Abstract
The simultaneous wireless information and power transfer (SWIPT) technique has been considered as a promising approach to prolong the lifetime of energy-constraint wireless sensor networks (WSNs). In this paper, a multiple-input multiple-output (MIMO) full-duplex (FD) bidirectional wireless sensor network (BWSN) with SWIPT is investigated. Based on minimum total mean-square-error (total-MSE) criterion, a joint optimization problem for source and relay beamforming and source receiving subject to transmitting power and harvesting energy constraints is established. Since this problem is non-convex, an iterative algorithm based on feasible point pursuit-successive convex approximation (FPP-SCA) is derived to obtain a local optimum. Moreover, considering the scenarios in which source and relay nodes equipped with the same and different numbers of antennas, a low-complexity diagonalizing design-based scheme is employed to simplify each non-convex subproblem into convex problems and to reduce the computational complexity. Numerical results of the total-MSE and bit error rate (BER) are implemented to demonstrate the performance of the two different schemes.
Keywords: beamforming, bidirectional wireless sensor network (BWSN), full duplex (FD), multiple-input multiple-output (MIMO), simultaneous wireless information and power transfer (SWIPT)
1. Introduction
Wireless sensor networks (WSNs) have attracted a significant amount of attention from researchers and have been widely employed in vast and varied areas, e.g., object tracking, habitat monitoring, military systems, and industrial areas [1,2,3]. However, in WSNs, the relay or sensor nodes are typically powered by batteries with finite capacities [4], which are difficult or impossible to replace or recharge in most cases. Thus, the energy supplies will limit the lifetime of WSNs. Saving on energy or prolonging the operation time of energy-constrained nodes has become an important research issue in WSNs. Traditionally, multi-input multi-output (MIMO) can provide an effective way for energy saving [5,6].
Recently, simultaneous wireless information and power transfer (SWIPT) is considered a promising energy-harvesting (EH) technique to solve the energy scarcity problem and to achieve perpetual communications in energy-constrained WSNs [7,8,9], which is extensively applied in the area. To date, two receiver architectures proposed in Reference [10], namely time switching (TS) and power splitting (PS), have been widely used for a colocated energy harvester and information decoder in SWIPT systems [11,12]. Compared with the TS structure periodically switching between the EH module and information decoding (ID) module, the PS design allows the receiver to complete EH and information processing in the same phase [13,14,15,16,17]. In Reference [14], the energy-efficient cooperative transmission problem for SWIPT and the power transfer in clustered WSNs was discussed, where the PS architecture was equipped with the receiver. In Reference [15], the joint transceiver design for full-duplex (FD) MIMO SWIPT systems with a PS mode was considered in order to minimize the mean square error (MSE). In Reference [16], the secrecy outage probability minimization problem for the decode-and-forward (DF) relay SWIPT systems with a PS scheme was analyzed. In Reference [17], the energy efficiency problem for SWIPT in a MIMO bidirectional amplify-and-forward (AF) relay network was formulated, where a receiver applied the PS scheme to harvest energy.
In the SWIPT context, conventionally, most networks are assumed to operate in the half-duplex (HD) communication mode [18,19,20,21,22]. Therein, in Reference [19], the performance of an HD bidirectional wireless sensor network (BWSN) with a TS EH strategy was analyzed. In Reference [20], a joint resource optimization scheme for the DF relay SWIPT cognitive sensor networks was proposed. In Reference [21], the authors investigated the joint source and the relay beamforming design in HD sensor networks with SWIPT. The joint source and relay precoding design for the HD bidirectional relay network (BRN) using a PS scheme was proposed in Reference [22]. However, in HD networks, communication nodes can either transmit or receive on a single frequency but not simultaneously [23]. Due to this characteristic, half of the spectrum resources are theoretically wasted. Recent advances suggest that the FD mode enables the concurrent transmission and reception of user signals over the same frequency band for which it can provide nearly double the improvement in spectral efficiency than HD [24]. Therefore, much interest has been turned to incorporating the networks into the FD [25,26,27,28,29,30,31,32]. Thereinto, in Reference [25], an FD MIMO one-way relay network (OWRN) aided by SWIPT was considered to solve the source and relay beamforming optimization problem using minimum mean-square-error (MSE) criterion. In Reference [26], a joint source and relay beamforming optimization for the FD one-way wireless sensor network (OWSN) with SWIPT using MSE minimization criterion was considered. In Reference [27], the transmission rate maximization problem for an FD OWRN powered by a wireless energy transfer was discussed. In Reference [28], the sum rate maximization problem for the AF FD relay-assisted MIMO one-way system was investigated, and with the consideration of self-interference aware FD relaying, an alternating optimization (AO) method was devised. In Reference [29], the authors designed the source and relay precoders for a MIMO FD OWRN with SWIPT-enabled destination to optimize the end-to-end performance in residual loop-interference environments. In Reference [30], the hardware impairments of the FD AF OWRN was considered and an optimization problem was established to maximize the signal to a distortion-plus-noise ratio under relay and source transmit power constraints.
Nonetheless, motivated by the benefit of reducing the waste of extra-channel resources and achieving a higher spectral efficiency than the one-way communication [33,34,35], the bidirectional communication has attracted considerable interest, and much more researches have tended to adopt bidirectional communication in the FD. In the literature [36], the joint optimization of transmit and receive beamforming for relays to maximize the achievable sum-rate in the FD BRN system with a PS scheme was considered. However, to the best of our knowledge, a joint source-relay design based on a total-MSE minimization in MIMO FD BWSN with SWIPT has not yet been studied.
In this paper, a MIMO FD BWSN with PS is presented. With the consideration of processing self-interference, different from References [15,27,28,29,30], we choose to use the one presented in Reference [37]. The merit of the proposed network lies in the considerably high spectral efficiency, providing a cost-effective and perpetual power supply for WSNs and an uninterrupted transmission of information. The contributions are summarized as follows. First, for the sensor system model, contrary to Reference [36], the two source nodes are also equipped with multiple transmitter-receiver antennas for signal transmission and reception, and the multiple data streams transmitting scenarios are considered. Second, a joint optimization problem for source and relay beamforming and source receiving based on the total-MSE minimization is formulated. Third, to cope with the primal nonconvex problem, a feasible point pursuit-successive convex approximation (FPP-SCA)-based iterative algorithm is exploited. Finally, to reduce the computational complexity, a low-complexity diagonalizing method-based algorithm is introduced to simplify each non-convex subproblem into convex problems directly. In terms of the existing approach [25], the generalized singular value decomposition (GSVD) is discussed, and the scenarios in which source and relay nodes equipped with the same and different number of antennas are both discussed. The numerical results show a good performance and validate our analysis.
The remainder of the paper is organized as follows. Section 2 proposes the system model, including the sensor nodes deployment and optimization model. Section 3 focuses on the scheme design. The numerical results are presented and discussed in Section 4. Finally, the conclusions are presented in Section 5.
Notation: Throughout this paper, scalar variables are expressed by lowercase italic letters, vectors are represented by boldface lowercase letters, and matrices are denoted by boldface uppercase letters. denotes an matrix with complex entries. , , , , , and are the trace, transpose operation, conjugate transpose operation, inverse operation, conjugate transpose operation, and the bound norm of a vector. stands for the sum from 1 to M. represents a complex Gaussian distributed variable with a mean x and covariance . and are the matrix vectorization operator and the corresponding inverse operation, respectively. signifies the expectation of the random variables in the bracket.
2. System Model
This paper aims to jointly design the transmitters of the source and relay and the receivers of the source in the FD BWSN with SWIPT. We adopt a three-node sensor system consisting of two sources and a relay and assume that the sources are equipped with the PS receiver and that the relay applies an AF scheme. Without a loss of generality, we suppose that the energy conversion efficiency at the PS receiver is 100 percent and that the PS ratio is fixed.
The considered three-node MIMO BWSN with SWIPT consists of two sources: and both equipped with transmit antennas and receive antennas. and decode the information, harvest the energy by PS, and exchange information with the help of the single AF relay node R with transmit antennas and receive antennas, as shown in Figure 1. All nodes are assumed to operate in FD mode, which means they transmit and receive data at the same time and frequency.
Figure 1.
The system model of the multi-input multi-output (MIMO) full-duplex (FD) bidirectional wireless sensor network (BWSN) with energy harvesting (EH).
Let and denote channel matrices from ’s transmit antennas to R’s receive antennas and that from R’s transmit antennas to ’s receive antennas, respectively. We assume that all channels are statistically independent, reciprocal in the incoming and outgoing directions, and slowly time-varying quasi-static flat Rayleigh fading. Moreover, the self-interference channels at the corresponding nodes are represented as , , and .
Meanwhile, in our system, the two source nodes and are set far apart so that the direct link between them is assumed to be ignored. Moreover, we suppose that the perfect channel state information (CSI) is available at each node [38,39,40] and that the transmit power of the two sources are equal.
For a further analysis, the node deployment and optimization models are presented as follows.
2.1. Node Deployment
At time instant n, data streams with a normalized power are transmitted through the beamformer from simultaneously and the relay R forwards its received signal after multiplying it by a beamforming matrix . In practice, a -symbol processing delay is unavoidable at R when it processes the received signals.
Accordingly, in time slot n, the received signal at R can be expressed as
| (1) |
where represents the additive white Gaussian noise (AWGN) at R.
Assuming that is kept small and that the SI can be cancelled perfectly or almost perfectly with the knowledge of the signal transmitted by the relay itself [37], the transmitted signal at R can be written as
| (2) |
Substituting Equation (1) into Equation (2), the overall relay output can be given by
| (3) |
The signal received by , can be written as
| (4) |
where, the same as below, if and vice versa. is the equivalent noise vector representing , where denotes an AWGN at source nodes with .
For simplicity, we assume that the full channel state information (CSI) is known and that both and know their own transmitted signals; thus, the SI at herein can be cancelled. After subtracting the back-propagated self-interference term from Equation (4), the received signal at becomes
| (5) |
To implement SWIPT, a portion of the signal power is applied to Equation (5), which splits into two parts, portion for ID and the remaining portion for EH. Then, the signals for ID at each source node can be represented as
| (6) |
where denotes the equivalent noise vector and is the AWGN caused by the power splitter.
At the EH side, we have
| (7) |
where is the energy conversion efficiency at the energy harvester. It is assumed that for , here, represents the minimum power that should be harvested at and .
Moreover, and should satisfy the transmitting power constraints, that is,
| (8) |
where and are the maximum transmit power supplied by and R, respectively.
Since channels in our system are memoryless, we can define that , , , and , and we assume that . Thus, (6) can be reformulated as
| (9) |
2.2. Optimization Model
Considering the harvested energy and transmit power constraints, i.e., Equations (7) and (8), the optimization model to minimize the total-MSE of the whole system and to find the optimal source and relay beamformer and the source receiver is described in this section. The objective function and the problem are separately discussed below.
Using Equation (9), the MSE of can be given by
| (10) |
where is the linear receiver at , , , , , and .
Given the MSE of , fixing , a joint source and relay beamforming and source-receiving optimization problem based on the total-MSE with transmit power constraints and an energy-harvesting constraint can be formulated as
| (11a) |
| (11b) |
| (11c) |
| (11d) |
3. Scheme Design
Considering the problem Equation (11) is non-convex and multivariate, the iterative algorithms based on FPP-SCA and a low-complexity diagonalizing are employed in this section.
3.1. Iterative Algorithm Based on FPP-SCA
Since the problem in Equation (11) is non-convex and basically intractable, in this section, an iterative algorithm based on FPP-SCA [41] is proposed to decouple the primal problem into four subproblems corresponding to four variables: , , , and , and to solve them alternately. At each iteration, one variable is optimized while keeping the other fixed. Starting from Equation (12), the is optimized, and then, the is optimized by using Equation (14), following this, Equation (16) (actually two subproblems) is formulated to optimize and separately. Finally, the four subproblems are solved, and the four variables are optimized. Details are given below.
First, with and fixed, the receiver is first optimized. As is only involved in , the optimal can be derived using , which yields
| (12) |
where .
3.1.1. Optimization of Relay Beamformer
Then, the optimization of with a fixed and is discussed. According to [42] (p. 77),
| (13) |
where , , , and are arbitrary matrices with compatible dimensions, ⊗ is the Kronecker product, and represents the matrix vectorization operator.
To guarantee the feasibility of Equation (11), the feasible region is relaxed and approximated by adding slacks to the non-convex constraint of Equation (11d), and the positive slack variables and slack penalty are used in Equation (11a). Then, the original problem can be recast as
| (14a) |
| (14b) |
| (14c) |
| (14d) |
where can be any vector norm, denotes the slack penalty term, and is the trade-off between the original objective function and . Besides, , , , , , , , , , and .
Since is negative, Equation (14) is non-convex. To tackle this subproblem, we define and assume that a center point , is given. Introducing , Theorem 1 can be established and proved.
Theorem 1.
satisfies the following properties: (i) ; (ii) ; and (iii) .
Proof.
Substituting into and , (i) can be easily certified. For (ii), , always holds, which shows , property (ii) is proved. For (iii), the derivatives can be computed as and ; therefore, property (iii) is proved. □
Replacing with , Equation (14) can be rewritten as
| (15a) |
| (15b) |
| (15c) |
| (15d) |
Equation (15) can be efficiently solved using the modeling language YALMIP [43] and the generic conic programming solver SeDuMi [44]. A new approximated problem can be built and solved when the optimal solution of Equation (15) becomes the new center point, that is, . Based on Theorem 1, Equation (14) can be solved.
3.1.2. Optimization of Source Beamformer
Similarly, can be optimized given and . According to Equation (13), the original problem in Equation (11) can be transformed into Equation (16)
| (16a) |
| (16b) |
| (16c) |
| (16d) |
| (16e) |
| (16f) |
where , , , , , , , , , , , , , , , and .
The optimized and can be separately obtained from Equation (16) using a similar FPP-SCA method foresaid.
3.1.3. Summarization of the Proposed Algorithm
Based on the FPP-SCA algorithm presented above, the iterative algorithm is summarized as Algorithm 1.
| Algorithm 1 An alternating optimization algorithm based on a feasible point pursuit-successive convex approximation (FPP-SCA) | ||
| 1. Initialize | Define , , and . | |
| 2. Iterative updating | (1) Update using Equation (12) with a fixed and . | |
| (2) Update by solving Equation (14) with a fixed and . | a. Set and as the initial point . b. Solve Equation (15) at the kth iteration for to yield the optimal solution . c. Let and . d. Until convergence, let . |
|
| (3) Update by solving Equation (16) with a fixed and , following similar steps in (2). | ||
| 3. Until convergence | ||
The Algorithm 1 is convergent based on the following Property 1.
Property 1.
The iterative algorithm based on FPP-SCA is convergent.
Proof.
In the kth iteration of the proposed algorithm, we first compute with the given , , and . Since the optimal solution can be achievable with CVX, where CVX is a Matlab-based available convex programming toolbox [45], we can discover that the objective value corresponding to , , , and is no greater than that to , , , and . Similarly, is no larger than that to , is no larger than that to , and is optimally solved and the objective value is descendent. Consequently, the objective value of the original problem monotonically decreases and is lower-bounded by zero, which verifies the convergence of Algorithm 1. □
3.2. Low-Complexity Diagonalizing Design
However, the main drawback of the proposed FPP-SCA algorithm is the high computational complexity. In order to overcome this shortcoming, a low-complexity algorithm using the channel parallelization (CP) technique [22], namely the generalized singular value decomposition (GSVD) and SVD, is applied.
In this section, we assume that and for simplicity and focus on the scenarios where .
3.2.1. Channel Parallelization
Substituting Equation (12) into Equation (10) and employing
| (17) |
where and are arbitrary matrices and is the identity matrix, the function can be simplified as
| (18) |
where .
Applying GSVD on the uplink channel matrix pair and SVD on the downlink channels , we can obtain
| (19) |
| (20) |
where , , , and are four unitary matrices; ; ; ; and are and nonnegative diagonal matrices; ; for ; and , for .
In order to parallelize the channels in Equations (19) and (20), the relay and source beamformers and can be proposed as
| (21) |
where and are and nonnegative diagonal matrices, respectively.
Substituting Equations (19)–(21) into Equation (18), the resultant objective function becomes
| (22) |
where and are two diagonal matrices containing the th entries of and , , and for , for .
Substituting Equations (19)–(21) into each of the constraints in Equation (11), the original problem can be expressed as
| (23a) |
| (23b) |
| (23c) |
| (23d) |
where and . To solve the nonconvexity caused by Equation (23c), we propose Theorem 2 as follows.
Theorem 2.
The left side of the energy-harvesting constraint in Equation (23c) can be replaced by its lower-bound .
Proof.
We take as an example to illustrate the proof procedure and the optimization problem. Expanding the left side of Equation (23c), defining , and ignoring the constant matrix , the part becomes
(24) Define the entry of as ; then, we have based on the relationship . Following a similar procedure, the lower-bound of can be expressed as .
Then, Theorem 2 is proved. □
By using Theorem 2, Equation (23) can be reformulated as
| (25a) |
| (25b) |
| (25c) |
| (25d) |
where .
3.2.2. Alternating Optimization of and
In this section, an iterative approach is utilized to convert the multivariate non-convex problem in Equation (25) into three convex subproblems. We first study how to optimize with a fixed , and then, the alternating optimization of and is performed with a given .
1. Optimization of
Using Equation (17), can be simplified and rewritten as
| (26) |
where and .
Since exists in only, the problem of minimizing is equivalent to that of minimizing . Defining , , , , , and as the nth diagonal element of , , , , , and , respectively, can be given by
| (27) |
| (28) |
where , .
Moreover, we define , , , and . Accordingly, the problem related to can be described as
| (29a) |
| (29b) |
| (29c) |
| (29d) |
where .
2. Optimization of
Similarly, the solution for can be described in the following scalar form
| (30a) |
| (30b) |
| (30c) |
| (30d) |
where and .
By proving
| (31) |
and
| (32) |
where for , and for , and , we can indicate that Equations (29) and (30) are convex for and . Then, the optimal solution can be obtained by CVX directly.
3.2.3. Summarization of the Proposed Algorithm
The low-complexity algorithm based on CP method depicted above is summarized as Algorithm 2.
| Algorithm 2 The low-complexity algorithm based on the channel parallelization (CP) method | ||
| 1. Channel decomposition | Decompose the channel pairs and using Equations (19) and (20). | |
| 2. Initialization | Define , , and , where . |
|
| 3. Iterative updating | (1) Update using Equation (12) with a fixed and . | |
| (2) Update with a fixed and . | a. Update using by solving Equation (29). b. Substitute into . |
|
| (3) Update with a fixed and . | a. Update and using and by solving Equation (30) separately. b. Substitute and into . |
|
| 4. Until convergence | ||
Algorithm 2 is convergent based on the following Property 2.
Property 2.
The low-complexity algorithm based on the CP method is convergent.
Proof.
In the kth iteration of the proposed algorithm, we first compute with the given , , and . Since the optimal solution can be achievable with CVX, we discover that the objective value corresponding to , , , and is no greater than that to , , , and , which means the objective value is descendent. Consequently, the objective value of the original problem monotonically decreases and is lower-bounded by zero, which verifies the convergence of Algorithm 2. □
4. Numerical Results and Discussion
In order to analyze the performance of the proposed algorithms, the following simulations are conducted. Fifty random Rayleigh fading channels are generated, and the pathloss exponent is set to 2. The variances of noises are assumed as , the transmit powers are set as and , and the signal noise ratio (SNR) is calculated from , where is the power of signal. Meanwhile, the energy-harvesting requirement . , and , are both considered, and the data stream . Moreover, the carrier frequency of the system is given by GHz. Four schemes are simulated: 1. The unaided scheme, which means that the beamformers are set as initial matrices; 2. the proposed FPP-SCA scheme; 3. the proposed low-complexity scheme; and 4. the semidefinite relaxation (SDR) scheme [46] used in the previous literature. In order to show the impact of noise, the impact of different values of , and the number of antennas, we do the corresponding simulations.
Figure 2 and Table 1 show the performance under different for the proposed FPP-SCA scheme and the Low-Complexity scheme. From the simulation results, obviously, a larger leads to a higher system performance for both schemes, since more signals can be used for decoding the information in the receiver shown in Equation (6). In order to make the comparision with the existing works, we choose to use .
Figure 2.
The bit error rate (BER) versus signal noise ratio (SNR) for the proposed schemes under different .
Table 1.
The effects of variation.
| SNRs (dB) | FPP-SCA Scheme | Low-Complexity Scheme | ||||
|---|---|---|---|---|---|---|
| 0 | 0.35 | 0.25 | 0.2 | 0.80 | 0.77 | 0.74 |
| 5 | 0.12 | 0.06 | 0.03 | 0.66 | 0.62 | 0.59 |
| 10 | 0.01 | 0.003 | 9.3 × 10 | 0.52 | 0.47 | 0.45 |
| 15 | 1.8 × 10 | 1.0 × 10 | 0.0 | 0.38 | 0.33 | 0.31 |
| 20 | 0.0 | 0.0 | 0.0 | 0.25 | 0.22 | 0.19 |
| 25 | 0.0 | 0.0 | 0.0 | 0.14 | 0.11 | 0.09 |
| 30 | 0.0 | 0.0 | 0.0 | 0.06 | 0.04 | 0.03 |
The convergence property of different schemes is evaluated in Figure 3, where the total-MSE is plotted versus the iterations ranging from 0 to 50 in dB and dB when . From Figure 3, as the increment in the number of iterations, the FPP-SCA scheme always converges slower and requires more iterations for a convergence as SNR increases than the proposed low-complexity one. Furthermore, the FPP-SCA scheme exhibits a better performance than the low-complexity one for different SNRs when the curve converges. Meanwhile, comparing the FPP-SCA and conventional SDR scheme, we can find that the SDR scheme always converges slower than the FPP-SCA one and that the MSE of it is always higher than that of the FPP-SCA one (e.g., 2.07 vs. 2.04 for dB and 0.50 vs. 0.48 for dB) under 50 iterations, which implies an advantage of the proposed FPP-SCA scheme.
Figure 3.
The total mean square error (total-MSE) versus the iterations for .
It can be claimed that the proposed FPP-SCA scheme has a lower level of total-MSE while it has a higher iteration complexity than the low-complexity counterpart.
The performance comparison of different schemes is indicated in Figure 4, Table 2 and Table 3, where in Figure 4, the bit error rate (BER) is plotted against SNR ranging from 0 dB and 30 dB under conditions and with respect to 50 iterations. From the results illustrated in Figure 4, obviously as the SNR increases, the BER decreases for all schemes. Meanwhile, in both conditions of antenna, the FPP-SCA one is the best in terms of the performance of all schemes, which increases the performance 0.003 compared with the Unaided Scheme, compared with the Low-Complexity Scheme, and compared with the SDR Scheme for under dB and 0.38 compared with the Unaided Scheme, 0.33 compared with the Low-Complexity Scheme, and compared with the SDR Scheme for under dB, which are shown in Table 2 and Table 3.
Figure 4.
BER versus SNR for 50 iterations.
Table 2.
The BER performance for different schemes when .
| SNRs (dB) | Unaided Scheme | FPP-SCA Scheme | Low-Complexity Scheme | SDR Scheme |
|---|---|---|---|---|
| 0 | 0.44 | 0.39 | 0.44 | 0.42 |
| 5 | 0.26 | 0.19 | 0.21 | 0.20 |
| 10 | 0.12 | 0.04 | 0.047 | 0.05 |
| 15 | 0.03 | 0.003 | 0.0043 | 0.004 |
| 20 | 0.0027 | 5.0 × 10 | 4.5 × 10 | 9.0 × 10 |
| 25 | 3.5 × 10 | 0.0 | 0.0 | 0.0 |
| 30 | 0.0 | 0.0 | 0.0 | 0.0 |
Table 3.
The BER performance for different schemes when .
| SNRs (dB) | Unaided Scheme | FPP-SCA Scheme | Low-Complexity Scheme | SDR Scheme |
|---|---|---|---|---|
| 0 | 0.80 | 0.25 | 0.77 | 0.28 |
| 5 | 0.67 | 0.06 | 0.62 | 0.07 |
| 10 | 0.52 | 0.003 | 0.47 | 0.005 |
| 15 | 0.38 | 2.5 × 10 | 0.33 | 4.0 × 10 |
| 20 | 0.27 | 0.0 | 0.22 | 0.0 |
| 25 | 0.18 | 0.0 | 0.11 | 0.0 |
| 30 | 0.12 | 0.0 | 0.04 | 0.0 |
Accordingly, in comparison to the results in Figure 4 and the two tables, we can see that for the proposed FPP-SCA algorithm, the performance is always higher than the SDR-based one for different antennas and SNRs, and we can make the conclusion that our proposed FPP-SCA-based scheme performs better than the traditional SDR-based scheme.
More intriguingly, when , the low-complexity scheme achieves a comparable performance to that of the FPP-SCA one and yields a better performance than that of (e.g., 0.0 vs. 0.04 for dB shown in Table 2 and Table 3). Combined with the low complexity of the low-complexity scheme, it is more applicable than the FPP-SCA one in the case. However, when , in comparison to the FPP-SCA scheme, the performance of the low-complexity scheme is a bit worse owing to the influence of the enhancive diversity gain.
In summary, when the number of antennas at the relay node and source nodes are different, it is more beneficial to choose the FPP-SCA scheme.
From Figure 5 and Table 4, we can see that the performance increases with the number of antennas for both schemes under or . When the number of antennas increases, more antennas can be used to suppress multipath fading with antenna diversity, to increase the system capacity, and to improve the performance. Considering the cost of computing of the low-complexity scheme and comparing the existing work proposed in Reference [35], we choose to use and for both schemes. In detail, in Table 4, , , , and correspond to ; ; ; and for the FPP-SCA scheme and , , , and correspond to ; ; ; and for the low-complexity scheme.
Figure 5.
The antennas versus SNR for 50 iterations.
Table 4.
The effects of antennas variation.
| SNRs (dB) | FPP-SCA Scheme | Low-Complexity Scheme | ||||||
|---|---|---|---|---|---|---|---|---|
| 0 | 0.39 | 0.25 | 0.29 | 0.20 | 0.44 | 0.77 | 0.35 | 0.64 |
| 5 | 0.18 | 0.06 | 0.09 | 0.04 | 0.21 | 0.62 | 0.12 | 0.40 |
| 10 | 0.04 | 0.003 | 0.012 | 5.0 × 10 | 0.05 | 0.47 | 0.02 | 0.26 |
| 15 | 0.003 | 1.0 × 10 | 6.5 × 10 | 0.0 | 0.004 | 0.33 | 0.002 | 0.14 |
| 20 | 5.0 × 10 | 0.0 | 1.6 × 10 | 0.0 | 4.5 × 10 | 0.22 | 5.7 × 10 | 0.07 |
| 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.11 | 0.0 | 0.02 |
| 30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.04 | 0.0 | 0.0045 |
In order to verify the advantage of the proposed network, we make the comparison of our network and the existing BWSN proposed in Reference [35]. In Reference [35], a joint source and relay design for MIMO two-way relay networks with SWIPT considering a perfect CSI is proposed. In the network, the sources are equipped with PS receivers. The comparison is implemented under the same parameters for the two systems, and the results are as follows.
According to the results shown in Figure 6, it can be observed that the performance of the same algorithm based on the proposed system is preferred to that based on the BWSN, which verify the superiority of the proposed system.
Figure 6.
The comparison between the proposed network and existing BWSN .
5. Conclusions
In this paper, we have investigated the joint optimization problem for source and relay beamforming and source receiving in a MIMO FD BWSN SWIPT system. In terms of the problem, two iterative algorithms based on FPP-SCA and low-complexity diagonalizing designs which minimize the total-MSE subjected to the relay-and-source-transmitted power and energy-harvested constraints are proposed. The simulation results demonstrate that the low-complexity scheme always converges faster than the FPP-SCA based one, while the FPP-SCA-based scheme achieves a lower BER compared with the work of the low-complexity scheme. Moreover, when , the performance of the low-complexity scheme yields better than that of . In further works, we will analyze the system performance for multiple users and the interference suppression in the FD network scenario, where a large number of nodes are involved, and a discussion on the optimization scheme under the imperfect SCI will be developed.
Abbreviations
The following abbreviations are used in this manuscript:
| WSN | Wireless sensor network |
| MIMO | Multiple-input multiple-output |
| FD | Full-duplex |
| HD | Half-duplex |
| BWSN | Bidirectional wireless sensor network |
| BRN | Bidirectional relay network |
| OWRN | One-way relay network |
| OWSN | One-way wireless sensor network |
| SWIPT | Simultaneous wireless information and power transfer |
| TS | Time switching |
| PS | Power splitting |
| EH | Energy harvesting |
| ID | Information decoding |
| MSE | Mean square error |
| FPP-SCA | Feasible point pursuit-successive convex approximation |
| CP | Channel parallelization |
| BER | Bit error rate |
| GSVD | Generalized singular value decomposition |
| AF | Amplify and forward |
| DF | Decode and forward |
| AWGN | Additive white Gaussian noise |
| CSI | Channel state information |
| SNR | Signal noise ratio |
| SDR | Semidefinite relaxation |
Author Contributions
Z.W., D.L., and X.L. conceived the main proposal of the system modeling and derived the analysis and numerical simulation of the proposed schemes. D.L. and X.L. wrote the manuscript. Z.W. provided considerable comments and the technique review of the proposed scheme.
Funding
This research was funded by the Beijing Municipal Natural Science Foundation (4172024).
Conflicts of Interest
The authors declare no conflict of interest.
References
- 1.Li B., Li H., Wang W. Performance Analysis and Optimization for Energy-Efficient Cooperative Transmission in Random Wireless Sensor Network. IEEE Trans. Wirel. Commun. 2013;12:3647–4657. doi: 10.1109/TWC.2013.072313.121949. [DOI] [Google Scholar]
- 2.Trasvina-Moreno C.A., Blasco R., Marco A., Casas R., Trasvina-Castro A. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring. Sensors. 2017;17:460. doi: 10.3390/s17030460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Qin J., Sun S., Deng Q., Liu L., Tian Y. Indoor Trajectory Tracking Scheme Based on Delaunay Triangulation and Heuristic Information in Wireless Sensor Networks. Sensors. 2017;17:1275. doi: 10.3390/s17061275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Cheng C.T., Tse C.K., Lau F.C.M. An Energy-Aware Scheduling Scheme for Wireless Sensor Networks. IEEE Trans. Veh. Technol. 2010;59:34273444. doi: 10.1109/TVT.2010.2054842. [DOI] [Google Scholar]
- 5.Boukerche A., Fei X. Energy-Efficient Multi-hop Virtual MIMO Wireless Sensor Network; Proceedings of the 2007 IEEE Wireless Communications and Networking Conference; Kowloon, China. 11–15 March 2007. [Google Scholar]
- 6.Rossi P.S., Ciuonzo D., Kansanen K., Ekman T. Performance Analysis of Energy Detection for MIMO Decision Fusion in Wireless Sensor Networks Over Arbitrary Fading Channels. IEEE Trans. Wireless Commun. 2016;15:7794–7806. doi: 10.1109/TWC.2016.2607703. [DOI] [Google Scholar]
- 7.Li Q., Zhang Q., Qin J., Privault N., Wang P. Beamforming in Non-Regenerative Two-Way Multi-Antenna Relay Networks for Simultaneous Wireless Information and Power Transfer. IEEE Trans. Wireless Commun. 2014;13:5509–5520. doi: 10.1109/TWC.2014.2321763. [DOI] [Google Scholar]
- 8.Li S., Li C., Tan W., Ji B., Yang L. Robust Beamforming Design for Secure V2X Downlink System with Wireless Information and Power Transfer under a Nonlinear Energy Harvesting Model. Sensors. 2018;18:3294. doi: 10.3390/s18103294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Li S., Zhou X., Wang C.X., Yuan D., Zhang W. Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks. Sensors. 2017;17:1566. doi: 10.3390/s17071566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Zhou X., Zhang R., Ho C. Wireless Information and Power Transfer: Architecture Design and Rate-Energy Tradeoff. IEEE Trans. Commun. 2013;61:4754–4767. doi: 10.1109/TCOMM.2013.13.120855. [DOI] [Google Scholar]
- 11.Pan G., Lei H., Yuan Y., Ding Z. Performance Analysis and Optimization for SWIPT Wireless Sensor Networks. IEEE Trans. Commun. 2017;65:2291–2302. doi: 10.1109/TCOMM.2017.2676815. [DOI] [Google Scholar]
- 12.Masood Z., Jung S.P., Choi Y. Energy-Efficiency Performance Analysis and Maximization Using Wireless Energy Harvesting in Wireless Sensor Networks. Energies. 2018;11:2917. doi: 10.3390/en11112917. [DOI] [Google Scholar]
- 13.Xu K., Shen Z., Wang Y., Xia X., Zhang D. Hybrid Time-Switching and Power Splitting SWIPT for Full-Duplex Massive MIMO Systems: A Beam-Domain Approach. IEEE Trans. Veh. Technol. 2018;67:7257–7274. doi: 10.1109/TVT.2018.2831790. [DOI] [Google Scholar]
- 14.Guo S., Wang F., Yang Y., Xiao B. Energy-Efficient Cooperative Transmission for Simultaneous Wireless Information and Power Transfer in Clustered Wireless Sensor Networks. IEEE Trans. Commun. 2015;63:4405–4417. doi: 10.1109/TCOMM.2015.2478782. [DOI] [Google Scholar]
- 15.Wen Z., Liu X., Chen Y., Wang R., Xie Z. Joint Transceiver Designs for Full-Duplex MIMO SWIPT Systems Based on MSE Criterion. China Commun. 2016;13:79–85. doi: 10.1109/CC.2016.7733034. [DOI] [Google Scholar]
- 16.Liu X., Li Z., Wang C. Secure Decode-and-Forward Relay SWIPT Systems with Power Splitting Schemes. IEEE Trans. Veh. Technol. 2018;67:7341–7354. doi: 10.1109/TVT.2018.2833446. [DOI] [Google Scholar]
- 17.Zhou X., Li Q. Energy Efficiency for SWIPT in MIMO Two-Way Amplify-and-Forward Relay Networks. IEEE Trans. Veh. Technol. 2018;67:4910–4924. doi: 10.1109/TVT.2018.2819682. [DOI] [Google Scholar]
- 18.Liu Y. Joint Resource Allocation in SWIPT-Based Multiantenna Decode-and-Forward Relay Networks. IEEE Trans. Veh. Technol. 2017;66:9192–9200. doi: 10.1109/TVT.2017.2717018. [DOI] [Google Scholar]
- 19.Nguyen T.N., Minh T.H.Q., Tran P.T., Voznak M. Energy Harvesting over Rician Fading Channel: A Performance Analysis for Half-Duplex Bidirectional Sensor Networks under Hardware Impairments. Sensors. 2018;18:1781. doi: 10.3390/s18061781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Peng H., Lin Y., Lu W., Xie L., Liu X., Hua J. Joint resource optimization for DF relaying SWIPT based cognitive sensor networks. Physical Communication. 2018;27:93–98. doi: 10.1016/j.phycom.2018.02.003. [DOI] [Google Scholar]
- 21.Liu X., Wen Z., Liu D., Zou J., Li S. Joint Source and Relay Beamforming Design in Wireless Multi-Hop Sensor Networks with SWIPT. Sensors. 2019;19:182. doi: 10.3390/s19010182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Wang R., Tao M. Joint Source and Relay Precoding Designs for MIMO Two-Way Relaying Based on MSE Criterion. IEEE Trans. Signal Process. 2012;60:1352–1365. doi: 10.1109/TSP.2011.2178598. [DOI] [Google Scholar]
- 23.Sabharwal A., Schniter P., Guo D. In-Band Full-Duplex Wireless: Challenges and Opportunities. IEEE J. Sel. Areas Commun. 2014;32:1637–1652. doi: 10.1109/JSAC.2014.2330193. [DOI] [Google Scholar]
- 24.Shim Y., Choi W., Park H. Beamforming Design for Full-Duplex Two-Way Amplify-and-Forward MIMO Relay. IEEE Trans. Wireless Commun. 2016;15:6705–6715. doi: 10.1109/TWC.2016.2587768. [DOI] [Google Scholar]
- 25.Wen Z., Liu X., Beaulieu N.C., Wang R., Wang S. Joint Source and Relay Beamforming Design for Full-Duplex MIMO AF Relay SWIPT Systems. IEEE Cummun. Lett. 2016;20:320–323. doi: 10.1109/LCOMM.2015.2513768. [DOI] [Google Scholar]
- 26.Liu X., Jia Y., Wen Z., Zou J., Li S. Beamforming Design for Full-Duplex SWIPT with Co-Channel Interference in Wireless Sensor Systems. Sensors. 2018;18:3362. doi: 10.3390/s18103362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Zhao L., Wang X., Riihonen T. Transmission Rate Optimization of Full-Duplex Relay Systems Powered by Wireless Energy Transfer. IEEE Trans. Wirel. Commun. 2017;16:6438–6450. doi: 10.1109/TWC.2017.2723564. [DOI] [Google Scholar]
- 28.Taghizadeh O., Zhang J., Haardt M. Transmit Beamforming Aided Amplify-and-Forward MIMO Full-Duplex Relaying with Limited Dynamic Range. Signal Process. 2016;127:266–281. doi: 10.1016/j.sigpro.2016.02.026. [DOI] [Google Scholar]
- 29.Lin C.T., Chang R.Y., Tseng F.S. Source and Relay Precoding for Full-Duplex MIMO Relaying With a SWIPT-Enabled Destination. IEEE Cummun. Lett. 2018;22:1700–1703. doi: 10.1109/LCOMM.2018.2835482. [DOI] [Google Scholar]
- 30.Taghizadeh O., Cirik A.C., Mathar R. Hardware Impairments Aware Transceiver Design for Full-Duplex Amplify-and-Forward MIMO Relaying. IEEE Trans. Wireless Commun. 2018;17:1644–1659. doi: 10.1109/TWC.2017.2783934. [DOI] [Google Scholar]
- 31.Nguyen X.X., Do D.T. Optimal power allocation and throughput performance of full-duplex DF relaying networks with wireless power transfer-aware channel. EURASIP J. Wirel. Commun. 2017;2017:1–16. doi: 10.1186/s13638-017-0936-x. [DOI] [Google Scholar]
- 32.Tian F., Chen X., Liu S., Yuan X., Li D., Zhang X., Yang Z. Secrecy Rate Optimization in Wireless Multi-Hop Full Duplex Networks. IEEE Access. 2018;6:5695–5704. doi: 10.1109/ACCESS.2018.2794739. [DOI] [Google Scholar]
- 33.Joung J., Sayed A.H. Multiuser Two-Way Amplify-and-Forward Relay Processing and Power Control Methods for Beamforming Systems. IEEE Trans. Signal Process. 2010;58:1833–1846. doi: 10.1109/TSP.2009.2038668. [DOI] [Google Scholar]
- 34.Ji X., Bao Z., Xu C. Power minimization for OFDM modulated two-way amplify-and-forward relay wireless sensor networks. EURASIP J. Wirel. Commun. 2017;2017:1–9. doi: 10.1186/s13638-017-0848-9. [DOI] [Google Scholar]
- 35.Wen Z., Liu X., Zheng S., Guo W. Joint Source and Relay Design for MIMO Two-Way Relay Networks with SWIPT. IEEE Trans. Veh. Technol. 2018;67:822–826. doi: 10.1109/TVT.2017.2727061. [DOI] [Google Scholar]
- 36.Okandeji A.A., Khandaker M.R.A., Wong K.K. Two-Way Beamforming Optimization for Full-Duplex SWIPT Systems; Proceedings of the 2016 24th European Signal Processing Conference (EUSIPCO); Budapest, Hungary. 29 Augues–2 September 2016. [Google Scholar]
- 37.Kang Y.Y., Kwak B.J., Cho J.H. An Optimal Full-Duplex AF Relay for Joint Analog and Digital Domain Self-Interference Cancellation. IEEE Trans. Commun. 2014;62:2758–2772. doi: 10.1109/TCOMM.2014.2342230. [DOI] [Google Scholar]
- 38.Wang Y., Xu K., Liu A., Xia X. Hybrid One-Way Full-Duplex/Two-Way Half-Duplex Relaying Scheme. IEEE Access. 2017;5:7737–7745. doi: 10.1109/ACCESS.2017.2694278. [DOI] [Google Scholar]
- 39.Chen Y., Wen Z., Beaulieu N.C., Wang S., Sun J. Joint Source-Relay Design in a MIMO Two-Hop Power-Splitting-Based Relaying Network. IEEE Commu. Lett. 2015;19:1746–1749. doi: 10.1109/LCOMM.2015.2462829. [DOI] [Google Scholar]
- 40.Simoens S., Munoz-Medina O., Vidal J., Coso A. On the Gaussian MIMO Relay Channel with Full Channel State Information. IEEE Trans. Signal Process. 2009;57:3588–3599. doi: 10.1109/TSP.2009.2020744. [DOI] [Google Scholar]
- 41.Mehanna O., Huang K., Gopalakrishnan B., Konar A., Sidiropoulos N.D. Feasible Point Pursuit and Successive Approximation of Non-Convex QCQPs. IEEE Signal Process. Lett. 2015;22:804–808. doi: 10.1109/LSP.2014.2370033. [DOI] [Google Scholar]
- 42.Zhang X. Matrix Analysis and Applications. Tsinghua University Press; Beijing, China: 2013. [Google Scholar]
- 43.Lofberg J. YALMIP: A toolbox for modeling and optimization in MATLAB; Proceedings of the 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508); New Orleans, LA, USA. 2–4 September 2004. [Google Scholar]
- 44.Sturm J. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Meth. Softw. 1999;11:625–653. doi: 10.1080/10556789908805766. [DOI] [Google Scholar]
- 45.Grant M., Boyd S. CVX: Matlab Software for Disciplined Convex Programming Version 2.1. [(accessed on 16 December 2018)]; Available online: http://cvxr.com/cvx/
- 46.Luo Z., Ma W., So A., Ye Y., Zhang S. Semidefinite Relaxation of Quadratic Optimization Problems. IEEE Signal Process. Mag. 2010;27:20–34. doi: 10.1109/MSP.2010.936019. [DOI] [Google Scholar]






