0031 (5) −0.0166 (6) 0.0110 (5)
O1 0.0351 (5) 0.0414 (5) 0.0469 (6) −0.0093 (4) −0.0178 (4) 0.0197 (4)
O2 0.0375 (5) 0.0654 (7) 0.0673 (7) −0.0209 (5) −0.0181 (5) 0.0328 (6)
O3 0.0280 (4) 0.0439 (5) 0.0448 (5) −0.0100 (4) −0.0190 (4) 0.0205 (4)
O4 0.0659 (7) 0.0272 (5) 0.0597 (7) 0.0043 (4) −0.0346 (6) 0.0017 (4)
O5 0.0340 (6) 0.0528 (7) 0.1128 (11) −0.0086 (5) −0.0018 (6) 0.0128 (7)

2-(4-{2-[(2-Oxo-2H-chromen-4-yl)oxy]acetyl}piperazin-1-yl)acetamide (I) . Geometric parameters (Å, º)

C1—O1 1.3718 (16) C11—N1 1.3482 (15)
C1—C6 1.3883 (18) C12—N1 1.4574 (16)
C1—C2 1.3922 (17) C12—C13 1.5073 (18)
C2—C3 1.376 (2) C12—H12A 0.9700
C2—H2 0.9300 C12—H12B 0.9700
C3—C4 1.387 (2) C13—N2 1.4677 (15)
C3—H3 0.9300 C13—H13A 0.9700
C4—C5 1.3823 (18) C13—H13B 0.9700
C4—H4 0.9300 C14—N2 1.4712 (16)
C5—C6 1.3990 (17) C14—C15 1.5127 (18)
C5—H5 0.9300 C14—H14A 0.9700
C6—C7 1.4538 (15) C14—H14B 0.9700
C7—O3 1.3439 (15) C15—N1 1.4632 (15)
C7—C8 1.3444 (17) C15—H15A 0.9700
C8—C9 1.4338 (18) C15—H15B 0.9700
C8—H8 0.9300 C16—N2 1.4604 (16)
C9—O2 1.2089 (16) C16—C17 1.5164 (18)
C9—O1 1.3774 (15) C16—H16A 0.9700
C10—O3 1.4328 (13) C16—H16B 0.9700
C10—C11 1.5177 (18) C17—O5 1.2232 (18)
C10—H10A 0.9700 C17—N3 1.3226 (19)
C10—H10B 0.9700 N3—H3A 0.8600
C11—O4 1.2241 (15) N3—H3B 0.8600
O1—C1—C6 121.80 (11) C13—C12—H12B 109.6
O1—C1—C2 116.65 (12) H12A—C12—H12B 108.1
C6—C1—C2 121.54 (12) N2—C13—C12 111.22 (10)
C3—C2—C1 118.55 (13) N2—C13—H13A 109.4
C3—C2—H2 120.7 C12—C13—H13A 109.4
C1—C2—H2 120.7 N2—C13—H13B 109.4
C2—C3—C4 121.20 (12) C12—C13—H13B 109.4
C2—C3—H3 119.4 H13A—C13—H13B 108.0
C4—C3—H3 119.4 N2—C14—C15 111.67 (10)
C5—C4—C3 119.83 (13) N2—C14—H14A 109.3
C5—C4—H4 120.1 C15—C14—H14A 109.3
C3—C4—H4 120.1 N2—C14—H14B 109.3
C4—C5—C6 120.20 (13) C15—C14—H14B 109.3
C4—C5—H5 119.9 H14A—C14—H14B 107.9
C6—C5—H5 119.9 N1—C15—C14 109.84 (10)
C1—C6—C5 118.66 (11) N1—C15—H15A 109.7
C1—C6—C7 117.34 (11) C14—C15—H15A 109.7
C5—C6—C7 123.99 (11) N1—C15—H15B 109.7
O3—C7—C8 126.49 (11) C14—C15—H15B 109.7
O3—C7—C6 113.36 (10) H15A—C15—H15B 108.2
C8—C7—C6 120.14 (11) N2—C16—C17 114.84 (10)
C7—C8—C9 121.26 (11) N2—C16—H16A 108.6
C7—C8—H8 119.4 C17—C16—H16A 108.6
C9—C8—H8 119.4 N2—C16—H16B 108.6
O2—C9—O1 116.18 (12) C17—C16—H16B 108.6
O2—C9—C8 125.71 (12) H16A—C16—H16B 107.5
O1—C9—C8 118.11 (11) O5—C17—N3 124.21 (13)
O3—C10—C11 110.44 (10) O5—C17—C16 119.73 (13)
O3—C10—H10A 109.6 N3—C17—C16 116.04 (12)
C11—C10—H10A 109.6 C11—N1—C12 120.29 (10)
O3—C10—H10B 109.6 C11—N1—C15 125.01 (11)
C11—C10—H10B 109.6 C12—N1—C15 111.98 (9)
H10A—C10—H10B 108.1 C16—N2—C13 109.10 (10)
O4—C11—N1 122.28 (12) C16—N2—C14 109.88 (10)
O4—C11—C10 121.53 (11) C13—N2—C14 109.94 (9)
N1—C11—C10 116.17 (10) C17—N3—H3A 120.0
N1—C12—C13 110.40 (10) C17—N3—H3B 120.0
N1—C12—H12A 109.6 H3A—N3—H3B 120.0
C13—C12—H12A 109.6 C1—O1—C9 121.30 (10)
N1—C12—H12B 109.6 C7—O3—C10 119.29 (9)
O1—C1—C2—C3 −179.85 (11) N2—C16—C17—O5 −155.82 (15)
C6—C1—C2—C3 −0.22 (19) N2—C16—C17—N3 25.9 (2)
C1—C2—C3—C4 0.4 (2) O4—C11—N1—C12 4.18 (19)
C2—C3—C4—C5 0.2 (2) C10—C11—N1—C12 −177.62 (10)
C3—C4—C5—C6 −0.8 (2) O4—C11—N1—C15 163.96 (13)
O1—C1—C6—C5 179.20 (11) C10—C11—N1—C15 −17.84 (18)
C2—C1—C6—C5 −0.42 (18) C13—C12—N1—C11 105.42 (13)
O1—C1—C6—C7 −0.25 (18) C13—C12—N1—C15 −56.81 (14)
C2—C1—C6—C7 −179.87 (11) C14—C15—N1—C11 −105.06 (14)
C4—C5—C6—C1 0.93 (19) C14—C15—N1—C12 56.17 (14)
C4—C5—C6—C7 −179.66 (12) C17—C16—N2—C13 −163.63 (12)
C1—C6—C7—O3 178.34 (10) C17—C16—N2—C14 75.77 (15)
C5—C6—C7—O3 −1.09 (17) C12—C13—N2—C16 −177.13 (11)
C1—C6—C7—C8 −0.84 (18) C12—C13—N2—C14 −56.57 (14)
C5—C6—C7—C8 179.74 (12) C15—C14—N2—C16 176.60 (10)
O3—C7—C8—C9 −176.93 (12) C15—C14—N2—C13 56.50 (13)
C6—C7—C8—C9 2.1 (2) C6—C1—O1—C9 0.03 (18)
C7—C8—C9—O2 176.98 (14) C2—C1—O1—C9 179.66 (12)
C7—C8—C9—O1 −2.3 (2) O2—C9—O1—C1 −178.15 (12)
O3—C10—C11—O4 21.02 (17) C8—C9—O1—C1 1.20 (19)
O3—C10—C11—N1 −157.19 (10) C8—C7—O3—C10 6.90 (19)
N1—C12—C13—N2 56.80 (14) C6—C7—O3—C10 −172.21 (10)
N2—C14—C15—N1 −56.02 (13) C11—C10—O3—C7 −94.52 (13)

2-(4-{2-[(2-Oxo-2H-chromen-4-yl)oxy]acetyl}piperazin-1-yl)acetamide (I) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N3—H3B···N2 0.86 2.41 2.7716 (15) 106
C12—H12A···O4 0.97 2.35 2.7473 (15) 104
N3—H3A···O4i 0.86 2.05 2.8886 (15) 166
C8—H8···O2ii 0.93 2.56 3.3953 (16) 150
C10—H10A···O5iii 0.97 2.49 3.4506 (18) 173
C10—H10B···O2ii 0.97 2.42 3.3346 (16) 157
C14—H14A···O2ii 0.97 2.54 3.4012 (17) 148
C14—H14B···Cg1i 0.97 2.80 3.614 (2) 142

Symmetry codes: (i) x−1, y+1, z; (ii) −x, −y+1, −z+1; (iii) x+1, y, z.

N-(2,4-Dimethoxybenzyl)-2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide (II) . Crystal data

C20H19NO6 F(000) = 388
Mr = 369.36 Dx = 1.367 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 7.2779 (2) Å Cell parameters from 2630 reflections
b = 8.5759 (3) Å θ = 1.4–25.0°
c = 14.4099 (5) Å µ = 0.10 mm1
β = 93.796 (5)° T = 296 K
V = 897.41 (5) Å3 Block, colourless
Z = 2 0.30 × 0.25 × 0.20 mm

N-(2,4-Dimethoxybenzyl)-2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide (II) . Data collection

Bruker Kappa APEXII CCD diffractometer 1623 reflections with I > 2σ(I)
ω and φ scans Rint = 0.088
Absorption correction: multi-scan (SADABS; Bruker, 2008) θmax = 25.0°, θmin = 1.4°
Tmin = 0.763, Tmax = 0.852 h = −8→8
4058 measured reflections k = −9→9
2630 independent reflections l = −17→16

N-(2,4-Dimethoxybenzyl)-2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide (II) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083 H-atom parameters constrained
wR(F2) = 0.243 w = 1/[σ2(Fo2) + (0.1336P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max < 0.001
2630 reflections Δρmax = 0.28 e Å3
247 parameters Δρmin = −0.29 e Å3
1 restraint Extinction correction: (SHELXL2018; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.042 (15)

N-(2,4-Dimethoxybenzyl)-2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

N-(2,4-Dimethoxybenzyl)-2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C9 0.7608 (13) 0.3941 (14) 0.8943 (6) 0.063 (3)
C1 0.9935 (12) 0.5490 (11) 0.8258 (6) 0.053 (2)
C2 1.1588 (13) 0.6195 (14) 0.8397 (7) 0.064 (3)
H2 1.225084 0.612966 0.897037 0.077*
C3 1.2277 (13) 0.7016 (13) 0.7673 (7) 0.067 (3)
H3 1.340590 0.752129 0.775680 0.080*
C4 1.1281 (13) 0.7085 (14) 0.6818 (7) 0.065 (3)
H4 1.175985 0.762353 0.632809 0.078*
C5 0.9635 (12) 0.6383 (12) 0.6689 (6) 0.056 (3)
H5 0.898157 0.645409 0.611398 0.067*
C6 0.8876 (11) 0.5536 (11) 0.7417 (6) 0.048 (2)
C7 0.7177 (12) 0.4769 (10) 0.7354 (5) 0.047 (2)
C8 0.6529 (13) 0.3977 (13) 0.8075 (7) 0.060 (3)
H8 0.540283 0.346313 0.800782 0.072*
C10 0.4698 (11) 0.3848 (12) 0.6345 (6) 0.052 (2)
H10A 0.365667 0.432162 0.662342 0.062*
H10B 0.493567 0.284583 0.664029 0.062*
C11 0.4238 (11) 0.3613 (11) 0.5313 (6) 0.046 (2)
C12 0.4617 (11) 0.4368 (12) 0.3725 (6) 0.053 (2)
H12A 0.461193 0.326030 0.358746 0.064*
H12B 0.563467 0.482854 0.341984 0.064*
C13 0.2869 (10) 0.5056 (10) 0.3312 (5) 0.043 (2)
C14 0.1620 (12) 0.5896 (12) 0.3804 (7) 0.059 (3)
H14 0.190916 0.609186 0.443136 0.071*
C15 −0.0013 (12) 0.6448 (14) 0.3410 (7) 0.062 (3)
H15 −0.081969 0.699614 0.376388 0.074*
C16 −0.0442 (11) 0.6175 (12) 0.2473 (6) 0.052 (2)
C17 0.0765 (11) 0.5380 (11) 0.1954 (6) 0.052 (2)
H17 0.048794 0.523211 0.132044 0.062*
C18 0.2389 (11) 0.4798 (11) 0.2368 (6) 0.048 (2)
C19 0.3259 (14) 0.3671 (17) 0.0943 (6) 0.080 (4)
H19A 0.212442 0.310013 0.086580 0.120*
H19B 0.423474 0.306460 0.070819 0.120*
H19C 0.313972 0.463616 0.060635 0.120*
C20 −0.2598 (13) 0.6447 (17) 0.1157 (7) 0.085 (4)
H20A −0.162895 0.679847 0.078717 0.127*
H20B −0.371543 0.699158 0.097180 0.127*
H20C −0.278034 0.534745 0.106668 0.127*
N1 0.4962 (10) 0.4564 (9) 0.4721 (5) 0.051 (2)
H1 0.565201 0.531787 0.492909 0.061*
O1 0.9285 (9) 0.4669 (9) 0.9009 (4) 0.068 (2)
O2 0.7213 (10) 0.3219 (10) 0.9634 (5) 0.084 (3)
O3 0.6246 (8) 0.4805 (7) 0.6494 (4) 0.0562 (18)
O4 0.3165 (8) 0.2542 (8) 0.5078 (4) 0.0560 (18)
O5 0.3671 (8) 0.3989 (9) 0.1907 (4) 0.0641 (19)
O6 −0.2109 (8) 0.6749 (9) 0.2111 (5) 0.072 (2)

N-(2,4-Dimethoxybenzyl)-2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C9 0.079 (6) 0.082 (8) 0.028 (5) −0.001 (6) −0.004 (4) −0.001 (5)
C1 0.074 (6) 0.060 (6) 0.025 (5) 0.007 (5) −0.004 (4) 0.000 (4)
C2 0.065 (6) 0.087 (9) 0.039 (5) −0.006 (6) −0.009 (4) 0.004 (6)
C3 0.063 (6) 0.079 (8) 0.056 (7) −0.010 (6) −0.011 (5) 0.002 (6)
C4 0.073 (6) 0.080 (8) 0.042 (6) −0.006 (6) 0.002 (4) 0.007 (6)
C5 0.057 (5) 0.066 (7) 0.042 (5) −0.008 (5) −0.008 (4) 0.009 (5)
C6 0.053 (5) 0.058 (6) 0.029 (5) −0.002 (4) −0.007 (4) 0.001 (4)
C7 0.071 (5) 0.049 (6) 0.018 (4) 0.002 (5) −0.008 (4) 0.003 (4)
C8 0.068 (6) 0.075 (7) 0.036 (5) −0.007 (5) −0.003 (4) 0.004 (5)
C10 0.059 (5) 0.065 (7) 0.031 (5) −0.012 (5) −0.007 (4) 0.003 (5)
C11 0.057 (5) 0.046 (5) 0.033 (5) −0.004 (5) −0.007 (4) 0.004 (5)
C12 0.056 (5) 0.063 (6) 0.040 (5) 0.000 (5) −0.002 (4) −0.006 (5)
C13 0.049 (4) 0.048 (6) 0.032 (4) −0.003 (4) 0.001 (3) 0.001 (4)
C14 0.059 (5) 0.072 (7) 0.048 (6) 0.006 (5) 0.000 (4) −0.006 (5)
C15 0.063 (5) 0.077 (7) 0.046 (5) 0.012 (5) 0.007 (4) −0.021 (6)
C16 0.043 (4) 0.073 (7) 0.041 (5) 0.011 (5) 0.005 (4) 0.001 (5)
C17 0.055 (5) 0.066 (6) 0.035 (5) 0.011 (5) 0.000 (4) −0.001 (5)
C18 0.049 (4) 0.053 (6) 0.042 (5) 0.004 (4) 0.009 (4) −0.003 (5)
C19 0.082 (7) 0.130 (11) 0.029 (5) 0.008 (7) 0.005 (4) −0.006 (7)
C20 0.067 (6) 0.137 (11) 0.048 (6) 0.033 (7) −0.012 (5) −0.014 (7)
N1 0.065 (4) 0.046 (5) 0.041 (4) −0.010 (4) −0.009 (3) 0.001 (4)
O1 0.080 (4) 0.090 (5) 0.033 (4) −0.009 (4) −0.009 (3) 0.007 (4)
O2 0.105 (6) 0.115 (7) 0.030 (4) −0.014 (5) 0.001 (3) 0.012 (4)
O3 0.070 (4) 0.068 (4) 0.029 (3) −0.017 (3) −0.012 (3) 0.007 (3)
O4 0.070 (4) 0.060 (4) 0.038 (4) −0.012 (3) −0.006 (3) 0.002 (3)
O5 0.067 (4) 0.090 (5) 0.035 (4) 0.015 (4) 0.002 (3) −0.002 (4)
O6 0.065 (4) 0.102 (6) 0.048 (4) 0.026 (4) −0.003 (3) −0.011 (4)

N-(2,4-Dimethoxybenzyl)-2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide (II) . Geometric parameters (Å, º)

C9—O2 1.223 (11) C12—N1 1.451 (11)
C9—O1 1.369 (11) C12—C13 1.490 (11)
C9—C8 1.433 (12) C12—H12A 0.9700
C1—C2 1.350 (13) C12—H12B 0.9700
C1—C6 1.394 (11) C13—C14 1.391 (12)
C1—O1 1.399 (11) C13—C18 1.400 (11)
C2—C3 1.381 (14) C14—C15 1.367 (12)
C2—H2 0.9300 C14—H14 0.9300
C3—C4 1.389 (12) C15—C16 1.386 (12)
C3—H3 0.9300 C15—H15 0.9300
C4—C5 1.343 (13) C16—C17 1.372 (12)
C4—H4 0.9300 C16—O6 1.379 (10)
C5—C6 1.417 (12) C17—C18 1.382 (11)
C5—H5 0.9300 C17—H17 0.9300
C6—C7 1.398 (12) C18—O5 1.369 (10)
C7—C8 1.352 (12) C19—O5 1.428 (11)
C7—O3 1.373 (9) C19—H19A 0.9600
C8—H8 0.9300 C19—H19B 0.9600
C10—O3 1.399 (10) C19—H19C 0.9600
C10—C11 1.516 (11) C20—O6 1.421 (11)
C10—H10A 0.9700 C20—H20A 0.9600
C10—H10B 0.9700 C20—H20B 0.9600
C11—O4 1.239 (10) C20—H20C 0.9600
C11—N1 1.315 (11) N1—H1 0.8600
O2—C9—O1 115.5 (8) C13—C12—H12B 108.3
O2—C9—C8 125.3 (10) H12A—C12—H12B 107.4
O1—C9—C8 119.0 (9) C14—C13—C18 116.6 (7)
C2—C1—C6 123.5 (9) C14—C13—C12 124.8 (8)
C2—C1—O1 117.0 (7) C18—C13—C12 118.5 (7)
C6—C1—O1 119.4 (8) C15—C14—C13 123.2 (9)
C1—C2—C3 118.7 (8) C15—C14—H14 118.4
C1—C2—H2 120.6 C13—C14—H14 118.4
C3—C2—H2 120.6 C14—C15—C16 118.7 (8)
C2—C3—C4 119.9 (9) C14—C15—H15 120.7
C2—C3—H3 120.0 C16—C15—H15 120.7
C4—C3—H3 120.0 C17—C16—O6 123.4 (7)
C5—C4—C3 120.8 (10) C17—C16—C15 120.3 (8)
C5—C4—H4 119.6 O6—C16—C15 116.4 (7)
C3—C4—H4 119.6 C16—C17—C18 120.3 (8)
C4—C5—C6 121.1 (8) C16—C17—H17 119.9
C4—C5—H5 119.5 C18—C17—H17 119.9
C6—C5—H5 119.5 O5—C18—C17 124.4 (8)
C1—C6—C7 118.6 (8) O5—C18—C13 114.6 (7)
C1—C6—C5 116.0 (8) C17—C18—C13 120.9 (8)
C7—C6—C5 125.4 (7) O5—C19—H19A 109.5
C8—C7—O3 121.9 (8) O5—C19—H19B 109.5
C8—C7—C6 122.6 (7) H19A—C19—H19B 109.5
O3—C7—C6 115.4 (7) O5—C19—H19C 109.5
C7—C8—C9 118.9 (9) H19A—C19—H19C 109.5
C7—C8—H8 120.6 H19B—C19—H19C 109.5
C9—C8—H8 120.6 O6—C20—H20A 109.5
O3—C10—C11 110.6 (7) O6—C20—H20B 109.5
O3—C10—H10A 109.5 H20A—C20—H20B 109.5
C11—C10—H10A 109.5 O6—C20—H20C 109.5
O3—C10—H10B 109.5 H20A—C20—H20C 109.5
C11—C10—H10B 109.5 H20B—C20—H20C 109.5
H10A—C10—H10B 108.1 C11—N1—C12 121.3 (7)
O4—C11—N1 123.7 (7) C11—N1—H1 119.4
O4—C11—C10 117.5 (8) C12—N1—H1 119.4
N1—C11—C10 118.8 (8) C9—O1—C1 121.4 (7)
N1—C12—C13 115.9 (8) C7—O3—C10 118.0 (6)
N1—C12—H12A 108.3 C18—O5—C19 117.5 (7)
C13—C12—H12A 108.3 C16—O6—C20 117.3 (7)
N1—C12—H12B 108.3
C6—C1—C2—C3 0.3 (16) C13—C14—C15—C16 −0.7 (17)
O1—C1—C2—C3 179.9 (9) C14—C15—C16—C17 −0.7 (16)
C1—C2—C3—C4 −0.9 (17) C14—C15—C16—O6 179.7 (10)
C2—C3—C4—C5 1.1 (17) O6—C16—C17—C18 −178.1 (9)
C3—C4—C5—C6 −0.8 (17) C15—C16—C17—C18 2.2 (15)
C2—C1—C6—C7 −179.6 (10) C16—C17—C18—O5 179.9 (9)
O1—C1—C6—C7 0.8 (13) C16—C17—C18—C13 −2.5 (15)
C2—C1—C6—C5 0.0 (14) C14—C13—C18—O5 179.0 (8)
O1—C1—C6—C5 −179.6 (9) C12—C13—C18—O5 −3.5 (12)
C4—C5—C6—C1 0.3 (15) C14—C13—C18—C17 1.1 (13)
C4—C5—C6—C7 179.8 (10) C12—C13—C18—C17 178.6 (9)
C1—C6—C7—C8 −0.6 (14) O4—C11—N1—C12 −3.4 (13)
C5—C6—C7—C8 179.9 (10) C10—C11—N1—C12 178.1 (8)
C1—C6—C7—O3 −177.3 (8) C13—C12—N1—C11 83.3 (11)
C5—C6—C7—O3 3.2 (14) O2—C9—O1—C1 177.8 (9)
O3—C7—C8—C9 177.7 (9) C8—C9—O1—C1 2.3 (15)
C6—C7—C8—C9 1.1 (14) C2—C1—O1—C9 178.7 (10)
O2—C9—C8—C7 −177.0 (11) C6—C1—O1—C9 −1.7 (13)
O1—C9—C8—C7 −2.0 (15) C8—C7—O3—C10 −7.3 (12)
O3—C10—C11—O4 164.9 (8) C6—C7—O3—C10 169.5 (8)
O3—C10—C11—N1 −16.4 (11) C11—C10—O3—C7 −160.9 (7)
N1—C12—C13—C14 2.3 (14) C17—C18—O5—C19 −2.8 (13)
N1—C12—C13—C18 −175.0 (8) C13—C18—O5—C19 179.4 (10)
C18—C13—C14—C15 0.5 (15) C17—C16—O6—C20 1.9 (14)
C12—C13—C14—C15 −176.8 (10) C15—C16—O6—C20 −178.4 (11)

N-(2,4-Dimethoxybenzyl)-2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3 0.86 2.31 2.669 (2) 105
C14—H14···N1 0.93 2.59 2.923 (2) 101
N1—H1···O4i 0.86 2.09 2.900 (2) 156
C3—H3···O5ii 0.93 2.49 3.419 (2) 175
C5—H5···O4i 0.93 2.43 3.307 (2) 157
C15—H15···O4iii 0.93 2.51 3.399 (2) 160

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+2, y+1/2, −z+1; (iii) −x, y+1/2, −z+1.

References

  1. Abou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3438–o3439. [DOI] [PMC free article] [PubMed]
  2. Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082. [DOI] [PMC free article] [PubMed]
  3. Bauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340–o1341.
  4. Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 453–455. [DOI] [PMC free article] [PubMed]
  5. Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774–776. [DOI] [PMC free article] [PubMed]
  6. Bibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125–o1126. [DOI] [PMC free article] [PubMed]
  7. Black, D. St C., Craig, D. C. & McConnell, D. B. (1997). Tetrahedron Lett. 38, 4287–4290.
  8. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991). Acta Cryst. C47, 202–204.
  11. Gnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337–2346.
  12. Gomes, L. R., Low, J. N., Cagide, F., Gaspar, A., Reis, J. & Borges, F. (2013). Acta Cryst. B69, 294–309. [DOI] [PubMed]
  13. Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. [DOI] [PMC free article] [PubMed]
  14. Govindhan, M., Subramanian, K., Chennakesava Rao, K., Easwaramoorthi, K., Senthilkumar, P. & Perumal, P. T. (2015). Med. Chem. Res. 24, 4181–4190.
  15. Govindhan, M., Subramanian, K., Sridharan, S., ChennakesavaRao, K. & Easwaramoothi, K. (2015). Int. J. ChemTech Res. 8, 1897–1904.
  16. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  17. Holtz, E., Albrecht, U. & Langer, P. (2007). Tetrahedron, 63, 3293–3301.
  18. Ji, W., Zhang, S., Filonenko, G. A., Li, G., Sasaki, T., Feng, C. & Zhang, Y. (2017). Chem. Commun. 53, 4702–4705. [DOI] [PubMed]
  19. Kato, K. (1970). Acta Cryst. B26, 2022–2029.
  20. Kubrak, T., Podgórski, R. & Stompor, M. (2017). Eur. J. Clin. Exp. Med. 15, 169–175.
  21. Kumar, K. A., Renuka, N., Pavithra, G. & Kumar, G. V. (2015). J. Chem. Pharma. Res. 7, 67–81.
  22. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  23. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  24. Morin, M. S. T., Toumieux, S., Compain, P., Peyrat, S. & Kalinowska-Tluscik, J. (2007). Tetrahedron Lett. 48, 8531–8535.
  25. Parveen, M., Ali, A., Malla, A., Silva, P. & Ramos Silva, M. (2011). Chem. Pap. 65, 735–738.
  26. Ramasubbu, N., Row, T. N. G., Venkatesan, K., Ramamurthy, V. & Rao, C. N. R. (1982). J. Chem. Soc. Chem. Commun. pp. 178.
  27. Rambabu, D., Mulakayala, N., Ismail, Ravi Kumar, K., Pavan Kumar, G., Mulakayala, C., Kumar, C. S., Kalle, A. M., Basaveswara Rao, M. V., Oruganti, S. & Pal, M. (2012). Bioorg. Med. Chem. Lett. 22, 6745–6749. [DOI] [PubMed]
  28. Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2013). Acta Cryst. C69, 1527–1533. [DOI] [PubMed]
  29. Sakamoto, M., Unosawa, A., Kobaru, S., Fujita, K., Mino, T. & Fujita, T. (2007). Chem. Commun. pp. 3586–3588. [DOI] [PubMed]
  30. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  31. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  32. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  33. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  34. Srikrishna, D., Godugu, C. & Dubey, P. K. (2018). Mini Rev. Med. Chem. 18, 113–141. [DOI] [PubMed]
  35. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  36. Thailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369–2372.
  37. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  38. Venugopala, K. N., Rashmi, V. & Odhav, B. (2013). BioMed Res. Intl, Article ID 963248, 14 pages, http://dx.doi.org/10.1155/2013/963248. [DOI] [PMC free article] [PubMed]
  39. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  40. Zhang, Y., Zhou, C., Wang, B., Zhou, Y., Xu, K., Jia, S. & Zhao, F. (2014). Propellants, Explosives, Pyrotech. 39, 809–814.
  41. Zhuo, J.-B., Zhu, X., Lin, C.-X., Bai, S., Xie, L.-L. & Yuan, Y.-F. (2014). J. Organomet. Chem. 770, 85–93.
  42. Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47. [DOI] [PMC free article] [PubMed]
  43. Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562–1564. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989019003736/su5482sup1.cif

e-75-00482-sup1.cif (526.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019003736/su5482Isup2.hkl

e-75-00482-Isup2.hkl (269.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019003736/su5482IIsup3.hkl

e-75-00482-IIsup3.hkl (210.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019003736/su5482Isup4.cml

Supporting information file. DOI: 10.1107/S2056989019003736/su5482IIsup5.cml

CCDC references: 1891497, 1891496

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES