Skip to main content
Molecules logoLink to Molecules
. 2019 May 13;24(9):1842. doi: 10.3390/molecules24091842

A Review on Daphnane-Type Diterpenoids and Their Bioactive Studies

Yue-Xian Jin 1,2,, Lei-Ling Shi 3,, Da-Peng Zhang 4, Hong-Yan Wei 3, Yuan Si 1, Guo-Xu Ma 2,3,*, Jing Zhang 1,*
PMCID: PMC6540581  PMID: 31086098

Abstract

Natural daphnane diterpenoids, mainly distributed in plants of the Thymelaeaceae and Euphorbiaceae families, usually include a 5/7/6-tricyclic ring system with poly-hydroxyl groups located at C-3, C-4, C-5, C-9, C-13, C-14, or C-20, while some special types have a characteristic orthoester motif triaxially connectedat C-9, C-13, and C-14. The daphnane-type diterpenoids can be classified into five types: 6-epoxy daphnane diterpenoids, resiniferonoids, genkwanines, 1-alkyldaphnanes and rediocides, based on the oxygen-containing functions at rings B and C, as well as the substitution pattern of ring A. Up to now, nearly 200 daphnane-type diterpenoids have been isolated and elucidated from the Thymelaeaceae and Euphorbiaceae families. In-vitro and in-vivo experiments of these compounds have shown that they possess a wide range of biological activities, including anti-HIV, anti-cancer, anti-leukemic, neurotrophic, pesticidal and cytotoxic effects. A comprehensive account of the structural diversity is given in this review, along with the cytotoxic activities of daphnane-type diterpenoids, up to April 2019.

Keywords: daphnane, diterpenoid, cytotoxic activities

1. Introduction

Since the first daphnane diterpenoid characterized by a macrolactone motif was isolated from Trigonostemon reidioides [1], the daphnane diterpenoids have attracted the interest of many researchers because of their significant bioactive activities. Until now, nearly 200 natural products of daphnane-type diterpenoids have been isolated and identified, and they have shown good biological activities, including anti-HIV, anti-cancer, anti-leukemia, anti-hyperglycemic [2], neurotropic [3], insecticidal and cytotoxic [4] effects. Due to their rich pharmacological activities, especially strong anti-HIV activity and small cytotoxicity, daphnane-type diterpenoids have been employed in a range of clinical applications for a variety of clinical uses [5,6]. Studies have found that the natural daphnane-type diterpenoids usually embrace a 5/7/6-tricyclic ring system with poly-hydroxyl groups located at C-3, C-4, C-5, C-9, C-13, C-14, or C-20, while a special group also have a characteristic orthoester motif connected to C-9, C-13, and C-14. The daphnane-type diterpenoids can be categorized into five types (Figure 1): 6-epoxy daphnane diterpenoids, resiniferonoids, genkwanines, 1-alkyldaphnanes and rediocides, based on the substitution pattern of ring A and the oxygen-containing functions at rings B and C. Besides, 6-epoxy daphnane diterpenoids usually have a C-6α epoxy structure in ring B; resiniferonoids usually have an α-β unsaturated ketone structure in ring A; genkwanines usually have an α-β saturated ketone structure in ring A, but without a C-6α epoxy structure in ring B; 1-alkyldaphnanes usually have a saturated ring A, and a large ring between the end of the orthoester alkyl chain and C-1 of ring A; and rediocides usually have a 12-carbon macrolide structure between C-3 and C-16, and have a special C-9, C-12, and C-14 orthoester structure. The variety of daphnane-type diterpenoid structures have continued to widen with the discovery of unusual variations with the well-established skeleton. Owing to the unique skeleton and remarkable bioactive activities, daphnane-type diterpenoids have attracted many synthetic endeavors to construct a core structure. However, few papers have reported on the total synthesis of daphnane diterpenoids—isolation from natural plants is still the only source of obtaining daphnane diterpenoids. Considering the extensive interest in daphnane-type diterpenoids, we reviewed the structural and bioactive activities of daphnane-type diterpenoids, with an emphasis on the recent progress in structure identification and bioactive evaluation.

Figure 1.

Figure 1

The kinds of daphnane-type diterpenoids skeleton.

2. Occurrence

Natural daphnane-type diterpenoids are mainly distributed in species belonging to the Thymelaeaceae or Euphorbiaceae families (Table 1). These plants grow mainly in tropical and subtropical regions of Asia [7]. Previous chemical investigations on such species have led to the isolation of a number of structurally diverse diterpenoids [8]. Various daphnane-type diterpenoids have been isolated from some parts of the following plants: The twigs and leaves of Trigonostemonthyrsoideum, the roots of Trigonostemonreidioides, the stems of Trigonostemon lii, the twigs and leaves of Trigonostemonchinensis Merr, the stem barks of Daphne giraldii, the air-dried roots of Euphorbia fischeriana, the stems of D. acutiloba, the roots of Lasiosiphonkraussianus, the flower buds of Daphne genkwa, and the roots of Maprouneaafricana Muell. Arg., Trigonostemonxyphophylloides, Wikstroemiaretusa, Trigonostemonhowii, and Stellerachamaejasme L., and so on [9].

Table 1.

The species of daphnane-type diterpenoids.

Types of Diterpenoids Species Medication Site
6-epoxy daphnane diterpenoids D. acutiloba Usually their effective part is roots, stems, twigs and leaves, flower buds, fresh bark.
Trigonostemonthyrsoideum
Wikstroemiaretusa
Daphne genkwa
D. oleoidesSchreber ssp. oleoides
Trigonostemonxyphophylloides
Thymelaeahirsuta
Neoboutoniaglabrescens
S.kirkii
W.monticola
D.tangutica
P.elongata
T.xyphophylloides
T.thyrsoideum
D.vesiculosum
Stellerachamaejasme L.
Trigonostemonchinensis Merr
Resiniferonoids Euphorbia fischeriana Generally, the roots and flower budsistheir effective part.
Daphne genkwa
Euphorbia pilosa
Genkwanines Trigonostemonxyphophylloides Usually their effective part isroots, stems, twigs and leaves, flower buds.
Trigonostemonthyrsoideum
Trigonostemon lii
Trigonostemonchinensis Merr
Daphne genkwa
Trigonostemonhowii
1-alkyldaphnanes Wikstroemiachamaedaphne Usually, the flower buds and fresh bark is their effective part.
Wikstroemiaretusa
Stellerachamaejasme L.
Daphne genkwa
Synaptolepiskirkii
P.elongata
Rediocides Trigonostemonthyrsoideum Generally, their effective part is roots, twigs and leaves.
Trigonostemonchinensis Merr
Trigonostemonreidioides

3. Species of Daphnane-Type Diterpenoids and Their Bioactive Activities

3.1. 6-Epoxy DaphnaneDiterpenoids

6-epoxy daphnane diterpenoids featurea C-6α epoxy structure in ring B and, occasionally, an α-β unsaturated ketone structure in ring A. In most cases, there is also a C-5β hydroxyl group and a C-20 hydroxyl group in ring B (Figure 2, Table 2). Compounds acutilobins A–G (15, 65, 66), wikstroemia factor M1 (74), genkwanineVIII (69), gniditrin (14), gnididin (15), gnidicin (13), daphnetoxin (6), yuanhuajine (50), kirkinine (24), excoecaria factor O1 (8), excoecaria toxin (7), and 14′-ethyltetrahydrohuratoxin(51) have been obtained from the stems of D. acutiloba. Acutilobins A–G have been shown to exhibit significant anti-HIV-1 activities, with EC50 below 1.5 μM [10]. Trigoxyphins A (32), B (59), and trigothysoid M (63) have been isolated from the twigs and leaves of Trigonostemonthyrsoideum. These compounds have been evaluated for anti-HIV activity by an assay of the inhibition of the cytopathic effects of HIV-1 and cytotoxicity against C8166 cells. However, only trigoxyphin A expressed weak anti-HIV-1 activity [11]. Compounds huratoxin (20) and wikstroelides A–D (3740), H–J (4142, 56), and L–N (43, 5758) have been obtained from the fresh bark of Wikstroemiaretusa. The orthoester compounds wikstroelides D and H, with palmitic acid at their 20-hydroxyl site, have shown the weakest cytotoxic activity [12]. Antitumor compounds genkwanin I (64) and orthobenzoate 2 (70) have been isolated from the flower buds of Daphne genkwa. Genkwanin I has been shown to be a potent cell growth inhibitor constituent [13]. Active ingredients genkwadane D (9), yuanhuadine (47), yuanhuafine (45), yuanhuacine (49), yuanhuahine (44), yuanhuapine (61), genkwadaphnine (10), isoyuanhuadine (23), and genkwanine M (67) were obtained from the flower buds of Daphne genkwa. Among them, yuanhuadine, genkwadaphnine, yuanhuafine, yuanhuapine, and genkwanine M have exhibited the strongest cytotoxic activities against the HT-1080 cell line (IC50 < 0.1 µM) [14]. Maprouneacin (76) has been isolated from the roots of Maprouneaafricana Muell. Arg, and has shown potent glucose-lowering properties when administered via the oral route. [15]. The compound trigonostempene C (71) has been obtained from the twigs and leaves of Trigonostemonthyrsoideum, but did not show any significant activity [16]. Compounds yuanhualine (46) and yuanhuagine (48) have been isolated from Daphne genkwa. In the analysis of signal transduction molecules, yuanhualine and yuanhuagine appear to suppress the activation of Akt, STAT3 and Src in human lung cancer cells, and also exert potent antiproliferative activity against anticancer-drug resistant cancer cells [17]. Gnidilatidin (17), gnidilatidin-20-palmitate (18), 1, 2α-dihydrodaphnetoxin (62), genkwadaphnin-20-palmitate (11) and gnidicin-20-palmitate (19) have successfully been obtained from the stems of D. oleoidesSchreber ssp. oleoides [18]. Trigoxyphins J and K (3334) have been isolated from the stems of Trigonostemonxyphophylloides, and subsequently shown to be inactive against three tumor cell lines, specifically thehuman chronic myelogenous leukemia cell line (K562), the human gastric carcinoma cell line (SGC-7901), and human hepatocellular carcinoma (BEL-7402) (IC50 value > 10 μM) [19]. Genkwanine N (68) has been obtained from the dried flower buds of Daphne genkwa, and the compound with esterification of the 20-hydroxyl has shown weak toxicity [20]. Trigonosin B (73) has beenisolated from the roots of Trigonostemonthyrsoideum [21], whilecompounds hirseins A and B (2122) have been isolated from Thymelaeahirsuta. Hirseins A and B have shown inhibition of melanogenesis in B16 murine melanoma cells [22]. Glabrescin(12) and Montanin (26) have been obtained from Neoboutoniaglabrescens [23]. Kirkinine D (25) and synaptolepisfactor K7 (28) have been isolated from the S.kirkii [24]. Wikstrotoxin C (35) has been isolated from W.monticola. The compound 2α-dihydro-20-palimoyldaphnetoxin (52) has been isolated from the D.tangutica, while gnidiglaucin (16) has been obtained from P.elongata [24]. Trigoxyphin C (60) has been obtained from T.xyphophylloides, and tested against BEL-7402 cells (human hepatocellular carcinoma), where in it has been shown to be inactive (IC50 value > 10 µM was defined as inactive) [25]. Trigonosin A (72) has been isolated from T.thyrsoideum, and shown to exhibitin significant inhibitory activity against specific tumor cells (IC50 >10 μM) [21]. Isovesiculosin and vesiculosin (5455) have been isolated from D.vesiculosum [26]. Genkwanine O (75) has been obtained from D.genkwa. Compound daphnegiraldigin (53) has been isolated from the stem barks of Daphne giraldii [27]. Simplexin(27) has been obtained from Stellerachamaejasme L. [5]. Compounds trigochinins G–I (2931) have been isolated from the twigs and leaves of Trigonostemonchinensis Merr [28].

Figure 2.

Figure 2

Eight types (AH) of 6-epoxy daphnane skeletons.

Table 2.

Reported structures of 6-epoxy daphnane skeletons.

No. Name R1 R2 R3 R4 R5 Type
1 Acutilobin A H OH Ph OCO(CH=CH)2COC(CH2)2CH3 A
2 Acutilobin B H OH Ph OCO(CH=CH)3CHCH2CH3OH A
3 Acutilobin C H OH (CH=CH)3(CH2)2CH3 OCOCH=CHPhCH3OH A
4 Acutilobin D H OH (CH=CH)2(CH2)4CH3 OCOCH=CHPhCH3OH A
5 Acutilobin E H OH Ph OCOCH=CHPhCH3OH A
6 Daphnetoxin H OH Ph H A
7 Excoecaria toxin H OH (CH=CH)2(CH2)4CH3 H A
8 Excoecaria factor O1 H OH (CH=CH)3(CH2)2CH3 H A
9 Genkwadane D H OH (CH=CH)2(CH2)4CH3 OCOCH(CH3)2 A
10 Genkwadaphnine H OH Ph OBz A
11 Genkwadaphnin-20-palmitate H OCO(CH2)14CH3 Ph OCOPh A
12 Glabrescin H OCOCH2(CH2)13CH3 (CH2)10CH3 H A
13 Gnidicin H OH Ph OCOCH=CHPh A
14 Gniditrin H OH Ph OCO(CH=CH)3(CH2)2CH3 A
15 Gnididin H OH Ph OCO(CH=CH)2(CH2)4CH3 A
16 Gnidiglaucin H OH (CH2)8CH3 OAc A
17 Gnidilatidin H OH (CH=CH)2(CH2)4CH3 OCOPh A
18 Gnidilatidin-20-palmitate H OCO(CH2)14CH3 (CH=CH)2(CH2)4CH3 OCOPh A
19 Gnidicin-20-palmitate H OCO(CH2)14CH3 Ph OCOCH=CHPh A
20 Huratoxin H OH (CH=CH)2(CH2)8CH3 H A
21 Hirsein A H OH CH=CH(CH2)4CH3 OCOCH=CHPh A
22 Hirsein B H OH CH=CH(CH2)4CH3 OCOCH=CHPhOH A
23 Isoyuanhuadine H OH (CH=CH)2(CH2)4CH3 OAc A
24 Kirkinine H OH CH=CH(CH2)12CH3 OAc A
25 Kirkinine D H OH (CH=CH)3(CH2)2CH3 OAc A
26 Montanin H OH (CH2)10CH3 H A
27 Simplexin H OH (CH2)8CH3 H A
28 Synaptolepisfactor K7 H OH CH=CH(CH2)12CH3 H A
29 Trigochinin G H H Ph OCOCH2CH(CH3)2 A
30 Trigochinin H H H Ph OCOC6H4(4-OH) A
31 Trigochinin I H H Ph OCOC6H3(3-OMe)(4-OH) A
32 Trigoxyphin A H H Ph OBz A
33 Trigoxyphin J H OH CH3 OCO(CH2)14CH3 A
34 Trigoxyphin K H H Ph OBz A
35 Wikstrotoxin C graphic file with name molecules-24-01842-i001.jpg OH (CH=CH)2(CH2)4CH3 OAc A
36 Wikstrotoxin D H OH n-C9H19 H A
37 Wikstroelide A H OH (CH=CH)2(CH2)8CH3 OAc A
38 Wikstroelide B H OH (CH=CH)2(CH2)9CH3 OAc A
39 Wikstroelide C H O-trans-5-pentadecenoic acid (CH=CH)2(CH2)8CH3 OAc A
40 Wikstroelide D H O-palmitic acid (CH=CH)2(CH2)8CH3 OAc A
41 Wikstroelide H H OH (CH=CH)2(CH2)6CH3 OAc A
42 Wikstroelide I H O-palmitic acid (CH=CH)2(CH2)9CH3 OAc A
43 Wikstroelide L H OH (CH=CH)2(CH2)8CH3 OAc A
44 Yuanhuahine H OH (CH=CH)2(CH2)4CH3 OCOCH2CH3 A
45 Yuanhuafine H H Ph OAc A
46 Yuanhualine H OH (CH=CH)2(CH2)4CH3 OCO(CH2)2CH3 A
47 Yuanhuadine H OH (CH=CH)2(CH2)4CH3 OAc A
48 Yuanhuagine H OH (CH=CH)(CH2)2CH3 OCOCH3 A
49 Yuanhuacine H OH (CH=CH)2(CH2)4CH3 OBz A
50 Yuanhuajine H OH (CH=CH)3(CH2)2CH3 OBz A
51 14′-ethyltetrahydrohuratoxin H OH (CH2)14CH3 H A
52 2α-dihydro-20-palimoyldaphnetoxin H OH CH=CH(CH2)6CH3 OAc A
53 Daphnegiraldigin H OH COPh H H B
54 Isovesiculosin Ac Ac Ac CO(CH=CH)2(CH2)4CH3 H B
55 Vesiculosin H H CO(CH=CH)2(CH2)4CH3 H H B
56 Wikstroelide J H H CO(CH=CH)2(CH2)8CH3 H OAc B
57 Wikstroelide M H H CO(CH=CH)2(CH2)8CH3 H H B
58 Wikstroelide N H H CO(CH=CH)2(CH2)9CH3 H H B
59 Trigoxyphin B H H OBz C
60 Trigoxyphin C Ac H OBz C
61 Yuanhuapine H OH OAc C
62 1,2α-dihydrodaphnetoxin H OH H C
63 Trigothysoid M D
64 Genkwanin I E
65 Acutilobin F CO(CH=CH)3(CH2)2CH3 OH H F
66 Acutilobin G COCH=CHPh OH H F
67 Genkwanine M H OBz H F
68 Genkwanine N Bz OH H F
69 GenkwanineVIII COPh OH H F
70 Orthobenzoate 2 H OH H F
71 Trigonostempene C H H OH F
72 Trigonosin A H H OBz F
73 Trigonosin B H OH OBz F
74 Wikstroemia factor M1 CO(CH=CH)2(CH2)4CH3 OH H F
75 Genkuanine O G
76 Maprouneacin H

3.2. Resiniferonoids

Relative to 6-epoxy daphnane diterpenoids, there is no C-6α epoxy structure in ring B forresiniferonoids. However, resiniferonoids do possess an α-β unsaturated ketone structure in ring A (Figure 3, Table 3). Compounds 4β, 9α, 20- trihydroxy- 13, 15- secotiglia- 1,6- diene- 3,13- dione 20-O-β-d- [6-galloyl] glu- copyranoside (86) and euphopiloside A (84) have beenisolated from the air-dried roots of Euphorbia fischeriana, and display moderate inhibitory effects against α-glucosidase in in-vitro bioassays [29]. Yuanhuatine (78) has been isolated from the flower buds of Daphne genkwa [14]. Compounds daphneresiniferins A and B (8081) have been obtained from the flower buds of Daphne genkwa. A study found that daphneresiniferin A was able to dependently inhibit melanin production [30]. Genkwanine L (77) has been isolated from the bud of Daphne genkwa [31]. Euphopiloside B (83), langduin A (85) and phorbol (87) have been obtained from the Euphorbia Pilosa [32], while compounds genkwadane A (79) and yuanhuaoate B (82) have been isolated from the flower buds of Daphne genkwa [14].

Figure 3.

Figure 3

Seven types (IO) of resiniferonoids skeletons.

Table 3.

Reported structures of resiniferonoids skeletons.

No. Name R Type
77 Genkwanine L OAc I
78 Yuanhuatine OBz I
79 Genkwadane A J
80 Daphneresiniferin A Me K
81 Daphneresiniferin B Ph K
82 Yuanhuaoate B L
83 Euphopiloside B M
84 Euphopiloside A graphic file with name molecules-24-01842-i002.jpg N
85 Langduin A H N
86 4β,9α,20-trihydroxy-13,15-secotiglia-1,6-diene-3,13-dione20-O-β-d-[6-galloyl]glu-copyranoside graphic file with name molecules-24-01842-i003.jpg N
87 Phorbol O

3.3. Genkwanines

Relative to 6-epoxy daphnane diterpenoids and resiniferonoids, genkwanines have an α-β saturated ketone structure in ring A, but do not possess a C-6α epoxy structure in ring B (Figure 4, Table 4). Compound trigoxyphin H (100) has been isolated from the twigs of Trigonostemonxyphophylloides [33]. The active ingredients trigothysoids A–L (122124, 9699, 139141, 131,128), trigochinins A–E (145146, 130, 147148), andtrigonothyrins D, E (143144) and G (121) have been obtained from the twigs and leaves of Trigonostemonthyrsoideum. These compounds have been evaluated for their anti-HIV activity usingan assay to determine their inhibition of the cytopathic effects of HIV-1 and their cytotoxicity against C8166 cells. Amongst them, trigothysoid A and L exhibited moderate anti-HIV-1 activity; andtrigothysoid C and K andtrigochinins A, B and D expressed weak anti-HIV-1 activity [11]. Trigolins A–G (132138) and trigonothyrin F (107) have been isolated from the stems of Trigonostemon lii. Trigolins A, G, H, and K have been shown to exhibit modest anti-HIV-1 activity with EC50 values of 2.04, 9.17, 11.42, and 9.05l µg/mL, respectively [34]. Compound trigochinin F (149) has been obtained from the twigs and leaves of Trigonostemonchinensis Merr, and has shown strong inhibition of HL-60 tumor cell lines [28]. Trigonothyrins A–C (125127) have been isolated from the stems of Trigonostemonthyrsoideum [6]. Among them, trigonothyrin C has shown significant activity to prevent the cytopathic effects of HIV-1 in C8166 cells, with an EC50 value of 2.19 µg/mL [35]. Compounds genkwanines F, I, and J (93, 113, 114) have been isolated from the flower buds of Daphne genkwa [14]. Genkwanine H (95) has been obtained from the flower buds of Daphne genkwa, and the compound has been shown to dependently inhibit melanin production [30]. Compounds trigonostempenes A (150) and B (129) have been isolated from the twigs and leaves of Trigonostemonthyrsoideum. Studies have shown that the discovery of these NO inhibitory daphnane diterpenoids—including compound trigonostempene A—which possess IC50 values comparable topositive controls may have the potential to be developed as anti-neuroinflammatory agents for alzheimer disease (AD) and other related neurological disorders [16]. Most inhibitors of acetylcholinesterase (AchE) are alkaloids that often possess several side effects, whereas these daphnane-type diterpenoids do not belong to the class of alkaloids, and therefore they may constitute novel active AChE inhibitors with fewer side effects. It is important to search for new AChE inhibitors not belonging to this structural class [36,37]. Genkwanines A–E (8892), G (94), I (113), and K (115) have been obtained from the bud of Daphne genkwa. Among these compounds, genkwanine D has been shown to exhibit strong activity to inhibit the endothelium cell HMEC at IC50 levels of 2.90–15.0 μM [31]. Compounds trigoxyphins U and W (105116) have been isolated from the twigs of Trigonostemonxyphophylloides. Trigoxyphin W has shown modest cytotoxicity against BEL-7402, SPCA-1 and SGC-7901, with IC50 values of 5.62, 16.79 and 17.19 µM, respectively [33]. Trigonosins C–D (106, 142) have been obtained from the roots of Trigonostemonthyrsoideum [21]. Trigoxyphin I (104) has been isolated from the Trigonostemonxyphophylloides [38]. Compounds trigohownins D and E (101102), and trigohownins A–C (108110) and F–I (117120) have been obtained from the Trigonostemonhowii. Among them, trigohownins A and D have been shown to exhibit moderate cytotoxic activity against the HL-60 tumor cellline, with IC50 values of 17.0 and 9.3 μM, respectively [39]. Trigoxyphins D–F (111112, 103) have been isolated from Trigonostemonxyphophylloides, with all three compounds found to be inactive against BEL-7402 cells (IC50 value > 10 µM) [25].

Figure 4.

Figure 4

Eight types (PW) of genkwanines skeletons.

Table 4.

Reported structures of genkwanines skeletons.

No. Name R1 R2 R3 R4 R5 R6 R7 R8 Type
88 Genkwanine A H H H OH CH2OH H Ph H P
89 Genkwanine B CO(CH=CH)2(CH2)4CH3 H H OH CH2OH H Ph H P
90 Genkwanine C CO(CH=CH)3(CH2)2CH3 H H OH CH2OH H Ph H P
91 Genkwanine D Bz H H OH CH2OH H Ph H P
92 Genkwanine E H H H OH CH2OCO(CH=CH)3(CH2)2CH3 H Ph H P
93 Genkwanine F H H H OH CH2OCO(CH=CH)2(CH2)4CH3 H Ph H P
94 Genkwanine G H H H OH CH2COO(CH=CH) (CH2)6CH3 H Ph H P
95 Genkwanine H H H H OH CH2OBz H Ph H P
96 Trigothysoid D H H H OH Me H Me OBz P
97 Trigothysoid E Ac H H OH Me H Me OBz P
98 Trigothysoid F H H Ac OH Me H Me OBz P
99 Trigothysoid G Ac H Bz OH ME H Me OBz P
100 Trigoxyphin H Ac H Ac OCOPh Me Ac Ph OAc P
101 Trigohownin D Ac Bz Ac OH Me Ac Ph OAc P
102 Trigohownin E Ac H Bz OH Me Ac Me OBz P
103 Trigoxyphin F Ac H Ac OBz Me Ac Ph OH P
104 Trigoxyphin I Ac H Ac OCOPh Me Ac Ph Ac P
105 Trigoxyphin U Ac H Ac Me OCOPh Ac ME OCOPh P
106 Trigonosin C H H H OH Me H Ph OBz P
107 Trigonothyrin F H H H OH Me H Ph H P
108 Trigohownin A OAc OH Bz OAc OH Q
109 Trigohownin B OBz OAC H OAc OH Q
110 Trigohownin C OH OAC Bz OH OH Q
111 Trigoxyphin D OH OAC Bz OAc OH Q
112 Trigoxyphin E H OAC Bz OAc OAc Q
113 Genkwanine I H H OH CH2OH H Bz H H R
114 Genkwanine J H H OH CH2OCO(CH=CH)2(CH2)4CH3 H Bz H H R
115 Genkwanine K H H OH CH2Bz H Bz H H R
116 Trigoxyphin W Ac Ac Me OCOPh H H COPh H R
117 Trigohownin F Ac Ac OBz Me Ac H Bz OH R
118 Trigohownin G Ac Ac OBz Me Ac Ac Bz OH R
119 Trigohownin H Ac Ac OBz Me Ac Bz Ac OH R
120 Trigohownin I Ac Bz OH Me Ac Ac Bz OH R
121 Trigonothyrin G Ac H OCOPh S
122 Trigothysoid A H H OBz S
123 Trigothysoid B Ac Bz OBz S
124 Trigothysoid C H Ac OBz S
125 Trigonothyrin A Bz Ac Bz Me T
126 Trigonothyrin B H Bz Bz Me T
127 Trigonothyrin C Ac Bz Bz Me T
128 Trigothysoid L Ac Bz Ac Ph T
129 Trigonostempene B Ac Ac Bz Me T
130 Trigochinin C OAc Ph U
131 Trigothysoid K OBz Me U
132 Trigolins A H Bz Me Ac Ac H Bz V
133 Trigolins B Ac Bz Me Ac H H Bz V
134 Trigolins C Ac Bz Me Ac Bz H H V
135 Trigolins D Ac Bz Me Ac Ac H Bz V
136 Trigolins E Ac Bz Me Bz Ac H Ac V
137 Trigolins F Ac Ac Me Bz Ac H Bz V
138 Trigolins G H Bz Me Bz AC H Bz V
139 Trigothysoid H Ac Ac CH2OAc Ac Ac Bz Ac V
140 Trigothysoid I Ac Ac CH2OAc Ac Ac H Bz V
141 Trigothysoid J Ac Bz Me Ac Ac H Bz V
142 Trigonosin D H H Me Ac Ac COPh Ac V
143 Trigonothyrin D Ac Ac Me Ac Ac COPh Ac V
144 Trigonothyrin E H Ac Me Ac Ac COPh Ac V
145 Trigochinin A H Bz Me Ac Ac COPh Ac V
146 Trigochinin B Ac Bz Me Ac Ac COPh Ac V
147 Trigochinin D H Bz Me Ac Ac Bz Ac V
148 Trigochinin E Ac Bz Me Ac Ac Bz Ac V
149 Trigochinin F Ac Ac Ac Ac Ac Bz Ac V
150 Trigonostempene A W

3.4. 1-Alkyldaphnanes

1-alkyldaphnanes have a large ring between the end of the orthoester alkyl chain and C-1 of ring A (Figure 5, Table 5). Pimelea factors S6 (168) and S7 (169) have been isolated from the flower buds of Wikstroemiachamaedaphne and have shown moderate cytotoxic activities against human myeloid leukemia HL-60, hepatocellular carcinoma SMMC-7721, lung cancer A549, breast cancer MCF-7, and colon cancer SW480 [1]. Compound pimelea factor P2 (155) has been obtained from the fresh bark of Wikstroemiaretusa, and has been shown to exhibit cytotoxicity in 10 cell lines (including HeLa, HepG2, HT-1080, HCT116, A375-S2, MCF-7, A549, U-937, K562 and HL60 cell lines) [14]. Wikstroelides E–G, K and O (163167) have been isolated from the fresh bark of Wikstroemiaretusa. Among them, compound wikstroelide E has been shown to exhibit the highest activity against cell lines PC-6 (human lung cancer cell line) and P388 (mouse leukaemia cell line), followed by wikstroelides A and J, which have the orthoester group without a fatty acid at the 20-hydroxyl [12]. Compounds stelleralides A–C (151152, 174) and gnidimacrin (153) have been isolated from the Stellerachamaejasme L. [5]. Genkwadane B (154), pimelotides A and C (170, 172), and genkwadane C (156) have been isolated from the flower buds of Daphne genkwa [14]. Compounds wikstroelides R–T (157159) have been obtained from the flower buds of Wikstroemiachamaedaphne. Wikstroelide R has been shown to have moderate cytotoxic activities against human cancer cell lines [1]. Compounds kirkinines B, C, and E (160162) were isolated from Synaptolepiskirkii. Pimelotides B and D (171, 173) have beenobtained from Pelongata [40].

Figure 5.

Figure 5

Four types (X1X4) of 1-alkyldaphnanes skeletons.

Table 5.

Reported structures of 1-alkyldaphnanes skeletons.

No. Name R1 R2 R3 R4 R5 R6 Type
151 Stelleralide A CH2OAc OH OBz OH X1
152 Stelleralide B CH2OBz H OBz OH X1
153 Gnidimacrin CH2OBz OH OBz OH X1
154 Genkwadane B Me H OH OBz X1
155 Pimelea factor P2 CH2OH H OBz OH X1
156 Genkwadane C H benzoyl H H Me X2
157 Wikstroelide R H benzoyl OH H Me X2
158 Wikstroelide S benzoyl H H Me H X2
159 Wikstroelide T H trans-cinnamoyl H H Me X2
160 Kirkinine B H CH=CH(CH2)5 Me H Me H X3
161 Kirkinine C H CH=CH(CH2)5 Me H Me OAc X3
162 Kirkinine E H CH=CH(CH2)5 Me OH Me H X3
163 Wikstroelide E H CH2 Me H Me H X3
164 Wikstroelide F H CH2 CH2OBz H Me H X3
165 Wikstroelide G palmitic acid CH2 CH2OBz H Me H X3
166 Wikstroelide K CO(CH2)14CH3 CH2 CH2OBz Me H H X3
167 Wikstroelide O H CH2 CH2OBz Me H H X3
168 Pimelea factor S6 OH CH2 Me H Me H X3
169 Pimelea factor S7 OH CH2 Me Me H H X3
170 Pimelotide A H H Me H X4
171 Pimelotide B OAc H H Me X4
172 Pimelotide C H H H Me X4
173 Pimelotide D OAc H Me H X4
174 Stelleralide C H OBz Me H X4

3.5. Rediocides

Rediocides usually have a 12-carbon macrolide structure between C-3 and C-16, and have a special C-9, C-12, and C-14 orthoester structure (Figure 6, Table 6). The active compounds trigothysoids N–P (182184), rediocides A, C, and F (176177, 179), and trigonosin F (181) have been obtained from the twigs and leaves of Trigonostemonthyrsoideum. Amongst them, compounds trigothysoid N, rediocides A, C, and F, and trigonosins F have shownpotent anti-HIV-1 activity, with EC50 values ranging from 0.001 to 0.015 nM. Additionally, trigothysoid O has been shown to exhibit moderate anti-HIV-1 activity [11], while rediocide A has shown potent activities against mosquito larvae in an in-vitro assay study and against fleas (Ctenocephalides felis) in an artificial membrane feeding system, exhibiting LD90 values of 1 and 0.25 ppm, respectively [39]. Trigochilides A and B (175, 186) have been isolated from the twigs and leaves of Trigonostemonchinensis Merr. Trigochilide A has shown modest cytotoxicity against HL-60 (human leukemia) and BEL-7402 (human hepatoma), with demonstrated IC50 values of 3.68 and 8.22 µM, respectively, whereas compound trigochilide B has only been shown to exhibit weak cytotoxicity against two tumor cell lines, with IC50 values of 33.35 and 54.85 µM [1]. Compound rediocide E (178) has been obtained from the roots of Trigonostemonreidioides, and has shown significant acaricidal activity on D. pteronyssinus [40]. Trigonosin E (180) and trigonostempene D (185) have beenisolated from the twigs and leaves of Trigonostemonthyrsoideum [16,21]. Rediocides B, G, and D (187189) have been isolated from the Trigonostemonreidioides, and have been evaluated for their insecticidal properties in an anti-flea artificial membrane feeding assay (as detailed earlier). In this assay, rediocides B and D exhibited LD90 values of 0.25 and 0.5 ppm, respectively, and thus were equipotent with rediocide A (LD90 0.25 ppm) [41].

Figure 6.

Figure 6

Five types (Y1Y5) of rediocides skeletons.

Table 6.

Reported structures of rediocides skeletons.

No. Name R1 R2 R3 Type
175 Trigochilide A Y1
176 Rediocide A Me COCH2CH(CH3)2 OH Y2
177 Rediocide C Me Bz OH Y2
178 Rediocide E H COCH2CH(CH3)2 OH Y2
179 Rediocide F H Bz OH Y2
180 Trigonosin E Me COPh OH Y2
181 Trigonosin F Me COPh OH Y2
182 Trigothysoid N Me COCH2CH(CH3)2 OH Y2
183 Trigothysoid O Me COPh H Y2
184 Trigothysoid P Me COCH2CH(CH3)2 H Y2
185 Trigonostempene D Me Val H Y2
186 Trigochilide B Y3
187 Rediocide B COCH2CH(CH3)2 Y4
188 Rediocide G Bz Y4
189 Rediocide D COCH2CH(CH3)2 Y5

4. Conclusions

It can be concluded that the bioactive activities of daphnane-type diterpenoids is obviously related to structure types. The most important points of them are the following: (1) The orthoester groups at C-9, C-13 and C-14 are essential to the cytotoxic activity. Daphnane-type diterpenoids with orthoester groups at C-9, C-13, and C-14 usually have stronger activity than daphnane-type diterpenoids with orthoester groups at C-9, C-12, and C-14 or C-12, C-13 and C-14. The absence of the orthoester group is unhelpful to the cytotoxic activity. (2) Specific to the 6-epoxyl groups, free 20-hydroxyl and 3-carbonyl are important for their activities. (3) Side chains at C-10 are crucial for cytotoxic activities. Generally speaking, long C-10 alkyl chains are more important than phenyl at C-10. Interestingly, the structure with macro-lactones exhibited much stronger activity than the others. Due to the rich activities of daphnane-type diterpenoids, researchers have not stopped exploring and researching such compounds and their bioactive activities from plants.

Funding

This research was funded by the National Natural Science Foundation of China [grant number 81860759].

Conflicts of Interest

There is no conflict of interest associated with the authors of this paper.

Footnotes

Sample Availability: Samples of the compounds are available from the authors.

References

  • 1.Jayasuriya H., Zink D.L., Singh S.B., Borris R.P., Nanakorn W., Beck H.T., Balick M.J., Goetz M.A., Slayton L., Gregory L., et al. Structure and Stereochemistry of Rediocide A, a Highly Modified Daphnane from Trigonostemon reidioides Exhibiting Potent Insecticidal Activity. ChemInform. 2000;31:4998–4999. [Google Scholar]
  • 2.Carney J.R., Krenisky J.M., Williamson R.T., Luo J., Carlson T.J., Hsu V.L., Moswa J.L. Maprouneacin, a new daphnane diterpenoid with potent antihyperglycemic activity from Maprounea africana. J. Nat. Prod. 1999;62:345–347. doi: 10.1021/np980356c. [DOI] [PubMed] [Google Scholar]
  • 3.He W., Cik M., Lesage A. Kirkinine, a new daphnane orthoester with potent neurotrophic activity from Synaptolepis kirkii. J. Nat. Prod. 2000;63:1185–1187. doi: 10.1021/np000249u. [DOI] [PubMed] [Google Scholar]
  • 4.He W., Cik M., Appendino G. Daphnane-type diterpene orthoesters and their biological activities. Mini-Rev. Med. Chem. 2002;2:185–200. doi: 10.2174/1389557024605492. [DOI] [PubMed] [Google Scholar]
  • 5.Asada Y., Sukemori A., Watanabe T., Malla K.J., Yoshikawa T., Li W., Koike K., Chen C.H., Akiyama T., Qian K., et al. Stelleralides A-C, Novel Potent Anti-HIV Daphnane-Type Diterpenoids from Stellera chamaejasme L. Org. Lett. 2011;13:2904–2907. doi: 10.1021/ol200889s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Zhang L., Luo R.H., Wang F., Dong Z.J., Yang L.M., Zheng Y.T., Liu J.K. Daphnane diterpenoids isolated from Trigonostemon thyrsoideum as HIV-1 antivirals. Phytochemistry. 2010;71:1879–1883. doi: 10.1016/j.phytochem.2010.08.008. [DOI] [PubMed] [Google Scholar]
  • 7.Chen S.K., Chen B.Y., Li H. Flora of China (Zhongguo Zhiwu Zhi) Volume 44. Science; Beijing, China: 1997. pp. 162–170. [Google Scholar]
  • 8.Zhang L., Luo R.H., Wang F., Jiang M.Y., Dong Z.J., Yang L.M., Zheng Y.T., Liu J.K. Highly functionalized daphnane diterpenoids from Trigonostemon thyrsoideum. Org. Lett. 2010;12:152–155. doi: 10.1021/ol9025638. [DOI] [PubMed] [Google Scholar]
  • 9.Wang H.B., Liu L.P., Wang X.Y. 13C-NMR data of daphnane diterpenoids. Magn. Reson. Chem. 2013;51:580–592. doi: 10.1002/mrc.3978. [DOI] [PubMed] [Google Scholar]
  • 10.Huang S.Z., Zhang X.J., Li X.Y., Kong L.M., Jiang H.J., Ma Q.Y., Liu Y.Q., Hu J.M., Zheng Y.T., Li Y. Daphnane-type diterpene esters with cytotoxic and anti-HIV-1 activities from Daphne acutiloba Rehd. Phytochemistry. 2012;75:99–107. doi: 10.1016/j.phytochem.2011.11.013. [DOI] [PubMed] [Google Scholar]
  • 11.Cheng Y.Y., Chen H., He H.P., Zhang Y., Li S.F., Tang G.H., Guo L.L., Yang W., Zhu F., Zheng Y.T. Anti-HIV active daphnane diterpenoids from Trigonostemon thyrsoideum. Phytochemistry. 2013;96:360–369. doi: 10.1016/j.phytochem.2013.10.005. [DOI] [PubMed] [Google Scholar]
  • 12.Abe F., Iwase Y., Yamauchi T., Kinjo K., Yaga S., Ishii M., Iwahana M. Minor daphnane-type diterpenoids from Wikstroemia retusa. Phytochemistry. 1998;47:833–837. doi: 10.1016/S0031-9422(97)00529-3. [DOI] [PubMed] [Google Scholar]
  • 13.Li L.Z., Gao P.Y., Peng Y., Wang L.H., Song S.J. A novel daphnane-type diterpene from the flower bud of Daphne genkwa. Chem. Nat. Compd. 2010;46:380–382. doi: 10.1007/s10600-010-9622-5. [DOI] [Google Scholar]
  • 14.Li F., Sun Q., Hong L., Li L., Wu Y., Xia M., Ikejima T., Peng Y., Song S. Daphnane-type diterpenes with inhibitory activities against human cancer cell lines from Daphne genkwa. Bioorg. Med. Chem. Lett. 2013;23:2500–2504. doi: 10.1016/j.bmcl.2013.03.025. [DOI] [PubMed] [Google Scholar]
  • 15.Liu F., Yang X., Ma J., Yang Y., Xie C., Tuerhong M., Jin D.Q., Xu J., Lee D., Ohizumi Y., et al. Nitric oxide inhibitory daphnane diterpenoids as potential anti-neuroinflammatory agents for AD from the twigs of Trigonostemon thyrsoideus. Bioorg. Chem. 2017;75:149–156. doi: 10.1016/j.bioorg.2017.09.007. [DOI] [PubMed] [Google Scholar]
  • 16.Jo S.K., Hong J.Y., Park H.J., Lee S.K. Anticancer Activity of Novel Daphnane Diterpenoids from Daphne genkwa through Cell-Cycle Arrest and Suppression of Akt/STAT/Src Signalings in Human Lung Cancer Cells. Biomol. Ther. (Seoul). 2012;20:513–519. doi: 10.4062/biomolther.2012.20.6.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Taninaka H., Takaishi Y., Honda G., Imakura Y., Sezik E., Yesilada E. Terpenoids and aromatic compounds from Daphne oleoides ssp. oleoides. Phytochemistry (Oxford) 1999;52:1525–1529. doi: 10.1016/S0031-9422(99)00305-2. [DOI] [Google Scholar]
  • 18.Yu L., Zuo W.J., Mei W.L., Guo Z.K., Li X.N., Dai H.F. Three new terpenoids from Trigonostemon xyphophylloides (Croiz.) L.K. Dai and T.L. Wu. Phytochem. Lett. 2013;6:472–475. doi: 10.1016/j.phytol.2013.05.014. [DOI] [Google Scholar]
  • 19.Chen Y.Y., Guo J.M., Qian Y.F., Guo S., Ma C.H., Duan J.A. Toxicity of daphnane-type diterpenoids from Genkwa Flos and their pharmacokinetic profile in rat. Phytomedicine. 2013;21:82–89. doi: 10.1016/j.phymed.2013.06.012. [DOI] [PubMed] [Google Scholar]
  • 20.Li S.F., Di Y.T., Li S.L., Zhang Y., Yang F.M., Sun Q.Y., Simo J.M., He H.P., Hao X.J. Trigonosins A−F, Daphnane Diterpenoids from Trigonostemon thyrsoideum. J. Nat. Prod. 2011;74:464–469. doi: 10.1021/np1006444. [DOI] [PubMed] [Google Scholar]
  • 21.Miyamae Y., Villareal M.O., Abdrabbah M.B., Isoda H., Shigemori H. Hirseins A and B, Daphnane Diterpenoids from Thymelaea hirsuta That Inhibit Melanogenesis in B16 Melanoma Cells. J. Nat. Prod. 2009;72:938–941. doi: 10.1021/np800808h. [DOI] [PubMed] [Google Scholar]
  • 22.Tchinda A.Y., Tsopmo A., Tene M., Kamnaing P., Ngnokam D., Tane P., Ayafor J.F., Connolly J.D., Farrugia L.J. Diterpenoids from Neoboutonia glabrescens (Euphorbiaceae) Phytochemistry. 2003;64:549–553. doi: 10.1016/S0031-9422(03)00158-4. [DOI] [PubMed] [Google Scholar]
  • 23.Hayes P.Y., Chow S., Somerville M.J., Fletcher M.T. Daphnane- and Tigliane-Type Diterpenoid Esters and Orthoesters from Pimelea elongata. J. Nat. Prod. 2010;73:1907–1913. doi: 10.1021/np1005746. [DOI] [PubMed] [Google Scholar]
  • 24.Lin B.D., Han M.L., Ji Y.C., Chen H.D., Yang S.P., Zhang S., Geng M.Y., Yue J.M. Trigoxyphins A-G: diterpenes from Trigonostemon xyphophylloides. J. Nat. Prod. 2010;73:1301–1305. doi: 10.1021/np100320h. [DOI] [PubMed] [Google Scholar]
  • 25.Powell R.G., Weisleder D., Smith C.R. Daphnane Diterpenes from Diarthron vesiculosum: Vesiculosin and Isovesiculosin. J. Nat. Prod. 1985;48:102–107. doi: 10.1021/np50037a018. [DOI] [PubMed] [Google Scholar]
  • 26.Su J., Wu Z. A New Daphnane-Type Diterpenoid from Daphne giraldii. Chem. Nat. Compd. 2014;50:285–287. doi: 10.1007/s10600-014-0932-x. [DOI] [Google Scholar]
  • 27.Chen H.D., Yang S.P., He X.F., Liu H.B., Ding J., Yue J.M. Trigochinins D–I: six new daphnane-type diterpenoids from Trigonostemon chinensis. Tetrahedron. 2010;66:5065–5070. doi: 10.1016/j.tet.2010.04.118. [DOI] [Google Scholar]
  • 28.Wei Y.L., Yu Z.L., Huo X.K., Tian X.G., Feng L., Huang S.S., Deng S., Ma X.C., Jia J.M., Wang C. Diterpenoids from the roots of Euphorbia fischeriana and their inhibitory effects on alpha-glucosidase. J. Asian Nat. Prod. Res. 2018;20:977–984. doi: 10.1080/10286020.2017.1367923. [DOI] [PubMed] [Google Scholar]
  • 29.Bang K.K., Yun C.Y., Lee C., Jin Q., Lee J.W., Jung S.H., Lee D., Lee M.K., Hong J.T., Kim Y., et al. Melanogenesis inhibitory daphnane diterpenoids from the flower buds of Daphne genkwa. Bioorg. Med. Chem. Lett. 2013;23:3334. doi: 10.1016/j.bmcl.2013.03.096. [DOI] [PubMed] [Google Scholar]
  • 30.Zhan Z.J., Fan C.Q., Ding J., Yue J.M. Novel diterpenoids with potent inhibitory activity against endothelium cell HMEC and cytotoxic activities from a well-known TCM plant Daphne genkwa. Bioorg. Med. Chem. 2005;13:645–655. doi: 10.1016/j.bmc.2004.10.054. [DOI] [PubMed] [Google Scholar]
  • 31.Zhang X.D., Ni W., Yan H., Li G.T., Zhong H.M., Li Y., Liu H.Y. Daphnane-Type Diterpenoid Glucosides and Further Constituents of Euphorbia pilosa. Chem. Biodivers. 2014;11:760–766. doi: 10.1002/cbdv.201300154. [DOI] [PubMed] [Google Scholar]
  • 32.Yang B., Meng Z., Li Z., Sun L., Hu Y., Wang Z., Ding G., Xiao W., Han C. Three daphnane diterpenoids from Trigonostemon xyphophylloides. Phytochem. Lett. 2015;11:270–274. doi: 10.1016/j.phytol.2014.12.001. [DOI] [Google Scholar]
  • 33.Li S.F., Zhang Y., Huang N., Zheng Y.T., Di Y.T., Li S.L., Cheng Y.Y., He H.P., Hao X.J. Daphnane diterpenoids from the stems of Trigonostemon lii and their anti-HIV-1 activity. Phytochemistry. 2013;93:216–221. doi: 10.1016/j.phytochem.2013.03.003. [DOI] [PubMed] [Google Scholar]
  • 34.Pejin B., Iodice C., Tommonaro G. Synthesis and biological activities of thio-avarol derivatives. J. Nat. Prod. 2008;71:1850–1853. doi: 10.1021/np800318m. [DOI] [PubMed] [Google Scholar]
  • 35.Tommonaro G., Vitale R.M., Pejin B., Iodice C., Canadas S. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer’s disease. Eur. J. Med. Chem. 2016;122:326–338. doi: 10.1016/j.ejmech.2016.06.036. [DOI] [PubMed] [Google Scholar]
  • 36.Yang B., Chen G.Y., Song X.P., Yang L.Q., Han C.R., Wu X.Y., Li X.M., Zou B.Y. Trigoxyphins H and I: Two new daphnane diterpenoids from Trigonostemon xyphophylloides. ChemInform. 2012;22:3828–3830. doi: 10.1016/j.bmcl.2012.03.069. [DOI] [PubMed] [Google Scholar]
  • 37.Dong S.H., Zhang C.R., Xu C.H., Ding J., Yue J.M. Daphnane-Type Diterpenoids from Trigonostemon howii. J. Nat. Prod. 2011;74:1255–1261. doi: 10.1021/np200231u. [DOI] [PubMed] [Google Scholar]
  • 38.Guo J., Tian J., Yao G., Zhu H., Xue Y., Luo Z., Zhang J., Zhang Y. Three new 1α-alkyldaphnane-type diterpenoids from the flower buds of Wikstroemia chamaedaphne. Fitoterapia. 2015;106:242–246. doi: 10.1016/j.fitote.2015.09.017. [DOI] [PubMed] [Google Scholar]
  • 39.Hayes P.Y., Chow S., Somerville M.J., Fletcher M.T. Pimelotides A and B, Diterpenoid Ketal-Lactone Orthoesters with an Unprecedented Skeleton from Pimelea elongata. J. Nat. Prod. 2009;72:2081–2083. doi: 10.1021/np900573k. [DOI] [PubMed] [Google Scholar]
  • 40.Chen H.D., He X.F., Ai J., Geng M.Y., Yue J.M. Trigochilides A and B, Two Highly Modified Daphnane-Type Diterpenoids from Trigonostemon chinensis. Org. Lett. 2009;11:4080–4083. doi: 10.1021/ol901506x. [DOI] [PubMed] [Google Scholar]
  • 41.Jayasuriya H., Zink D.L., Borris R.P., Nanakorn W., Beck H.T., Balick M.J., Goetz M.A., Gregory L., Shoop W.L., Singh S.B. Rediocides B-E, Potent Insecticides from Trigonostemon reidioides. J. Nat. Prod. 2004;67:228–231. doi: 10.1021/np030398n. [DOI] [PubMed] [Google Scholar]

Articles from Molecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES