Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;5(2):132–142. doi: 10.1111/j.1582-4934.2001.tb00146.x

Fibroblast growth factors in myocardial ischemia / reperfusion injury and ischemic preconditioning

P Cuevas 1,, F Carceller 1, G Giménez‐Gallego 2
PMCID: PMC6517810  PMID: 12067496

Abstract

Angiogenic growth factors such as fibroblast growth factors (FGFs) are currently in clinical trials for accelerating blood vessel formation in myocardial and limb ischemic conditions. However, recent experimental evidence suggests that FGFs can also participate as endogenous cardioprotective agents. In this report, the current knowledge for FGFs implication in myocardial ischemic tolerance will be summarized. Pharmacologic preconditioning with drugs as FGFs that mimic the beneficial effects of ischemic preconditioning could lead to novel therapeutic approaches for the treatment of ischemic disorders including myocardial infarction and stroke.

Keywords: fibroblast growth factors, myocardial ischemic preconditioning, ATP‐sensitive potassium channels, nitric oxide

References

  • 1. Ishida T., Yarimizu K., Gote D.C., Korthins R.J., Mechanisms of ischemic preconditioning, Shock. 8: 86–94, 1997. [DOI] [PubMed] [Google Scholar]
  • 2. Tomai F., Crea F., Chariello I., Gioffre P.A., Ischemic preconditioning in human models, mediators and clinical relevance, Circulation, 100: 559–563, 1999. [DOI] [PubMed] [Google Scholar]
  • 3. Carrol, R. , Yellon D.M., Myocardial adaptation to ischemia‐the preconditioning phenomenon, Int. J. Cardiol., 68: S93–S101, 1999. [DOI] [PubMed] [Google Scholar]
  • 4. Popescu L.M., Musat S., Trifan O.C., Leabu M., Tigaret C.M., Popescu J., Popescu A., Hinescu M.E., Moraru I.I., Das D.K., K+ ‐channel openers protect the myocardium against ischemiareperfusion injury, Ann. N.Y.Acad. Sci., 723: 398–400, 1994. [PubMed] [Google Scholar]
  • 5. Lochner A., Marais E., Genade S., Moolman J., Nitric oxide: a trigger for classic preconditioning Am. J. Physiol., 279: H2752–H2765, 2000. [DOI] [PubMed] [Google Scholar]
  • 6. Nishimura T., Nakatake Y., Konishi M., Itoh M., Identification of a novel FGF, FGF‐21, preferentially expressed in the liver, Biochem. Biophys. Acta., 1492: 204–206, 2000. [DOI] [PubMed] [Google Scholar]
  • 7. Cuevas P., Carceller F., Ortega S., Zazo M., Nieto I., Giménez‐Gallego G., Hypotensive activity of fibroblast growth factor, Science, 254: 1208–1212, 1991. [DOI] [PubMed] [Google Scholar]
  • 8. Sellke F.W., Wang S.Y., Friedman M., Harada K., Edelman E.R., Grossman W., Simons M. Basic FGF enhances endothelium‐dependent relaxation of the collateral perfused coronary microcirculation, Am. J. Physiol., 267: H1303–H1311, 1994. [DOI] [PubMed] [Google Scholar]
  • 9. Cuevas P., Garcia‐Calvo M., Carceller F., Reimers D., Zazo M., Cuevas B., Muñoz‐Willery I., Martinez‐Coso V., Lamas S., Giménez‐Gallego G., Correction of hypertension by normalization of endothelial levels of fibroblast growth factor and nitric oxide synthase in spontaneous hypertensive rats, Proc. Natl. Acad. Sci. USA, 93: 11996–12001, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Kardami E., Padua R.R., Pasumarthi B.S., Liu L., Doble B.W., Davey S.E., Cattini P.A., (1993) Basic fibroblast growth factor in cardiac myocytes: expression and effects In: Growth factors and the aardiovascular system. Cummins P, (ed.) Kluver Academic Publishers; Boston pp 54–75, 1993. [Google Scholar]
  • 11. Doble B.W., Chen Y., Bosc D.G., Litchfield D.W., Kardami E., Fibroblast growth factor‐2 decreases metabolic coupling and stimulates phosphorylation as well as masking of connexin 43 epitopes in cardiac myocytes, Circ. Res., 79: 647–658, 1996. [DOI] [PubMed] [Google Scholar]
  • 12. Ishibashi Y., Urabe Y., Tsutsui H., Kinugawa S., Sugimachi M., Takahashi M., Yamamoto S., Tagawa H., Sunagawa K., Takesthita A., Negative inotropic effect of basic fibroblast growth factor on adult rat cardiac myocyte, Circulation, 96: 2501–2504, 1997. [DOI] [PubMed] [Google Scholar]
  • 13. Cuevas P., Carceller F., Lozano R.M., Crespo A., Zazo M., Giménez‐Gallego G., Protection of rat myocardium by mitogenic and non‐mitogenic fibroblast growth factor during post‐ischemic reperfusion, Growth Factors, 15: 29–40, 1997. [DOI] [PubMed] [Google Scholar]
  • 14. Padua R.R., Sethi R., Dhalla N.S., Kardami E., Basic fibroblast growth factor is cardioprotective in ischemia‐reperfusion injury, Mol. Cell. Biochem., 143: 129–135, 1995. [DOI] [PubMed] [Google Scholar]
  • 15. Horrigan M.C., MacIsaac A.I., Nicolini F.A., Vince D.G., Lee P., Ellis S.G., Topol E.J., Reduction in myocardial infarct size by basic fibroblast growth factor after temporary coronary occlusion in a canine model, Circulation, 94: 1927–1933, 1996. [DOI] [PubMed] [Google Scholar]
  • 16. Horrigan M.C., Malycky J.L., Ellis S.G., Topol E.J., Nicolini F.A., Reduction in myocardial infarct size by basic fibroblast growth factor following coronary occlusion in a canine model, Int. J. Cardiol., 68 (Suppl) S85–S91, 1999. [DOI] [PubMed] [Google Scholar]
  • 17. Murry C.E., Richard V.J., Reimer K.A., Jennings R.B., Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode, Circ. Res. 66 913–931, 1990. [DOI] [PubMed] [Google Scholar]
  • 18. Bolli R., Marbán R., Molecular and cellular mechanisms of myocardial stunning, Physiol. Rev. 79: 609–634, 1999. [DOI] [PubMed] [Google Scholar]
  • 19. Cuevas P., Carceller F., Cuevas B., Giménez‐Gallego G., Martínez‐Coso V., A non‐mitogenic form of acidic fibroblast growth factor reduces neutrophil infiltration in rat ischemic reperfused heart, Eur. J. Med. Res., 2: 139–145, 1997. [PubMed] [Google Scholar]
  • 20. Cuevas P., Carceller F., Martínez‐Coso V., Asin‐Cardiel E., Giménez‐Gallego G., Fibroblast growth factor cardioprotection against ischemia‐reperfusion injury may involve K+ATP channels, Eur. J. Med. Res. 51: 145–149, 2000. [PubMed] [Google Scholar]
  • 21. Cuevas P., Reimers D., Carceller F., Horcajo‐Redondo M., Saenz de Tejada I., Martinez‐Coso V., Giménez‐Gallego G., FGF‐1 prevents myocardial apoptosis triggered by ischemia reperfusion injury, Eur. J. Med. Res., 2: 465–468, 1997. [PubMed] [Google Scholar]
  • 22. Chinkers M., Garbers D.L., Signal transduction by guanylyl cyclase, Annu. Rev. Biochem., 60: 553–575, 1991. [DOI] [PubMed] [Google Scholar]
  • 23. Cuevas P., Carceller F., Martínez‐Coso V., Cuevas B., Fernández‐ Ayerdi A., Reimers D., Asin‐Cardiel E., Giménez‐Gallego G., Cardioprotection from ischemia by fibroblast growth factor: role of inducible nitric oxide synthase, Eur. J. Med. Res., 4: 517–524, 1999. [PubMed] [Google Scholar]
  • 24. Lohmann S.M., Fischmeister R., Walter U., Signal transduction by cGMP in hearts, Basic Res. Cardiol., 86: 503–514, 1991. [DOI] [PubMed] [Google Scholar]
  • 25. Brady A.J., Warren J.B., Poole‐Wilson P.A., Williams T.J., Harding S.E., Nitric oxide attenuates cardiac myocyte contraction, Am. J. Physiol., 265: H176–H182, 1993. [DOI] [PubMed] [Google Scholar]
  • 26. Weiss H.R., Rodriguez E., Tse J., Scholz P.M., Effect of increased myocardial cyclic GMP induced by cyclic GMP‐phosphodiesterase inhibition on oxygen consumption and supply of rabbit hearts, Clin. Exp. Pharmacol. Physiol., 21: 607–614, 1994. [DOI] [PubMed] [Google Scholar]
  • 27. Shandhu R., Thomas V., Diaz R.J., Wilson G.J., Effect of ischemic preconditioning of the myocardium on cAMP, Circ. Res., 78: 137–147, 1996. [DOI] [PubMed] [Google Scholar]
  • 28. Xi L., Jarrett N.C., Hess M.L., Kukreja R.C., Essential role of inducible nitric oxide synthase in monophosphoryl lipid A‐induced late cardioprotection: evidence from pharmacological inhibition and gene knockout mice, Circulation, 99: 2157–2163, 1999. [DOI] [PubMed] [Google Scholar]
  • 29. Zhao T., Xi L., Chelliah J., Levasseur J.E., Kukreja R.C., Inducible nitric oxide synthase mediates delayed myocardial protection induced by activation of adenosine A1 receptors. Evidence from gene‐knockout mice, Circulation, 102: 902–907, 2000. [DOI] [PubMed] [Google Scholar]
  • 30. Kanno S., Lee P.C., Zhang Y., Ho C., Griffith B.P., Shears L.L‐2nd , Billiar T.R., Attenuation of myocardial ischemia/reperfusion injury by superinduction of inducible nitric oxide synthase, Circulation, 101: 742–2748, 2000. [DOI] [PubMed] [Google Scholar]
  • 31. McGowan F.X., Davis P.J., Nido P.J., Sobek M., Allen J.W., Downing S.E., Endothelium‐dependent regulation of coronary tone in the neonatal pig, Anesth. Analg., 79: 1094–1101, 1994. [DOI] [PubMed] [Google Scholar]
  • 32. Kubes P., Suzuki M., Granger D.N., Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA, 88: 4651–4655, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Radomski M.W., Palmer R.M., Moncada S., Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium, Lancet, 2: 10157–1058, 1987. [DOI] [PubMed] [Google Scholar]
  • 34. Finkel M.S., Oddis C.V., Jacob T.D., Watkins S.C., Hattler B.G., Simmons R.L., Negative inotropic effects of cytokines on the heart mediated by nitric oxide, Science, 257: 387–389, 1992. [DOI] [PubMed] [Google Scholar]
  • 35. Leist M., Single B., Naumann H., Fava E., Simon B., Kuhnle S., Nocotera P., Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis, Exp. Cell Res., 249: 396–403, 1999. [DOI] [PubMed] [Google Scholar]
  • 36. Hu H., Chiamvimonvat N., Yamagishi T., Marban E., Direct inhibition of expressed cardiac L‐type Ca2+ channels by S‐nitrosothiol nitric oxide donors, Circ. Res., 81: 742–752, 1997. [DOI] [PubMed] [Google Scholar]
  • 37. Loke K.E., McConnell P.I., Tuzman J.M., Shesely E.G., Smith C.J., Stackpole C.J., Thompson C.I., Kaley G., Wolin M.S., Hintze T.H., Endogenous endothelial nitric oxide synthase‐derived nitric oxide is a physiological regulator of myocardial oxygen consumption, Cir. Res., 84: 840–845, 1999. [DOI] [PubMed] [Google Scholar]
  • 38. Grover G.J., Garlid D.K., ATP‐sensitive potassium channels: a review on their cardioprotective pharmacology, J. Mol. Cell Cardiol., 32: 677–695, 2000. [DOI] [PubMed] [Google Scholar]
  • 39. Stahl L.D., Weiss H.R., Becker L.C., Myocardial oxygen consumption, oxygen supply/demand hetereogeneity and microvascular patency in regionally stunned myocardium, Circulation, 77: 865–872, 1988. [DOI] [PubMed] [Google Scholar]
  • 40. Chiu W.C., Keden J., Scholz P.M., Weiss H.R., Regional assynchrony of segmental contraction may explain the “oxygen consumption paradox” in stunned myocardium, Basic Res. Cardiol., 89: 149–162, 1994. [DOI] [PubMed] [Google Scholar]
  • 41. Hampton T.G., Amende I., Fong J., Laubach V.E., Li J., Metais C., Simons M., Basic FGF reduces stunning via a NOS2‐dependent pathway in coronary‐perfused mouse hearts, Am. J. Physiol. 279: H260–H268, 2000. [DOI] [PubMed] [Google Scholar]
  • 42. Saraste A., Pulkki K., Kallajoki M., Henriksen K., Parvinen M., Voipio‐Pulkki L.M., Apoptosis in human acute myocardial infarction, Circulation, 95: 320–323, 1997. [DOI] [PubMed] [Google Scholar]
  • 43. Fliss H., Gattinger D., Apoptosis in ischemic and reperfused rat myocardium, Circ. Res., 79: 949–956, 1996. [DOI] [PubMed] [Google Scholar]
  • 44. Gottlieb R.A., Burleson K.O., Kloner R.A., Babior B.M., Engler R.L., Reperfusion injury induces apoptosis in rabbit cardiomyocytes, J. Clin. Invest., 94: 1621–1628, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Zhang Z., Vuori K., Reed J.C., Ruoslahti E., The a5b1 integrin supports survival of cells on fibronectin and upregulates Bcl‐2 expression, Proc. Natl. Acad. Sci. USA, 92: 6161–6165, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Kondo S., Kondo Y., Yin D., Barnett G.H., Kaakaji R., Peterson J.W., Morimura T., Kubo H., Takeuchi J., Barna B.P., Involvement of interleukin‐1b‐converting enzyme in apoptosis of bFGF‐deprived murine aortic endothelial cells, FASEB J., 10: 1192–1197, 1996. [DOI] [PubMed] [Google Scholar]
  • 47. Kondo S., Yin D., Aoki T., Takahashi J.A., Morimura T., Takeuchi J., bcl‐2 gene prevents apoptosis of basic fibroblast growth factor‐deprived murine aortic endothelial cells, Exp. Cell Res., 213: 428–432, 1994. [DOI] [PubMed] [Google Scholar]
  • 48. Hockenbery D.M., Oltvai Z.N., Yin X.M., Milliman C.L., Korsmeyer S.J., Bcl‐2 functions in an antioxidant pathway to prevent apoptosis, Cell, 75: 241–251, 1993. [DOI] [PubMed] [Google Scholar]
  • 49. Yang W., de Bono D.P., A new role for vascular endothelial growth factor and fibroblast growth factors: increasing endothelial resistance to oxidative stress, FEBS Lett., 403: 139–142, 1997. [DOI] [PubMed] [Google Scholar]
  • 50. Cuevas P., Carceller F., Reimers D., Giménez‐Gallego G.. Fibroblast growth factor‐1 inhibits medial smooth muscle cells apoptosis after balloon injury, Neurol. Res., 22: 185–188, 2000. [DOI] [PubMed] [Google Scholar]
  • 51. Lynch J., Fernández G., Pappalardo A., Peluso J.J., Basic fibroblast growth factor inhibits apoptosis of spontaneously immortalized granulosa cells by regulating intracellular free calcium levels through a protein Kinase Cd‐dependent pathway, Endocrinology, 141: 4209–4217, 2000. [DOI] [PubMed] [Google Scholar]
  • 52. Simon A.M., Goodenough D.A., Diverse function of vertebrate gap junctions, Trends Cell Biol., 12: 477–483, 1998. [DOI] [PubMed] [Google Scholar]
  • 53. Yasui K., Kada K., Hojo M., Lee J.‐K., Kamiya K., Toyama J., Opthof T., Kodama I., Cell‐to‐cell interaction prevents cell death in cultured neonatal rat ventricular myocytes, Cardiovasc. Res., 48: 68–76, 2000. [DOI] [PubMed] [Google Scholar]
  • 54. Cuevas P., Barrios, V. , Oliva E., Asin‐Cardiel E., Giménez‐Gallego G., Immunolocalization of basic fibroblast growth factor in human atrial intercalated discs, Proc. XV ISHR, 695–698, 1994.
  • 55. Moscatelli D., Presta M., Rifkin D.B., Purification of a factor from human placenta that stimulates capillary endothelial cell protease production, DNA synthesis and migration, Proc. Natl. Acad. Sci. USA, 83: 2091–2095, 1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Presta M., Moscatelli D., Joseph‐Silverstein J., Rifkin D.B. (1986) Purification from a human hepatoma cell line of a basic fibroblast growth factor‐like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis and migration, Mol. Cell. Biol., 6: 4060–4066, 1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Harris L., Kimura Y., Shaikh N.A., Phospholipase inhibition and the electrophysiology of acute ischemia: studies with amiridone, J. Mol. Cell Cardiol., 25: 1075–1090, 1993. [DOI] [PubMed] [Google Scholar]
  • 58. Cuevas P., Carceller F., Hernández‐Madrid A., Cuevas B., Martínez‐Coso V., Giménez‐Gallego G., Protective effects of acidic fibroblast growth factor against cardiac arrhythmias induced by ischemia and reperfusion in rats, Eur. J. Med. Res., 2: 33–36, 1997. [PubMed] [Google Scholar]
  • 59. Htun P., Ito W.D., Hoefer I.E., Schaper J., Schaper W., Intramyocardial infusion of FGF‐1 mimics ischemic preconditioning in pig myocardium, J. Mol. Cell Cardiol., 30: 867–877, 1998. [DOI] [PubMed] [Google Scholar]
  • 60. Gu J‐W., Santiago D., Olowe Y., Weinberger J. Basic fibroblast growth factor as a biochemical marker of exercise‐induced ischemia, Circulation, 95: 1165–1168, 1997. [DOI] [PubMed] [Google Scholar]
  • 61. Campuzano R., Barrios V., Asin‐Cardiel E., Muela A., Castro J.M., Fernández A., Cuevas B., Lozano F., Ordeña M.P., Cuevas P., Determinación de los niveles séricos del factor de crecimiento para fibroblastos como marcador de isquemia durante la prueba de esfuerzo, Rev. Esp. Cardiol., 53 (suppl.) 154 (abstract). [Google Scholar]
  • 62. Waltenberger J., Modulation of growth factor action. Implications for the treatment of cardiovascular diseases, Circulation, 96: 4083–4094, 1997. [DOI] [PubMed] [Google Scholar]
  • 63. Noma A., ATP‐regulated K+ATP channels in cardiac muscle, Nature, 305: 147–148, 1983. [DOI] [PubMed] [Google Scholar]
  • 64. Gross G.J., Fryer R.M., Sarcolemmal versus mitochondrial ATP sensitive K+ channels and myocardial preconditioning, Circ. Res., 84: 973–979, 1999. [DOI] [PubMed] [Google Scholar]
  • 65. Garlid K., Paucek P., Yorov‐Yarovoy V., Murray H.N., Darbenzio R.B., D'Alonzo, A.J. , Lodge N.J., Smith M.D., Grover G.T., Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP‐sensitive K+ channels: possible mechanism of cardioprotection, Circ. Res. 81: 1072–1082, 1997. [DOI] [PubMed] [Google Scholar]
  • 66. Liu Y., Sato T., O'Rourke B., Marbán E., Mitochondrial ATP‐dependent potassium channels: novel effectors of cardioprotection Circulation, 97: 2463–2469, 1998. [DOI] [PubMed] [Google Scholar]
  • 67. Giménez‐Gallego G., Cuevas P., Fibroblast growth factors, proteins with a broad spectrum of biological activities, Neurol. Res., 16: 313–316, 1994. [DOI] [PubMed] [Google Scholar]
  • 68. Lozano R. M., Pineda‐Lucena A., González C., Jiménez M.A., Cuevas P., Redondo‐Horcajo M., Sanz J.M., Rico M., Giménez‐Gallego G., HNMR structural characterization of a nonmitogenic, vasodilatory, ischemia‐protector and neuromodulatory acidic fibroblast growth factor, Biochemistry, 39: 4982–4993, 2000. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES