Abstract
Using genome‐wide single nucleotide polymorphism (SNP) discovery in greater yam (Discorea alata L.), 4,593 good quality SNPs were identified in 40 accessions. One hundred ninety six of these SNPs were selected to represent the overall dataset and used to design a competitive allele specific PCR array (KASPar). This array was validated on 141 accessions from the Tropical Plants Biological Resources Centre (CRB‐PT) and CIRAD collections that encompass worldwide D. alata diversity. Overall, 129 SNPs were successfully converted as cost‐effective genotyping tools. The results showed that the ploidy levels of accessions could be accurately estimated using this array. The rate of redundant accessions within the collections was high in agreement with the low genetic diversity of D. alata and its diversification by somatic clone selection. The overall diversity resulting from these 129 polymorphic SNPs was consistent with the findings of previously published studies. This KASPar array will be useful in collection management, ploidy level inference, while complementing accurate agro‐morphological descriptions.
Keywords: Dioscorea alata L., ex situ collection, genotyping, KASPar, ploidy, yam
1. INTRODUCTION
Greater yam (Discorea alata L.) is one of the major cultivated yam species (Discorea spp.) and the most widely spread among tropical and subtropical regions. The high importance of D. alata for food security has prompted the establishment of several international and national ex situ collections. Due to the limited shelf‐life of stored tuber, yam genetic resources are conserved in vitro or/and in the field. All of these repeated manipulations are time‐consuming and may affect long‐term conservation. Quality control of genotype purity and general collection management is mainly based on morphological descriptors (IPGRI/IITA, 1997; Mahalakshmi et al., 2007). However, these descriptors are not reliable enough to rationalize ex situ D. alata collection. Indeed, several studies have revealed that morphological variations are not necessarily linked to geographic origin or genetic lineage (Arnau et al., 2017; Lebot, Trilles, Noyer, & Modesto, 1998; Vandenbroucke et al., 2016). Complementary characterization tools are thus required for the conservation and dynamic management of ex situ collections related to germplasm exchange, the development of core collection or identification of future parents for breeding programs. D. alata is also a polyploid species with ploidy levels of 2n = 2x, 3x, or 4x and a basic chromosome number of x = 20 (Arnau, Némorin, Maledon, & Abraham, 2009). Ploidy levels detection is consequently a prerequisite for the identification of possible parents as crosses between the different ploidy levels can fail (Nemorin et al., 2013).
Molecular markers have been used to characterize D. alata diversity: random amplified polymorphic DNA (RAPD; Asemota, Ramser, Lopez‐Peralta, Weising, & Kahl, 1996), isoenzymes (Lebot et al., 1998), amplified fragment length polymorphism (AFLP; Malapa, Arnau, Noyer, & Lebot, 2005), simple sequence repeats (SSRs; Siqueira, Marconi, Bonatelli, Zucchi, & Veasey, 2011; Sartie, Asiedu, & Franco, 2012; Otoo, Anokye, Asare, & Telleh, 2015; Chaïr et al., 2016; Arnau et al., 2017), plastid sequences (Chaïr et al., 2016), and Diversity Arrays Technology (DArT; Vandenbroucke et al., 2016). These studies generated essential information on the diversity and representativity of the germplasm collections. However, these tools were not tailored for routine collection management. They were found to be either poorly discriminating within D. alata species or they were complex and not cost‐effective to use. Besides the development of high‐throughput methods for genome‐wide variant detection, such as genotyping‐by‐sequencing (Davey et al., 2011) paired with cost‐effective SNP assay (Broccanello et al., 2018) as KASPar can lead to the development of appropriate markers for collection management. This approach has been successfully implemented in maize (Semagn et al., 2012), chickpea (Hiremath et al., 2012), Citrus (Garcia‐Lor, Ancillo, Navarro, & Ollitrault, 2013), pigeon pea (Saxena et al., 2014), and Brassica rapa (Su et al., 2018). Regarding the recent release of yam (Dioscorea spp.) genomic resources (Saski, Bhattacharjee, Scheffler, & Asiedu, 2015; Tamiru et al., 2017), the design of such markers for D. alata collection management would be worthwhile. Indeed, once developed they do not require any specific bioinformatics or wet chemistry skills. The results contain few erroneous and missing data and can be easily analyzed and interpreted.
The main objectives of this study were (a) to identify genome‐wide polymorphic SNP markers, (b) to develop a cost‐effective SNP genotyping array using KASPar technology and (c) to test its use as a tool in managing yam ex situ collections.
2. MATERIALS AND METHODS
2.1. Materials
Based on a previous microsatellite markers study (Arnau et al., 2017), a set of 48 accessions representing worldwide D. alata diversity was selected and genotyped to identify polymorphic SNPs and design KASPar markers. Then, for the purpose of validating these markers, 141 landraces from the Tropical Plants Biological Resources Centre (CRB‐PT) and CIRAD ex situ collections maintained in the West French Indies (Guadeloupe) were used.
2.2. Genotyping‐by‐sequencing (GBS) and SNP discovery
SNP discovery was based on genotyping‐by‐sequencing (GBS). First, DNA extractions were performed with dried leaves from the 48 accessions as described by Risterucci et al. (2009). The genomic DNA quality was checked using agarose gel electrophoresis, and the quantity was estimated using a Nanodrop ND‐1000 spectrophotometer (Thermo Scientific, Wilmington, USA). For GBS, a genomic library was prepared using the PstI‐MseI restriction enzymes (New England Biolabs, Hitchin, UK) with a DNA normalized quantity of 200 ng per sample. The procedures published by Elshire et al. (2011) were adapted as described in Cormier et al. (2019).
Digestion and ligation reactions were conducted in the same plate. Digestion was conducted at 37°C for 2 hr and then 65°C for 20 min to inactivate the enzymes. The ligation reaction was achieved using T4 DNA ligase enzyme (New England Biolabs, Hitchin, UK) at 22°C for 1 hr, and the ligase was then inactivated, prior to sample pooling, by heating at 65°C for 20 min. Pooled samples were PCR‐amplified in a single tube. Single‐end sequencing was performed on a paired‐end lane of an Illumina HiSeq3000 (at the GeT‐PlaGe platform, Toulouse, France). The Tassel 5.2 pipeline (Glaubitz et al., 2014) was used for SNP and indel calling. Sequence tags were aligned to D. alata contigs (http://www.ebi.ac.uk/ena/data/view/PRJEB10904) using Bowtie2 v2.2.6 (Langmead & Salzberg, 2012). Accessions with more than 70% missing data were removed. Vcf filtering was performed using Vcftools 0.1.14 (Danecek et al., 2011; option: ‐‐minDP 8, ‐‐maf 0.1, ‐‐max‐missing 0.60, ‐‐max‐alleles 2, ‐‐thin64).
2.3. KASPar genotyping and allele calling
Polymorphic SNP flanking sequences (60 bp upstream and 60 bp downstream around the variant position) were selected using SNiPlay3 (Dereeper et al., 2011). In order to assess their putative physical positions, these sequences were then blasted to the D. rotundata reference genome (TDr96_F1 Pseudo_Chromosome: BDMI01000001–BDMI01000021; Tamiru et al., 2017). The physical position of each SNP was defined using their flanking sequences best hit using a BLAST E‐value threshold of 1e−30 (Basic Local Alignment Search Tool). Finally, 192 SNPs were selected by forming 192 k‐means cluster based on their relative physical distance (Euclidean distance) and selecting the SNP nearest to the centroid of each cluster using R 3.4.0 (R core team, 2017).
The 192 SNPs were converted into a KASPar assay at LGC genomics where the primer design and wet chemistry was conducted (Middlesex, UK) on a validation panel of 141 landraces from the CRB‐PT and CIRAD ex situ collections. From raw fluorescence data, allele calling was performed using LGC Kluster Caller software by defining fluorescence clusters. Some accessions with known ploidy level were used as reference to identify fluorescence clusters and assess allelic dosage.
2.4. Diversity analysis
To identify duplicate accessions and compare accessions with different ploidy levels, a matrix of dissimilarity between each accession pair was computed as the percentage of shared alleles based on the allele presence/absence.
Then, to refine the kinship assessment, similarities between accessions with the same ploidy level were computed in the same way but using the allelic dosage. For diploid accessions, genotypes were coded as 0, 1, and 2 where the number represents the number of nonreference allele. Heterozygous genotypes assessed as polyploid during allele calling were converted to 1. Moreover, for triploid accessions, genotypes were coded as 0, 1, 2, and 3 with allelic dosage score as 1:1 during allele call converted to 1.5. For tetraploid accessions, genotypes were thus coded as 0, 1, 2, 3, or 4 and no correction was needed.
Diversity analysis was conducted in two steps. During the first step, groups of duplicate accessions (redundancy groups) were defined by grouping accessions having up to one allele mismatch. Then, in the second step, the diversity analysis focused on the similarity between those groups. Clustering based on allele frequencies within redundancy groups followed by a bootstrap approach (pvclust R package, ward.D2, 10,000 boots, AU threshold = 0.95; Suzuki & Shimodaira, 2006) was used to identify gene pools. A diversity network between redundancy groups was also drawn using significant kinship detected through genotype permutations (1,000), with a significance threshold of 0.05.
3. RESULTS
3.1. KASPar assay development and validation
Genotyping‐by‐sequencing (GBS) produced more than 344 million reads resulting in 521,918 sequence tags out of which 207,810 (39.82%) aligned exactly once on D. alata contigs. The remaining reads aligned at multiple locations (25.18%) or did not align to any contig (35%). From these sequence tags, SNP calling produced a raw vcf file of 158,695 SNPs. This raw vcf file was then filtered resulting in a dataset of 40 accessions (Appendix A), and 4,593 good quality SNPs out of which 3,879 (84%) SNPs were mapped by BLAST on the D. rotundata reference genome. The KASPar assay was then developed by selecting 192 SNPs representative of SNPs mapped along the D. rotundata reference sequence, and they were tested on 141 accessions.
Among the 192 SNPs, 26 (13%) SNPs failed as they did not produce any amplification signal. From the remaining 166 SNPs (87%), 129 SNPs (Appendix C) with less than 20% missing data and a minor allele frequency of over 5% were retained as high‐quality SNPs. This final dataset (129 SNPs × 141 accessions) contained an overall missing data rate of only 0.5% with a maximum of 3% missing data per accession.
The 129 validated KASPar SNPs were distributed on all linkage groups used to construct the D. rotundata reference genome (Figure 1). Their distribution was not homogeneous along chromosomes as their position was planned to be representative of that of the initial set of 3,879 mapped SNPs and not equally spaced.
Figure 1.

Location of KASPar SNPs on the D. rotundata reference genome (Tamiru et al., 2017). The 21 linkage group are aligned from left to right. Black dots, failed or bad quality SNPs; red dots, the 129 validated SNPs
3.2. Assessment of ploidy levels
In our D. alata validation panel, three ploidy levels (2x, 3x and 4x) coexisted (Appendix B). Thus, the KASPar assay could theoretically produce a maximum of seven types of fluorescence signal (Table 1) corresponding to two types of fluorescence signal in homozygous states (2:0 = 3:0 = 4:0; 0:2 = 0:3 = 0:4), the fluorescence signal of mixed and balanced allelic dosages (1:1 for diploids or 2:2 for tetraploids) and the four types of fluorescence signal corresponding to the different possible unbalanced allelic dosages at heterozygotic loci (“polyploid‐like” in Table 1) of triploids and tetraploids (1:3; 1:2; 2:1; 3:1). In our case, due to insufficient fluorescence resolution, it was not possible to distinguish fluorescence signals of the 1:3 tetraploid allelic dosage from the 1:2 triploid allelic dosage, or the 2:1 triploid allelic dosage from the 3:1 tetraploid allelic dosage. Consequently, a maximum of five types of fluorescence signals were identified. Overall, five, four, three, and two allelic dosages were detected for 64 (50%), 41 (32%), 19 (15%), and 5 (4%) SNPs, respectively, because some allelic dosages were not present in the validation panel or they were cofounded.
Table 1.
Summary of genotype, allelic composition and fluorescence signals
| Type of genotype | Ploidy | Allelic | Type of fluorescence signal | ||
|---|---|---|---|---|---|
| Dosage | Composition | Theo. | Obs. | ||
| Diploid‐like | Diploid | 0:2 | X:X | 1 | 1 |
| 1:1 | X:Y | 4 | 3 | ||
| 2:0 | Y:Y | 7 | 5 | ||
| Triploid | 0:3 | X:X:X | 1 | 1 | |
| 3:0 | Y:Y:Y | 7 | 5 | ||
| Tetraploid | 0:4 | X:X:X:X | 1 | 1 | |
| 2:2 | X:X:Y:Y | 4 | 3 | ||
| 4:0 | Y:Y:Y:Y | 7 | 5 | ||
| Polyploid‐like | Triploid | 1:2 | X:X:Y | 3 | 2 |
| 2:1 | X:Y:Y | 5 | 4 | ||
| Tetraploid | 1:3 | X:X:X:Y | 2 | 2 | |
| 3:1 | X:Y:Y:Y | 6 | 4 | ||
However, the overall allele call and allelic dosage assessment quality were good. Indeed, the ratio of genotypes scored as “polyploid‐like” on overall heterozygous genotypes by accession was low (0.09 ± 0.05) for diploids and high for triploids (0.83 ± 0.05). In addition, the three distributions of this ratio corresponding to the three ploidy levels did almost not overlap (Figure 2).
Figure 2.

Distribution of the percentage of polypoid‐like genotypes (1:3, 1:2, 2:1, and 3:1 allelic dosage) on overall heterozygous genotypes by ploidy level (red, diploid; green, triploid; blue, tetraploid)
We were thus not able to differentiate all allelic dosage from each other when looking at one SNP. However, ploidy level could be deduced when taking all the KASPar array into account and considering the proportion of genotypes scored as “polyploid‐like” per accession. This KASPar assay thus differentiated the accession ploidy level and allowed us to assign it for 12 accessions originally of unknown ploidy. Nine were set as diploid and three as triploid.
3.3. Diversity analysis
Overall, 141 accessions from CRB‐PT and CIRAD ex situ collections in Guadeloupe were used to validate the KASPar assay (96 diploids, 36 triploids, and nine tetraploids including accessions with known and deduced ploidy level).
The allele presence and/or absence was used to assess the similarity between accessions and thus to identify duplicate accessions (Figure 3). Indeed, by defining redundancy groups, we ended up with 43 nonredundant groups each containing one to 24 accessions.
Figure 3.

Dendrogram of dissimilarity between 141 D. alata accessions (red, diploid; green, triploid; blue, tetraploid)
These groups of genetically similar accessions were partially expected based on the accession vernacular names. For example, the second biggest group (redundancy group 6, Appendix B) was composed of 18 accessions, five of which had a name related to “Saint Vincent.” The third biggest group contained 14 accessions, four of which had a name related to “Pacala.”.
The main group of redundant accessions was composed of 24 triploids collected at several distant locations (Caribbean islands, New Caledonia and Madagascar). This group consisted of 67% (24/36) of the triploid accessions present in the CRB‐PT and CIRAD collections.
More generally, redundancy groups only consisted of accessions with the same ploidy level (Figure 4). Moreover, similarities within triploids or within tetraploids were higher than within diploids.
Figure 4.

Distribution of similarity between all accession pairs by ploidy (red, diploid; green, triploid; blue, tetraploid)
The diversity analysis was based on these 43 redundancy groups to avoid bias. After clustering, the bootstrap procedure detected five significant gene pools, named “cluster” here, represented in the kinship network (Figure 5). Only one (cluster C, Figure 5) consisted of accessions from the three ploidy levels. This cluster encompassed accessions from the Caribbean and Pacific regions. Clusters A, B, and D contained triploids from the Caribbean and Madagascar, tetraploids from the Pacific and diploids from the Caribbean, respectively (Figure 5, Appendix B). Cluster E was the biggest one, with 21 nonredundant diploid accessions originating from India, Nigeria, Côte d'Ivoire, the Caribbean and Pacific (Figure 5, Appendix B).
Figure 5.

Network of kinship for the 43 D. alata redundancy groups based on significant similarity (p < 0.05, edge‐weighted spring‐embedded layout). Nodes shape and letter, cluster of diversity identified by a bootstrap procedure; red nodes, diploids; green nodes, triploids; blue nodes, tetraploids; edge colors, similarity from gray (0.64) to black (1)
Genotype permutations and network analysis gave a more detailed view of kinship between redundancy groups and Clusters. This approach revealed a low number of significant links between the diversity clusters D or E and the others (Figure 5) revealing that these clusters could consist of original genepools.
4. DISCUSSION
4.1. Assessment of allelic dosage and detection of ploidy levels
KASPar technology is based on competitive allele‐specific amplification followed by allele‐specific fluorescence assessment (Semagn, Babu, Hearne, & Olsen, 2014). Detection of allelic dosage in polyploid species is thus possible (Cuenca, Aleza, Navarro, & Ollitrault, 2013). However, several parameters may influence the fluorescence, such as the DNA quality or primer specificity, and consequently the ability to discriminate fluorescence signals and the allelic dosage. In our case, we were able to discriminate five types of fluorescence signal. At heterozygous loci, fluorescence signals were a mixture of two types of allelic‐specific fluorescence. Fluorescence signals should also be balanced for diploids which have a balanced allelic dosage (1:1) at heterozygous loci. Diploids should therefore theoretically have no genotypes assessed as “polyploid‐like.” Conversely, triploids should theoretically have only genotypes assessed as “polyploid‐like” at heterozygous loci. A balanced allelic dosage is impossible for triploids. Our results showed that 91 ± 5% and 83 ± 5% of heterozygous genotypes were correctly called for diploids and triploids, respectively. Regarding the recent explosion of genotyping related to next‐generation sequencing, bioinformatics tools have been developed to accurately determine dosages (e.g., GBS2ploidy; Gompert & Mock, 2017). However, this requires deep sequencing and usually an assumption of ploidy levels present in the dataset (Bourke, Voorrips, Visser, & Maliepaard, 2018).
Application in collection management may nevertheless not require allelic dosage assessment at each locus. Our aim was thus to develop a tool for estimating ploidy levels and not variations in copy number. Moreover, the results showed that ploidy levels for each accession can be accurately deduced from the percentage of “polypoid‐like” genotypes on overall heterozygous genotypes. Regarding the overlapping distributions of this ratio (Figure 2), the only risk is to confuse triploids and tetraploids estimated at 3%. Consequently, ploidy level assessment is possible and fairly accurate for D. alata using the KASPar assay developed in this study.
4.2. Identification of duplicate accessions
The dataset included 129 SNPs validated on 141 accessions corresponding to 43 unique redundancy groups. The resuming of the 141 accessions to 43 unique redundancy groups was related to the narrow D. alata genetic diversity, above all in polyploid germplasm (i.e., triploids and tetraploids) already identified in previous studies. For example, using DarT markers, a low varietal richness was revealed by Vandenbroucke et al. (2016), who studied 80 landraces from six different Vanuatu islands and differentiated only seven unique genotypes. Using isozyme markers, Lebot et al. (1998) studied 269 worldwide distributed cultivars and concluded that the genetic diversity of the most widespread cultivars was narrow.
Regarding the accession vernacular names, redundant accessions were expected in our sample. Some of these redundancy groups contained accessions detected in duplicate, while they could be differentiated by morphological characterization. For example, redundancy group five (including Lupias, Malalagi, or Malankon) exhibited diversity in tuber shape and tuber flesh color in agreement with previous genetic diversity studies that already pooled these accessions together and highlighted this intragroup variability in tubers (Arnau et al., 2017; Malapa et al., 2005).
Morphological variability within a redundancy cluster mostly arises via D. alata clonal reproduction and farmers' selection of new morphotypes resulting from somatic mutations (Lebot et al., 1998; Malapa et al., 2005; Vandenbroucke et al., 2016). Small genetic or epigenetic variations are commonly selected to create new diversity in horticultural crops such as yam as reviewed by Krishna et al. (2016).
The ability of KASPar assay developed in this study to differentiate duplicates in collections from genetically close accessions was related: (a) to the low number of studied loci (129), but also (b) to the D. alata diversification process (i.e., selection of somaclonal mutants) and (c) the presence of real duplicates within collections. This tool is thus efficient for attributing accessions to a genetic lineage (e.g., germplasm exchange), but a good complementary agro‐morphological and ecophysiological characterization of collections should also be done to completely differentiate somaclonal mutant clones from duplicates (e.g., identification of promising genitors for breeding programs).
4.3. Diversity and collection management
The CRB‐PT collection has been shown to be representative of worldwide D. alata diversity (Arnau et al., 2017). A subset of this ex situ collection has been genotyped in this study. However, all diversity groups identified by Arnau et al. (2017) were present (except one containing five very similar Indian accessions). Our validation panel was thus representative of the worldwide D. alata diversity. Moreover, a good correlation was obtained between the findings of the previous study of worldwide D. alata diversity of Arnau et al. (2017) and the gene pools identified in this study (Appendix B). We can thus hypothesize that the 129 SNPs KASPar array developed for D. alata allow us to accurately assess genetic diversity and the findings may be transferable to other collections. Moreover, this genotyping tool is a robust method: (a) to assess complementarity/redundancy between the different collections, (b) to identify under represented genetic groups, and (c) to plan future collects to fill gaps in collections.
5. CONCLUSION
This is the first SNP array designed for D. alata and validated on a subset of accessions representative of worldwide D. alata diversity. This tool will allow users to estimate accession ploidy levels and genetic lineages. The results showed a good correlation between the diversity assessed by this KASPar array and the findings of previous studies. This KASPar array is a robust and cost‐effective tool for diversity assessment and collections management. Regarding the importance of vegetative reproduction and somaclonal selection in D. alata, it is a good tool to complement agro‐morphological description in collections.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
AUTHOR CONTRIBUTIONS
C.P., F.C., H.C., and P.M. designed the study. C.P., F.C., E.M., G.A., and R‐M.G. contributed to collecting materials and sample preparation. P.M. and S.C. developed GBS protocol, carried out DNA extraction, and GBS library preparation. H.C. and P.M. performed SNP discovery. F.C. and H.C. designed the KASPar assay and performed its analysis. C.P., F.C., and H.C. wrote the manuscript with the input of all authors.
ACKNOWLEDGMENTS
This study was financially supported by the European Union and Guadeloupe Region (Programme Opérationnel FEDER—Guadeloupe—Conseil Régional 2014–2017). The authors would like to thank Suzia Gélabale, Marie‐Claire Gravillon, Jean‐Luc Irep, David Lange, and Elie Nudol for their involvement in CRB‐PT and CIRAD in vitro and field collections conservation. Finally, we are grateful to Patrick Ollitrault for his valuable discussion and to David Manley for English proofing.
APPENDIX A.
Table A1.
Description of the 40 D. alata accessions used to detect polymorphic SNP
| Collection | Code | Name | Origin | Ploidy |
|---|---|---|---|---|
| CRB‐PT | PT‐IG‐00002 | Pakutrany | Nlle Caledonie | |
| PT‐IG‐00006 | Fénakué | Puerto Rico | 2 | |
| PT‐IG‐00010 | Divin 1 | Guadeloupe | 2 | |
| PT‐IG‐00020 | DA 26 | Guyane Fr | 3 | |
| PT‐IG‐00338 | HYB 30 | Guadeloupe | ||
| PT‐IG‐00350 | Pacala | Guadeloupe | 2 | |
| PT‐IG‐00029 | Plimbite | Haïti | 2 | |
| PT‐IG‐00033 | Pyramide | Puerto Rico | 2 | |
| PT‐IG‐00046 | Sea 190 | Puerto Rico | 2 | |
| PT‐IG‐00053 | Kokoéta | Nlle Calédonie | 2 | |
| PT‐IG‐00686 | Roujol | 4 | ||
| PT‐IG‐00687 | INRA C 143 | |||
| PT‐IG‐00688 | INRA AL 56 | |||
| PT‐IG‐00690 | INRA AL 18 | |||
| PT‐IG‐00692 | INRA X 154 | Guadeloupe | ||
| PT‐IG‐00693 | INRA X 17 | Guadeloupe | ||
| PT‐IG‐00694 | Dou | 4 | ||
| PT‐IG‐00695 | INRA X 142 | Guadeloupe | ||
| PT‐IG‐00696 | Ciradienne | 4 | ||
| PT‐IG‐00697 | TiViolet | 4 | ||
| PT‐IG‐00698 | Malalagi | Vanuatu | 2 | |
| PT‐IG‐00702 | Manlankon | Vanuatu | 2 | |
| PT‐IG‐00689 | Nureangdan | Vanuatu | 3 | |
| PT‐IG‐00077 | Kinabayo | Puerto Rico | 2 | |
| PT‐IG‐00078 | Toro | Haïti | 3 | |
| Cirad | Vu 024a | Tépuva | Vanuatu | 2 |
| Vu 528a | Tacharamivar | 2 | ||
| Vu 564a | Mendrovar | Vanuatu | 2 | |
| Vu 567a | Homb | Vanuatu | 2 | |
| Vu 754a | Intejegan | Vanuatu | 4 | |
| Vu 231a | Tagabé | Vanuatu | 4 | |
| Ovy taty | Madagascar | |||
| Vu 247a | n.a | Vanuatu | 2 | |
| Vu 401a | Basa | Vanuatu | 2 | |
| Kabusa | 2 | |||
| 74F | 2 | |||
| 42F | 2 | |||
| 61F | 2 | |||
| 14M | 2 | |||
| H4x200 | 4 |
APPENDIX B.
Table B1.
Description of the 141 D. alata used as the KASPar assay validation panel
| Collection Code | Ploidya | Div. Clust.b | Redund. Grpc | Accession name | Origin | SSRd |
|---|---|---|---|---|---|---|
| PT‐IG‐00087 | 3 | A | 26 | 65 | Martinique | XII |
| PT‐IG‐00070 | 3 | A | 26 | 66 | Martinique | XII |
| PT‐IG‐00090 | 3 | A | 26 | Caillade 1 | Haïti | XII |
| PT‐IG‐00020 | 3 | A | 26 | DA 26 | French Guyana | XII |
| PT‐IG‐00037 | 3 | A | 26 | DA 27 | French Guyana | XII |
| PT‐IG‐00022 | 3 | A | 26 | De agua | Puerto Rico | XII |
| PT‐IG‐00061 | 3 | A | 26 | Igname d eau | Martinique | XII |
| PT‐IG‐00550 | 3 | A | 26 | Montpellier | XII | |
| PT‐IG‐00075 | 3 | A | 26 | Renta Yam | Jamaica | XII |
| PT‐IG‐00072 | 3 | A | 26 | Sassa 1 | Martinique | XII |
| PT‐IG‐00063 | 3 | A | 26 | Sassa 2 | Martinique | |
| PT‐IG‐00088 | 3 | A | 26 | St Martin | Martinique | XII |
| PT‐IG‐00034 | 3 | A | 26 | Sweet yam | Jamaica | XII |
| PT‐IG‐00557 | 3 | A | 26 | Tahiti couleuvre | Guadeloupe | XII |
| PT‐IG‐00068 | 3 | A | 26 | Tahiti cultivé | Guadeloupe | XII |
| PT‐IG‐00069 | 3 | A | 26 | Tahiti French | Guadeloupe | XII |
| PT‐IG‐00018 | 3 | A | 26 | Tahiti messien | Guadeloupe | |
| PT‐IG‐00064 | 3 | A | 26 | Tana | New Caledonia | XII |
| PT‐IG‐00021 | 3 | A | 26 | Telemaque | Martinique | XII |
| PT‐IG‐00044 | 3 | A | 26 | Ti Joseph 1 | Haïti | XII |
| PT‐IG‐00078 | 3 | A | 26 | Toro | Haïti | XII |
| CT257_CIV | 3 | A | 26 | OvyTaty AmbalaKindresy‐Ambohimasoa | Madagascar | |
| CT258_CIV | 3 | A | 26 | OvyTaty Amboasary‐Ambohimasoa | Madagascar | |
| PT‐IG‐00685 | 3 | A | 26 | Sainte Anne | ||
| PT‐IG‐00030 | 3 | A | 33 | 67 | Martinique | XII |
| PT‐IG‐00558 | 4 | B | 3 | Wabé | New Caledonia | XVIII |
| Vu472a | 4 | B | 3 | Toufi Tetea | Vanuatu | XVIII |
| Vu231a | 4 | B | 3 | Vanuatu | XVIII | |
| Vu750a | 4 | B | 3 | Wanorak | Vanuatu | |
| Vu534a | 4 | B | 3 | Bisoro | Vanuatu | XVIII |
| Vu754a | 4 | B | 30 | Noulelcae | Vanuatu | XVI |
| Vu408a | 4 | B | 31 | Manioc | Vanuatu | |
| PT‐IG‐00039 | 2 | C | 2 | Americano | Dominican Republic | VII |
| PT‐IG‐00023 | 2 | C | 2 | Florido | Puerto Rico | |
| PT‐IG‐00553 | 2 | C | 2 | Pro 1 | VII | |
| PT‐IG‐00095 | 2 | C | 2 | SEA 144 | Puerto Rico | IV |
| PT‐IG‐00555 | 2 | C | 2 | SRT 29 | VII | |
| PT‐IG‐00041 | 2 | C | 2 | St Domingue | Dominican Republic | VII |
| Vu401a | 2 | C | 2 | Basa | Vanuatu | VII |
| CT256 | 2 | C | 2 | |||
| PT‐IG‐00009 | 4 | C | 12 | Nouméa | New Caledonia | XVI |
| Vu247a | 2 | C | 14 | Vanuatu | ||
| Vu528a | 2 | C | 16 | Sinoua | Vanuatu | |
| PT‐IG‐00025 | 3 | C | 22 | Goana | New Caledonia | XIII |
| PT‐IG‐00002 | 3 | C | 22 | Pakutrany | New Caledonia | XIII |
| Vu699a | 3 | C | 22 | Tumas | Vanuatu | |
| Vu461a | 3 | C | 22 | Tumas | Vanuatu | XIII |
| Vu755a | 4 | C | 24 | Nepelev | Vanuatu | |
| PT‐IG‐00014 | 2 | C | 37 | Divin 2 | Guadeloupe | |
| PT‐IG‐00006 | 2 | C | 37 | Fénakué | Puerto Rico | |
| PT‐IG‐00053 | 2 | C | 37 | Kokoéta | New Caledonia | |
| PT‐IG‐00559 | 2 | C | 39 | Wassa | New Caledonia | |
| PT‐IG‐00001 | 2 | D | 7 | 64 | Martinique | |
| PT‐IG‐00010 | 2 | D | 7 | Divin 1 | Guadeloupe | |
| PT‐IG‐00568 | 2 | D | 25 | 77 | Martinique | IV |
| PT‐IG‐00092 | 2 | D | 34 | Caplaou | Puerto Rico | |
| PT‐IG‐00561 | 2 | D | 42 | H 23 | ||
| PT‐IG‐00562 | 2 | D | 42 | H 50 | ||
| 74F | 2 | E | 4 | India | ||
| PT‐IG‐00049 | 2 | E | 5 | Cinq | Puerto Rico | III |
| PT‐IG‐00027 | 2 | E | 5 | Lupias | New Caledonia | III |
| PT‐IG‐00046 | 2 | E | 5 | Sea 190 | Puerto Rico | III |
| Vu590a | 2 | E | 5 | Vanuatu | III | |
| Vu423a | 2 | E | 5 | Manlankon | Vanuatu | III |
| Vu639a | 2 | E | 5 | Malalagi | Vanuatu | III |
| Vu024a | 2 | E | 5 | Ptris | Vanuatu | III |
| PT‐IG‐00065 | 2 | E | 6 | DA 28 | French Guyana | IV |
| PT‐IG‐00093 | 2 | E | 6 | DA 32 | ||
| PT‐IG‐00395 | 2 | E | 6 | Fafadro bis | IV | |
| PT‐IG‐00060 | 2 | E | 6 | Grand Etang | Guadeloupe | IV |
| PT‐IG‐00051 | 2 | E | 6 | Morado | Cuba | IV |
| PT‐IG‐00073 | 2 | E | 6 | Purple Lisbon | Puerto Rico | IV |
| PT‐IG‐00333 | 2 | E | 6 | Sainte Catherine | Guadeloupe | IV |
| PT‐IG‐00052 | 2 | E | 6 | Smooth Statia | Puerto Rico | IV |
| PT‐IG‐00024 | 2 | E | 6 | St Vincent blanc 1 | Martinique | IV |
| PT‐IG‐00036 | 2 | E | 6 | St Vincent blanc 2 | Martinique | IV |
| PT‐IG‐00556 | 2 | E | 6 | St Vincent mart. | Guadeloupe | IV |
| PT‐IG‐00045 | 2 | E | 6 | St Vincent Violet | Martinique | IV |
| PT‐IG‐00016 | 2 | E | 6 | St Vincent Yam | St. Lucia | IV |
| PT‐IG‐00374 | 2 | E | 6 | Ti Joseph | Haïti | IV |
| PT‐IG‐00067 | 2 | E | 6 | Wénéféla bis | New Caledonia | IV |
| Vu487a | 2 | E | 6 | Teroosi | Vanuatu | VI |
| 770 | 2 | E | 6 | |||
| PT‐IG‐00623 | 2 | E | 6 | |||
| PT‐IG‐00396 | 2 | E | 8 | A 24 | ||
| PT‐IG‐00071 | 2 | E | 10 | 72 | Martinique | VIII |
| PT‐IG‐00055 | 2 | E | 10 | 76 | Martinique | VIII |
| PT‐IG‐00089 | 2 | E | 10 | Asmhore | ||
| PT‐IG‐00058 | 2 | E | 10 | Bété Bété | Côte d'Ivoire | VIII |
| PT‐IG‐00091 | 2 | E | 10 | Campêche 2 | ||
| PT‐IG‐00546 | 2 | E | 10 | Jardin Haitien | VIII | |
| PT‐IG‐00547 | 2 | E | 10 | Kourou 1 | French Guyana | VIII |
| PT‐IG‐00548 | 2 | E | 10 | Kourou 2 | French Guyana | VIII |
| PT‐IG‐00350 | 2 | E | 10 | Pacala | Guadeloupe | VIII |
| PT‐IG‐00551 | 2 | E | 10 | Pacala cacao | French Guyana | VIII |
| PT‐IG‐00552 | 2 | E | 10 | Pacala Guyane | French Guyana | VIII |
| PT‐IG‐00017 | 2 | E | 10 | Pacala station | Guadeloupe | VIII |
| PT‐IG‐00554 | 2 | E | 10 | SRT 24 | VIII | |
| 19 | 2 | E | 10 | |||
| PT‐IG‐00057 | 2 | E | 11 | Vino Purple forme | Puerto Rico | |
| 61F | 2 | E | 15 | India | ||
| PT‐IG‐00019 | 2 | E | 19 | Gordito | New Caledonia | IX |
| PT‐IG‐00047 | 2 | E | 20 | Buet | New Caledonia | |
| PT‐IG‐00029 | 2 | E | 20 | Plimbite | Haïti | |
| PT‐IG‐00048 | 2 | E | 21 | Bacala 1 | Haïti | |
| PT‐IG‐00413 | 2 | E | 21 | St Vincent | St. Vincent | |
| Cuba6 | 2 | E | 23 | Cuba | ||
| PT‐IG‐00542 | 2 | E | 27 | AL 10 | I | |
| PT‐IG‐00042 | 2 | E | 27 | Brazzo Fuerte | Puerto Rico | I |
| PT‐IG‐00038 | 2 | E | 27 | Brésil 1 | I | |
| PT‐IG‐00564 | 2 | E | 27 | KL 10 | I | |
| PT‐IG‐00565 | 2 | E | 27 | KL 21 | ||
| PT‐IG‐00566 | 2 | E | 27 | KL 40 | I | |
| PT‐IG‐00054 | 2 | E | 27 | MP1 16H56 | I | |
| PT‐IG‐00033 | 2 | E | 27 | Pyramide | Puerto Rico | I |
| PT‐IG‐00074 | 2 | E | 28 | Oriental | Barbados | II |
| 14M | 2 | E | 29 | India | ||
| PT‐IG‐00077 | 2 | E | 32 | Kinabayo | Puerto Rico | II |
| PT‐IG‐00085 | 2 | E | 35 | St Sauveur | Guadeloupe | |
| PT‐IG‐00560 | 2 | E | 35 | Yam jamaïque | ||
| PT‐IG‐00543 | 2 | E | 36 | Cross lisbon | ||
| PT‐IG‐00392 | 2 | E | 38 | A 13 | ||
| PT‐IG‐00398 | 2 | E | 38 | A 2 | ||
| PT‐IG‐00563 | 2 | E | 40 | Sc.c 1.1 | ||
| PT‐IG‐00008 | 2 | E | 41 | AIA 445 | Nigeria | |
| PT‐IG‐00015 | 2 | E | 43 | Igname rouge | Guadeloupe | X |
| Vu703a | 3 | F | 1 | Nawanurunkimanga | Vanuatu | |
| PT‐IG‐00544 | 3 | F | 9 | Cuello largo | Puerto Rico | XV |
| PT‐IG‐00026 | 3 | F | 9 | Féo | Puerto Rico | XV |
| Vu696a | 3 | F | 9 | Nowateknempian | Vanuatu | XV |
| PT‐IG‐00076 | 3 | F | 13 | Bélep | New Caledonia | XIV |
| Vu735a | 3 | F | 13 | Noplon | Vanuatu | XIV |
| Vu760a | 3 | F | 13 | Nureangdan | Vanuatu | XIV |
| PT‐IG‐00397 | 2 | F | 17 | SEA 119, Toki | ||
| Vu613a | 2 | F | 17 | Peter | Vanuatu | VI |
| Vu589a | 2 | F | 17 | Makila | Vanuatu | XI |
| VU590a | 2 | F | 18 | Vanuatu | III | |
| Vu554a | 2 | F | 18 | Nourembor | Vanuatu | VI |
| Vu567a | 2 | F | 18 | Letsletsbolos | Vanuatu | IV |
| Vu564a | 2 | F | 18 | Makila | Vanuatu | VI |
| Vu026a | 2 | F | 18 | Dammasis | Vanuatu | VI |
In italic, ploidy detected using the percentage of polyploid genotype type on overall heterozygous loci.
Group of diversity from diversity analysis
Group of similarity used to select nonredundant accessions. Genotypes in the same group have a maximum of one allele mismatch).
Cluster of diversity identified by SSR in Arnau et al. (2017).
APPENDIX C.
Table C1.
KASPar assay description for the 129 high‐quality SNPs: Number of fluorescence type detected, chromosome and position on D. rotundata reference genome assessed by BLAST (E‐value)
| SNP_ID | # Fluo.type | Chr. | Pos. | E‐value | Sequence |
|---|---|---|---|---|---|
| S1_78464789 | 4 | 1 | 1066677 | 8E−52 | GTTTCCCAATGGTAACACTTTCTGCAAAGCCTGAAAGGCACTTGACTTGACATTGCCAAG[T/G]GCATTAGTTGCCACAGCCCCAATTCTAACTATAGCTGCAGCAGCAGCTAACGGTGAAGCT |
| S1_166177831 | 4 | 1 | 3002321 | 2E−40 | CATCACAAGCGAAACAATGCAAGATCACTGCAGCGCTAAACAAGACGATGAAAACTGCTA[G/T]AACTGCCCACTCTTCCAAAGATAGACTGCAGCAAAACAAAAGCCGCTTGGATGATCACAC |
| S1_73817882 | 5 | 1 | 5214076 | 8E−52 | TGATTCTTCTTCCTCTTCATCTGCAGACTTTTTGGATGATGCTACTTCTTCACTAAACAA[A/G]CAACCTCTTTATCAGATGTCTTCTATCAAGGCTGAACTTCCAATCAAGTTGTGTGATTTG |
| S1_308276216 | 4 | 1 | 22422993 | 2E−54 | GAAGCTGATTGAGCTGCTTGATATCGATCTGCAGTGGAGGATGCATAAAGTTTCTGATGG[G/C]CAGCGTCGTCGTGTGCAAATTTGCATGGGACTTTTACAACCATACAAGGCAATGATTTTT |
| S3_3283493 | 4 | 2 | 6259005 | 3E−51 | TCTCAAGTAACTATTATGGTAGTAACAGATGATGCAAATGTGAAGGCAAGATAAGAAATA[C/G]CATACCTCCCCATCTGCAGCACAAGTAACGAGGGTCCGATCATCTGTGTAAGGCATGAAT |
| S1_15620393 | 5 | 2 | 21404053 | 8E−52 | GATCAACTGCAATGCCAATGGTTGGTGCAAGTTTCTTGGGAATACCTGCTGCCTGAAATG[T/G]AAAACCCGTACAATATGATACAAATAAGTGGAGTGCCTGTGCTGCAGCTGAGAATTGAGA |
| S1_194680124 | 3 | 2 | 25133441 | 8E−52 | TTTTGACTGACAGCCTTTAGTGAACTGCAGGCTTACATGGAAAACCTCTTGACCTCGCTG[C/T]GAGGCTGGATATAGCAATTGATGTTGCTCATGCTATTACATACCTTCACATGTACACAGG |
| S1_149013038 | 4 | 2 | 29033873 | 1E−43 | CTCTCAGGTATGAATGGATGGTGCCCAAATGATTTTGAAACGCCCACATGGGTTTGTTGA[A/T]TGTGTTATCTACGCAACCAAATTGTAATAAATGACTAAATGTGGTAAATCTTTTCCCTGC |
| S1_54908604 | 5 | 2 | 31946176 | 8E−52 | AACTGACAAAATGGCAATGCAATGCCCTTTGTCACTGATCACAAAGAAGAGAAGACATAT[A/T]AGGGTATTTTTATGGAAAAACAAAGATGGTCCATCTTATTATTATTTTCTCCTGCAGGGG |
| S1_220358774 | 4 | 3 | 562364 | 8E−52 | GGGATTGACAAAAGCACAATCATTTACATGCTGCAGATTCGGCAGATTTTGCTGCAGATG[G/T]TGCTCCACCATCATCATTGGCAAAGGGGTAGCCTGATTTCCATGGGACACTTGGAGAAAG |
| S1_294347489 | 4 | 3 | 3182257 | 5E−48 | AGGAAGAGTATGTTCTCCATCAATTACATTCTCATTACGCAACTTCAATATATCCATCAG[A/G]AAAGGGTTATTCTGGTGAGCAATACAATACACATTTTCTGCAGCAGGAATAGAACATATG |
| S1_213496700 | 5 | 3 | 6608590 | 2E−53 | TATATAAACATTCCATTTTGATGAGAATGAGAGACCATTGTTGCTAGCATCCCATTGACT[A/G]CCATATCTGCAGGGATCTGTATGGAAAAAGTGCATGCATGAAAGACAAATATAATAATAT |
| S1_123502462 | 5 | 3 | 12211409 | 2E−46 | ATAGAGAAAAGACCTGCAGAAGCAGAAGCAACACGATCATCCTTGTTGACATCTCGCAAA[C/T]GAAGAGAAAGCTTTTTGGTGAAGTTTGAGTGAGAATTGTAGAAGTCCTCCATGGCCATGG |
| S2_13394502 | 4 | 3 | 12986600 | 1E−50 | GTCTATTTAGCATGTCTTAGTTTCTTGGTGATGATGACTGCAGTTGAAGTCAAAATTTGA[G/T]GATCTCTCATCTGAACATCATCATGCTTGTGAAGAAATGAATAAATTGCAAGAAAAGCTG |
| S1_212477984 | 4 | 3 | 18808497 | 2E−53 | TTGTAGTCGTAATCGAAATCGTATTCTTTGTGGAGTATTATTTTAGGTGGAAGATGTTGA[T/G]ATTTCTGAAAGAGTTCAGAGAGGATTAGAATCACCAGCCTACTGCAGTGGAAGATATGTA |
| S1_40517926 | 5 | 4 | 2442039 | 3E−50 | TGGTTAATCGCAGATGGGGCTTGGAAAGACTCTGCAGGCGATGTCTTTGTTGAGCTATCT[G/A]AAGGTCAATGGCATCTCAACGGGGCCGTTCTGTGAGTCTTGGTTTATCTCCGATGAGCTT |
| S1_341690721 | 3 | 4 | 4172027 | 7E−46 | TTGTGCATTCCTCCCTGCATCTCTTGGAACTGCAGCCTGCCCACTCCATCCTCCCATGCT[A/G]CTCTTGTGAACCATCTCAACCACTCTTCTTCTTTCTCTCTCTCTTTCTCTCTGTTGTCTC |
| S1_94822591 | 5 | 4 | 6518043 | 4E−37 | TCTGATGATCGTGCTTCTCTCATCAAATGTTAGATGTTGTTCTAACTCTTCAAGCAATCA[G/A]GAACTTATTTGCTACTATGAGTTGTGACTTATTGTTGCTGGTCACTGGATACTGCAGGTC |
| S1_223059854 | 5 | 4 | 9590872 | 4E−49 | GTTGCTGCCAGCAATCATGAGACCATTATGAGCTATGTTGATGGATGGTGAGGTTCGGGA[C/T]GTCTGTGGATAAGCTGTAACTGCAGGCAGGCTACCTACCATTGGAGAAAATTGGCCAGCT |
| S3_1940455 | 4 | 4 | 11602024 | 4E−49 | ATGCCTGAATCTGGAGGACAAGCTACTGCAGTGTGTCAAGAAATAGACATACTTGAAGAG[A/C]ATTATGAATCAGAACAGTTCCAGGCCGGTAATGTTGAGTTCATGCTTTCTGTTCCTTTCT |
| S2_59089982 | 4 | 4 | 13022373 | 2E−47 | CTCAATAATGGTGGACAAATGTGCCTTCTAATTCAGAAAAAAAATGTCTACTAATTACCT[C/G]TCCAGCTCTGTCATTTACTTGTTATAGGATGACATAATTGATGACTCTGCAGAGGATGAT |
| S1_29508975 | 5 | 4 | 13956140 | 8E−52 | TAGTGAGCAGTTGAGATCATTAACGAGCATAGAAGAACTCACTGCAGAAGCCACAAAGCC[A/T]GAAGTCAATGGAGTTTCTATGGAACATAATGACGAGGAATTGGGAACACTATATTGCACT |
| S1_78099239 | 4 | 4 | 19009721 | 2E−33 | CAGGTTTTCTTTTCAATTGCAAGAGACATCAAGCAAAGGCTTGCAGAAACCGATACCAAA[C/G]CTGAGGTAGTATGCTTATCATTTGTGATAAATTCAGTAAACCTGCAGGCAATTAGTAATG |
| S1_98182899 | 5 | 4 | 25059970 | 2E−47 | TGTGCACAATGCTATGACCACACATATGGTTTCAAACAGACAAGGAACAGAATCAACAGA[T/C]ACACTACTTACAGTGACAAGCTCCGATATCAGTTGCGCAGACAACCCTGTTTTCTGCAGC |
| S1_13376874 | 3 | 4 | 25692581 | 2E−40 | CTTGATATGTCTGTATTGGGTGTCATTTCTGCAGTATTATTTGGTCCGCAAAGGTAAATC[A/G]ATAGAAATTGGCGTCATTTAGCAATATCTAAACTGTATTTGAATTTGTAGTTCGAGCATT |
| S1_50863270 | 5 | 4 | 27382503 | 2E−54 | GTGGCTCTCAAAGACTGAGGAAGTGCGTGAAGATAGGGCTCATTGGGGTACCAATATAAC[T/C]GGTGATATTTATGGTCAGGGTTGGATCAGTGAAATGTATGGATATTCATTTGGTGCTGCA |
| S1_30240813 | 5 | 5 | 4418552 | 4E−43 | TCAGAGAGTGAGTCACATAAAAATAAGATTCATGTTGCATTGTGATGCCCCCTGATTCTT[A/C]TTACTTGCCCCCAAACGATAAGGACATCTTTTCTGAAAACTGCAGAGCCTAAGGAAATTA |
| S1_284257251 | 5 | 5 | 8809466 | 2E−41 | AATTTTCTGATCTGAGTATTGGTCAACAAGAATCCAACATAAAACTCAAGTAAAATGCAG[T/C]AAATTACAATTGTTACATAATTGTTTCTCCACATAACTTGCTAATAATTATTTCTGCAGA |
| S1_172013713 | 2 | 5 | 15915339 | 5E−48 | AACGCATGATACTCAATGTGTTGTTACTAATTGAATCTCAATTAATATGACCTGCAGTTG[C/T]TTGAATTTTCATGCTATGTTTGTAAGGCCTCTAGTGTTGCCAAAACCTCAGACATCTTCG |
| S2_46046547 | 5 | 5 | 18636385 | 5E−54 | CACTGCAGGGGCTGCTTCCTTGATGATGAACCCAAAGAACTCTATTTCTCAAATAAAGCG[C/A]TTCATTGGAAAGAAATTCTCTGACCCGGAGCTTCAGTCTGACTTGCAGTTATTTCCTTTT |
| S1_161404508 | 4 | 5 | 19741536 | 5E−42 | TGCTAATCAAAACTGATGCCTCTGCAGGGACCAAGTTGATCATTGAAAGAATCAGGGATT[A/C]TCACTTTCTATCACCTGTAGAGTACTGCATGTACATAAGTCACCATGAAAAGCACCGGGC |
| S1_86749745 | 5 | 5 | 20784276 | 1E−48 | CCCTTCTGATATTTGCTTGGAGTTGAGATGTCTGTTGAACTTTAGCTGGAAATTTTACAG[T/C]CAACTCTATGAATTGTGTTTTCTGATTCATACGCACATTTGTGATTTTGTGCCTGCAGAG |
| S1_349430697 | 5 | 5 | 22888769 | 8E−52 | TCCATCCTGGGAAGCACTGGCAATGGTTGATTTCGGTAGGCCAAGATTTGGAGCCCAAGC[G/A]ACATCTCTAACCCAATCGGAATGCATCTGCAGGGCAGGAAAGCAGTCCATTTTCCAGCTC |
| S3_43353096 | 5 | 5 | 24048351 | 8E−52 | TGATGGGGGGAAATAACCCAAACTGGTGGAGTTCTATCAGCAACATGAAGCCAACTGCAG[G/C]AGATGAAACCTCTCTTCTTTATCCTTTTCCATCTTCTTCACCTCTCTTCCATCACTACTC |
| S1_51060666 | 3 | 5 | 26180154 | 1E−42 | GAAGGAAGGCAGCAGCCTTTCAAACCTGCAGATGAAGTCGCCACGTCTTTTGAAAATTGC[A/T]AACCCAGCCAATTTTGCAGCTGCTAGTTTATAGGTAATGATAGATAGTTATCTAGGCTAT |
| S1_126396048 | 5 | 5 | 27405531 | 4E−49 | CAACTCTGTCGTAGGAAAAGAAACTGACCCGTCCATGATCAACAAAACAGAATTTTAGAG[G/A]AATGCCAAGGCACTTCTTCTCAAGGTTTTCTAATTCTGTTCTTGAGGGTGGCTTGTCTCT |
| S1_189523417 | 3 | 5 | 30765836 | 4E−49 | TTTAAAGCTTGTGACAGCGAGTTTGAAGACCTCTGCTGCAGGCATGCATCCAGCTTGCGC[A/G]GCAGGAACAGCTACACCGGCTGTTACTGCCGTGGCGCTTTCACTCAGTGGACTGAAAACA |
| S1_210690510 | 5 | 5 | 31577924 | 2E−53 | ATCACCTGTCATTCTTAGCATACGCTGACAGCATCCAGCAATAAGCCATGATGCTGGGCA[A/T]GATTCCCAAGGACTGGATCGCTTGAAACTGCTCTTTACTCTCATCTACAAGCCCTGCAGA |
| S1_199164936 | 5 | 6 | 10295314 | 1E−37 | ATTATTATTATTATTATTTCTTCTTCTGCAGTAACGGGTCACATTGCTTGGAAGAAGTTG[T/C]TGGAGCTTGAAACGCAAATAATGATACGAACACAGCCTCAGCAATGCACGATTACTCGCT |
| S1_282211588 | 5 | 6 | 17925427 | 2E−40 | CACTTTGCACAATTATCTGCTGTAGAATGTTCTATTTGTTAAACCTGCAGATTAGGAAAT[C/T]CTAAATTCTATCTGCTGTTATGAAGTCCTGGTAGTATGTACAAGCAGGTTGATTATACAT |
| S1_116006917 | 4 | 6 | 21845952 | 8E−52 | TTGTCAAGGAACGATCCCTTCACCTCCTCGGAGAAGAATCGCCCGAACACACGAGAGATG[G/C]ATATGGCCGGAACCTGCAGAGGAGAAAGCGAAGCCCTAACCCTGAGGTGCTTCAGCACAG |
| S1_45761963 | 5 | 6 | 27083504 | 1E−50 | TTTTATCATGAACCGATCATCCTGAGACAGGTAGAAGAAGCTCCCACTCTTCCCAGGGGA[G/A]GATAATTCCCTCAAAGCATCACTTCCACAGATCGTCAACATATAATCTGCAGCATCAACC |
| S1_289563297 | 3 | 6 | 31210760 | 2E−53 | AATGAACCATATCATAATCAACTAGATGTGAAAAAAGAATATTTGCACAACTGCAGGTGG[A/G]CAGGAAACCAAGGGGCTAAATAGACACACCTCATGACCTAGTTTCACACCCATCTCCTGT |
| S1_210284742 | 5 | 6 | 32022412 | 1E−50 | AAAAGACCCAAGGAAATGACACAGCAGAACCATTGTCCCATTGGACATTTTCAACTACAT[T/G]CAAACTGCAGCATAAAAACCAAGATTTATATCACATATCCACACTAGTTCAATGAAACAA |
| S1_244041680 | 5 | 7 | 891269 | 4E−49 | ATCAAAACATCGCTCTCTGCAGCCAAATCACAGACGTTAGAGAAATATTTATAGGCGAGT[G/A]ATGGCCTTGTTGTTCTAGAATGGTACAAGATTGTGCAGCCAAAGGCTTCGAGTCGTTTTG |
| S4_1831247 | 3 | 7 | 3180748 | 5E−48 | GACAAACCAGAAATCTTTCCTTTCCATTAAGGAAGCAAATCCACCAAGGAGAACTGCAGT[T/A]GCCCAAATGAATCCGAGGGCTCCCAAACCACTGGCTGCCTTTTCAAGGATTGCCAAGCGA |
| S1_156520859 | 4 | 7 | 10367143 | 8E−52 | TCTTTTACTGATATAAAGAGACTACCAGAATCCATTTGTATGTTGGTTAATCTGCAGACA[C/T]TGAAACTCTATTGTTGTTATAAACTTTCCGAGCTTCCCAAGAGCATAACATACATGAACA |
| S1_109907043 | 3 | 7 | 15658966 | 2E−53 | AGGAGAAAAAATTCATGTGATGTCCTCCATATCTCAGCCTCGTCTCGGGTGGTCAAATGA[A/G]ACTGCAGCAAGTATTGGGACAATTGCAAGAATAGACATGGATGGCACTCTCAATGTGAGT |
| S1_365833705 | 3 | 7 | 17541018 | 1E−50 | ACACATCTTCACCATTCAATCACTTTCATCCAACTGCAGCAACGTCTCAACAAGATCTCC[C/A]TGAGCTAGGTATCATCAATTTTCTACAAGCAATCTGCATTGGAAAGTGATCATGGACCGA |
| S1_215375978 | 5 | 7 | 17828247 | 4E−49 | TGCTGTGCTCACGCCGATGGATACTGTGAAGCAGCGGCTGCAGCTTGAGAGTAGTCCGTA[C/T]AGAGGGGTGGGTGATTGTGTGAGGAGAGTGATGAGGGAAGAGGGGGTGCGTGCGTTTTAT |
| S1_5956960 | 5 | 8 | 1990861 | 5E−35 | AGATAAGCACTTTGTATCTTGCTATTTTTGTTGCTCTTTATTATTGATGTGCAACAATGT[C/T]CCCAACAACCACACACACACACACACACACAATTTTGTATTTTTATGTTAGCTACTTCAT |
| S1_142832546 | 5 | 8 | 4073006 | 4E−49 | AACTAACATGAATTTTGGCTCAATGATATAAGATTAACAACAAAAACGTTTTTGCTGCAG[G/A]GTTCTTGAACAAGTTTGATGAAATCACAAAATGGATATTGAAAGTTTGTAAGAATGTTAT |
| S1_102926938 | 3 | 8 | 5771893 | 3E−50 | AATCTTTGATGACAAAGCTGCAGCTTCTTTTCATGCAAAACAATAAAAAGTATACCGGAT[C/T]TGATGTGATATGGGATGATCAGATCACTATACTGAAAATGAAACCTGTGCCAGCTTCTCT |
| S1_29231327 | 5 | 8 | 6476874 | 1E−48 | TCCAGCAAATAGGTGGGGAACATCATACAACGGGCACGGAATGTTCATCGAAAATGCACC[C/T]GCTAACATCGTGGCCAAAGCTATGGAAAACATTGCAATAGAAAGTATAACCTGCAGCTGA |
| S3_54678463 | 5 | 8 | 7748403 | 4E−56 | TCAAGAGCTTCAAGAAGAGGAAAGAAGGATAATAAGTGAAATATCAGAGTTAGAGTGTGG[G/A]AGACCTGCAGAAGAACAAAGAGTTTGTGTTACTGAAATGATGGATTGTGTTATTGATCCA |
| S1_208236889 | 2 | 8 | 9479207 | 4E−49 | AGGAAGGAAAGAGAAAGAAGTTTCTGCTGCAGTCTCAGCCCCTTCTTCGAATTCTTCTTG[T/C]AGTTTATCAACAATCACTCAATCATACGGTGACAATGCCACTCTTCAAATAACTCAGCAT |
| S1_169356495 | 5 | 8 | 12133164 | 8E−52 | ATACAGAAATTATCAGTGTAATATATTACAGAAGTAGAATGCTTCATCACCAGAATCTGA[T/A]TTTATATGAAAACACACTGACCTCTTGATGAAGAATTAGGCAAAACAGGGAGTCTGCAGA |
| S3_35309770 | 5 | 8 | 19352521 | 2E−47 | CATTTCCAAATTTCAGAAAATAAATCGGTTTCCATAAGATTTGAGGTACAAATAGTTTCC[A/G]CAAAGGAGGTTTATCTGATACAACACTGCAGCTTGAATATGGTAAATAACTAGTCTCACA |
| S1_235419648 | 4 | 8 | 23125222 | 5E−48 | GAACTTCAGAAATTGTTATACGCTGCAGATTGCCCAAAATGAAGCATTCATTAGACATAA[C/T]TGATCCCATAAATCAGCCCAGCTTCTTTTATGTTGTACATAAAAGTTCAATTAGCAAGAT |
| S2_30875426 | 3 | 8 | 27554786 | 1E−43 | TTCATGTTTGGAAGATCTAATGTCAATTTAGATGTCATATGGTTTAGTTTTGTATTAGTA[C/G]TTTATGTTGTATTATTCCAATATAATCCAATATCATATCTGCAATTCTGCAGCAGGTCTT |
| S1_71285261 | 4 | 9 | 1039396 | 2E−53 | AGAGAATGTCCGGATAAATCCTCAGAGAAGACTCCACCTTCGCAAGGTGCCCAGCTCGCA[C/A]GGCCATGAAGAACTCGAGCTCTGTGGGGTTACGGCTGCAGCTCAGGCCATGCCCCATCTT |
| S1_352413390 | 4 | 9 | 3168774 | 2E−53 | CTTTCTTGGCAAACAGTTCTGCAGTAGATTTGAAGTCAGCTTCTTCTACAAGTCTACCAA[A/G]AGAGGATTCCAAGTCAGTGAATGGATATGATCAATTTGCATGACTGCTTGAAAAGTCGGG |
| S1_58454213 | 5 | 9 | 3570970 | 2E−53 | TGTCCTGTGGCCTCATCGAGGAGCCATTTCTCTAGCATTGATAGAGGAGGGTTGTTATGG[C/T]TCTCAACTCTCTCCTTCCCTTCAGAATCACCATTGAAGATTGCTGATTCTGCAGATGATT |
| S2_9856110 | 5 | 9 | 5066064 | 1E−50 | TGGAAAATTAGGTATCCCAGTTACCATGGAAATCGCTAGTGATCTGCTTGATAGGCAAGG[T/C]CCAATTTACAGAGAGGATACTGCCGTGTTCGTTAGCCAATCTGGAGAAACTGCAGATACC |
| S1_157448006 | 5 | 9 | 7773168 | 2E−46 | TTTAACTTTTGAAAGGCTGCAGGGTATGAAATCACAGGCCCCGAGCCTGCTAATGTAGAT[C/T]ATGGTGAAGAAGCTGCATCTGAGGATGAAGAGGAATCTTATGATGGACATGATGCAGATG |
| S3_14699960 | 5 | 9 | 14771343 | 1E−43 | AACTAAAAGCAAACCAAAAATAAATTCCTCTGCCGTTAAATAACCTGCAGAAAAAAATAG[C/A]GAAATGTGACAAGGAGAATATTTACATACCTTCGCCTCCATGACACTTCTTTCAGAGTTC |
| S2_58843160 | 5 | 9 | 17855377 | 5E−54 | CAATTCATTTCAGGCATAATGTTATCAAGTAATGCATATTCTACCAGAAATGAACTTTAT[G/A]TGGAACATCATTCTTGACATTTGAAGAACTGCAGTTGATTACAAGTGAATTGCTTATAAC |
| S1_108505610 | 5 | 9 | 23138342 | 1E−48 | GGAAAATATCCAAAAAGCAATAAAAGCTGCAATGGACGCAGCCAATGCCGCTGTTTCACA[A/G]TCGAAGGCATTCTGCCTAAGCCGCGTCGATGTGGGTCTAGACACCACTGCAGTTCGAGAA |
| S1_96409136 | 4 | 10 | 273696 | 9E−45 | TGAAGTTTGATGATTCAATTTACCAATGATTTTCATGCACAGGAGTATATCTGAGAATAA[C/T]GAGCAAAATGATGCAGAGGTTACTTCAGCAAGAAATGCTGCAGAGAAGGATGTGACCAAG |
| S1_75907479 | 5 | 10 | 1295979 | 8E−52 | AATGTCTTGACAGAAGCCATGAAAAAGCTCCACAAAATAAGTCCAAATTGAGATTGGAGA[G/A]CATACTCTCCACTGCAGCAAGTCTGTACCCTGTCTATGTGACTGCTGGAGGGGCTCTTGC |
| S3_17911820 | 3 | 10 | 2220748 | 8E−39 | AGTAGTTTCTGAACTGGTACTTTGATCAATACCTGCAGAGTTAGTAGCAGTAGCAATAAG[C/T]GAGGAGACCTCAATATCTTGCACATGATCACTCACCGAAAATGGAACATTATCAGCATGA |
| S1_282032037 | 4 | 10 | 5002351 | 7E−40 | GATTTACAGGACAATTACATTTCAGATTTCCATAATGATGGTAACTACAAGAATATTATT[C/A]TGTAAGCACCATGATACTTGTATCCATTACATGCATTGAATCAAAAGAACTGCAGTTTTA |
| S2_66969333 | 2 | 10 | 5976818 | 2E−52 | TTTAACTGTATTGGCAGTGTCTGCAGACAGAGCTACGTCTAGCAAAGTGAGCAACTCATC[A/G]TCTGAAACAACTCCAATCTGTAAAACAGAGCAAGTCACAGAAAATTTATACCAAGATAAG |
| S2_53836832 | 3 | 10 | 10477461 | 5E−48 | GAACACTTTCCTGGATTGAAAATTATTTCTGCTGCAGATCATCGTTTCTTTGGCACCACA[C/A]CCTTTTTCTAATAAAATATTCTTGAGCTCTTTCTCATCTTTGAGATGTGAAACATCTAAC |
| S1_21668183 | 4 | 10 | 16038685 | 2E−53 | AGCTGCAGAAATTACATCAAGGATGGATCTCAGAGCTTCCAACCTGCATAACATCTCATC[G/A]ATTGCAATGTCATCAACTGGAAGGTGCCCTATGATCCCTGCCACGGTTGATCTCTCCTCT |
| S1_333790152 | 5 | 11 | 2622759 | 4E−56 | TGCTTTGAAAGGCCAGCATGATCTTTTTTCTATTTTGTGTTCTTGCAATGAGTTCTGTCT[A/T]ACATTGCTGATTTTTGTTCTTGTGCAGTCTGCAGTAGATTTTGATGATAAAACCAGTTGG |
| S1_238131512 | 2 | 11 | 14447426 | 1E−43 | AAATATCGAGATGAATTTCTGGGAACAAGCCTGCAGTTAGTTTGAGGATGTGTTTGGAAT[A/T]AGTGATCAAATGGCATTTGAGAAGCATAGTATGTAATTTTTCCGTAAAAAATGATCAAGA |
| S1_38918393 | 3 | 12 | 17162245 | 2E−46 | AATCCCATCAAATTTGTCTTTCAAATTTCTGAATTTTTTCCCCTATCCCAAAAAATTCAG[C/G]CCATCAAGAAAATATGAGGCAAAGCATAAAACTGCAGCATAATCTCTATTAGATCTCATC |
| S1_102041015 | 4 | 12 | 24327364 | 3E−45 | GCAGTATACAACTTCATTACCATGTTAGACCAGCAAATCTCAGTCTGATTTCTTCCTAGC[T/C]AACACACACACACACACACACAAAAGAAAACTTCAATCTCTGTTTGTTTTCTGAGTGCAT |
| S1_65460849 | 4 | 13 | 1824700 | 1E−42 | GCATCTGCTAGTTCAAAATAAAAGGCAAGCATGGTATCACTAATACTGCAGAAAAATGAT[A/G]GTGCATAAATATCTAATGGGAAATGATGCAGCGAAGATCAATAACTTAGAATGAAATTCA |
| S2_23695000 | 5 | 13 | 8252985 | 8E−52 | TACATCTGGGGGACTGCAGAGCTTTGAGCATCCACTGAACCTGGTGAAACCAGTGCCCAG[G/A]GTTGACAGCAAAGGGCAAGTATGTGGTGCCAATTTCAAAGTTGATGCCCAAGCTAAGAAG |
| S1_279910017 | 5 | 13 | 27313051 | 2E−53 | GGCAGCTTCCAGGGCTCGGGAGCTACCAAGATGGAGTTTGCTATCCACGGATTTGTTCCA[C/T]GAATCTGTAGCTCCATCGTATACCCTGAGCCTGCAGCCGTCTCTGCAGTCCAGAGCATAA |
| S1_297529258 | 3 | 14 | 3933202 | 7E−46 | CTTATCTATGGCCAGGTTCATCAACATATAAGGCTTCAATGGTCTCAAATTTCATCGGTG[A/C]TGCTTCTGCTGTGTGTACTTTTACTTGTCACTTACGCCAAAGTAACTGCAGCCTGCAGGT |
| S1_252699764 | 5 | 14 | 12391182 | 4E−49 | ACTACTGAATAAATGGAATCAACTTTATTTGCTGCAGTTGGACTAGCCTAAGAGGAACTA[A/T]GTGGCTTTGGAAGAGTGTTGATACTTGGGATTTTATATCAATGTGTGAAAATCAGTGACT |
| S1_64347285 | 5 | 14 | 12868762 | 1E−50 | GGATCAAAGTTCTCAGAGATTATTGATTTTGAGAAGTCAAGATATGCATCAAATCCGTGG[T/G]TGATCTCTACTGCAGCATTTACCATCCCTTTCATGTCAATTGACCAGAGAGGTGTCAGAT |
| S1_108652759 | 4 | 14 | 13736821 | 3E−45 | GAGGTAATCTGTGACTTGTCCATATTACTGCAGAACAGCAATTTATTGCTGATCTTGGAC[T/C]ACTGATATCCAGCTTTCCCCAGATTATGTCATATTGCACCCAGCAAACCAGTACAATTTA |
| S2_68074878 | 5 | 15 | 320619 | 6E−47 | CACCACCATCACATCCGCACCATTGTTGTCCACCTTTGAACCCAGTGTGCCTGAGAAGGA[C/T]ACCTGCAACATATCCGGTGATGACTTCTGGAAAGTTGCCTGCAGGGCAGATTAATAAAAT |
| S2_15031349 | 4 | 15 | 2754888 | 3E−50 | TAAGAGAAAAATAGCTTACATTATCTGTGTCGACCTCTGATATAATCTCTTTGATTGTAG[T/C]GGCATCGCCCATTCCGTATTTCTCCATGGCTGATTCCAACTCATCTCTTGTGATATAGCT |
| S1_361168697 | 5 | 15 | 3199245 | 2E−54 | ATTACTAAGATGCAATTTATAAACATATCTGCAGTTCATTGCTCTTGAAATCTCTGCACA[A/G]GCAGAAGAAGTTGAGATTTCCGTAAAAAAGCCTGAAAATGGTGGTAGTGCTTCAGAAGAG |
| S1_42812024 | 5 | 15 | 3456280 | 8E−52 | GAACATTTTATAGTACCTCAAGGGGAGTGCCTTTACTGTCAAGAGGAAGGGGAACACCAA[C/T]TCCGCATCCTCTCGGAAATCTGAAGCAGCTAGGCCTGTCATCAATGGCTGCTGCAGTAGC |
| S1_31917523 | 5 | 15 | 3839679 | 2E−54 | TTTACATCTATTGAACTCTCTGCAGGTTGAATCTGAAATATTTTGCTTGCATGGTGGTTT[G/A]TCCCCTTCTATTGAGACCCTTGATAACATACGCAATTTTGATCGTGTTCAAGAGGTTCCT |
| S1_16064479 | 5 | 15 | 5173749 | 1E−50 | GCTCAGAAGAGCTCCATATGTAAGTTGGTTCTGGACTACCTCCGGGAGACTATTGAAGTA[A/T]CTCTCTGCAGCATCTACCCCCTTGACTTTGGATATAAGATCTATTCGTATTGCATGGGTC |
| S1_116148629 | 4 | 15 | 6642827 | 8E−52 | GCAGGAATACAAGAGTATTGCCAGAATGAGGCTGGTACATATTAGCCAATCTCCGAATCC[A/G]AGTCATTTTACAGTTCTTGTACGTTCAATTCCAAAATCACCTGAGGAATCATACAGTGAT |
| S1_359692995 | 4 | 15 | 8357684 | 4E−49 | GTGGCTGTCTAATTTGCAGTACTGCAGAAGTAAATATGAAAAAACATGAAATGATAATCA[C/T]AATTCATTGACTAACCTGTGCAGATCTAGAATAGTAGATGTAGGAGCGATTCACTTCATC |
| S1_290181714 | 4 | 15 | 9566725 | 2E−54 | TCCTCGTATGGGGCCCAAGAGGGAACTCAAGTTTGCTCTGGAATCCTTTTGGGATGGGAA[G/A]AGCAGTGCTGAAGATCTGCAGAAGGTTGCTGCAGATCTCAGGTCTTCCATTTGGAAGCAA |
| S1_282323032 | 4 | 16 | 4930222 | 4E−49 | ACTTGGGATTGTGATGATCAGTGTGTCACTATTTTGTGCTTATGTCCTTTGTCAAAGAAA[C/T]CGTAATAGTTCTGATTCAAAAACAAATCAAACTGCAGGTATTGCTTTCATTTGGATTTGA |
| S1_262914420 | 4 | 16 | 8184285 | 4E−49 | AGCAGCACTGTCAGCAAGAAAACTATAAACCTGCAGACGAGAATATAACTAACATCACCA[T/A]GAGACTTCAAAACAACAATTTTAGTCAACAAGGTTCAAGAAAACAGAACAAGACCTTGCA |
| S2_63978772 | 5 | 16 | 14079687 | 2E−53 | AAATACTGGTCATAAATATTAGATCACACATATGTGCCAGTGTGGTCAACAGATAATGCG[C/T]TGCTGCAGTAAAAGAAAGAACTTCAGCAGTGTGGCTAACAGACCTATTGTAACACTAGCA |
| S2_42975314 | 5 | 16 | 19099744 | 5E−54 | CTGGGCCACGAGGGGAGGGCTGGTGAAAACTGACTGGAATAAAGCTCCCTTCACAGCCTC[G/A]TACCGAAACTTCACTGCTGATGCTTGTGTTTGGTCATCTGGCGCCTCAAGCTGCAGATCA |
| S1_349651036 | 4 | 16 | 22229815 | 5E−54 | GCTTTGGAAGATAAAATTCAATCGAAAGTCAGAAGAAGCAAGCAAATTACACAATTCGTC[T/A]GCTGCAGTTCGTCCTCTAGTTCATCCACAGGCCCTTGGATATGACAACTCCCTTCCAGGA |
| S1_131821504 | 4 | 17 | 11148474 | 6E−41 | ATCACTAGTACAATGCAACATGACAAAACCTGAAGTGCTATACAAGTGACTGCTTATTTC[A/G]AACAGGACAAATCTGAAGCATAGCTTGTAATACTTCTGCAGAAAAATAATGGCAAAGTTT |
| S1_305511589 | 5 | 17 | 13065352 | 5E−48 | TGATGTGTAGATATGAGTGGAACTGATTTTTATAACTTTATTACAAAGCATTATTTTTTA[T/G]CCATCTAATGTTCTGCAGATTAGGTGGATGCATTTTTTTTAATAATTTTTTTAGCAATTT |
| S1_162377692 | 4 | 17 | 14256863 | 2E−53 | ACAGAAGAGAAAGCTTGATGAGATGTATGATCAGTTGAGAAATGAGTATGAGTCAGTGAA[G/A]CGATCAGCTATACAACCTGCAGGCAACTTCTTCCAAAGAGCTGACCCAGACTTGTTTTCA |
| S1_7095019 | 5 | 17 | 18481610 | 3E−44 | CACGGGTGAGCCATCAGTAGTACCTGATGCCAATGTTGAAACCATCGAATTCCCTTTCAC[C/T]GACTGCAGGTATACGACCTATAGAAAGGTTGCGGAATTAGTGACTACTTTTTTTTTTTGT |
| S1_164752250 | 5 | 17 | 19197258 | 1E−50 | CGTTCAACAGCAAACTGCAGAGAACATCAATCAGATGATCGGAGCGAGCTCATCAGCAGA[T/G]AAAGCAATTGATGATTGTGTTTCAGGTTTTGATCCAAGCATCAGTGAGGACCTGTTCCAG |
| S1_104430414 | 4 | 18 | 7027601 | 6E−47 | GGTACACACTGCAGACCTGGAGTCTTTGTTCCCTCTTATAACATGAGAGCTTGTTCTTCT[T/G]GTCATATACTTGCTGAAGCTTTTGCAACTCTTTTTACATCTGAAGCCAATTTCTTTACCC |
| S2_23048737 | 4 | 18 | 14902976 | 8E−52 | TGATTATGCTCGCCATTTCTTGTCCTGCTGCAGTAGAATGCTTGGCCTGTCTTATGAATC[C/A]AAGAGAGGCTACATTGGTTTGGAGTACTATGGCAGGACAGTGAGCATCAAGATTTTGCCT |
| S1_259660238 | 3 | 18 | 18609390 | 8E−52 | TTGTAGGCATCAATCTCCAAGAAATCATTATCTATTTGATGGTGTAAGTTCTTGTTGAGG[C/T]TGATAACTGCTGCAGCCTTCTCTTAGTTGAAGCATAACCTTTTTTTCTATTTTCCCTTTT |
| S1_170367846 | 5 | 18 | 21499070 | 8E−52 | CCATGTCTCGGCCTGCAAACATTGGATACCAAGAATTATAAGAAATGGAAGTGAACGGAT[G/A]CGATGGTGAAAACATTTCAGTACCTGAAACTCTGCAGTAAGCACTCTTCTGAATGAGTTC |
| S1_31156518 | 5 | 19 | 1787283 | 2E−53 | AGGACGTCCACACTTGATAGTGTTTCCATTTGCATCATGTTCATTCCACATGAATGCCTC[T/C]GGAGACATGTAGTTCAGTGTGCCAACCTGCAGTTTAGTAACATGAAATGACATACTACAA |
| S4_1766101 | 5 | 19 | 2912318 | 2E−41 | TTCAGATGGATCAGTCGTAGATTGAGCTTTGAATCTCTGAACAAGGAGCATGACGCATAG[G/T]AAGCGGAAGCAGGAACAGGAGAAGGGAAACATGATCTGCAGCTGCAGCACCATCATAAGA |
| S1_130386685 | 5 | 19 | 3858772 | 2E−54 | AGAGTTGATTATAATTTTATGATCACATAATAATTGAACAAAAACTGCAGAAACAATACC[A/G]GCTAAGTCATTCAGCACCAAATTATTTAGAGGTAAGTTTTGATTACCTTCAACTTTCAAG |
| S1_66878388 | 4 | 19 | 4662624 | 6E−47 | AATTGTGACATCAGCAGCAATAAAATTTTTGAAAAACCACCGCCCAAAAAATTTATCAAA[A/G]AAAATTATCACTGTCTTGTGTCAAACATCATCACCAACTCCAAACCCATACTGCAGAAAA |
| S1_48170206 | 4 | 19 | 8029141 | 3E−50 | ATTATACAAACTGACAAACGTATTCTATATCAAAATTGAATTACAGGAGAGATTGGTAGG[A/T]CGTAAAGATCCAAACATAGAAATCAAGATGTTAGAAGGATATGATAGAAACAACTGCAGA |
| S1_85054393 | 4 | 19 | 9504285 | 1E−50 | CACATCTGTTTTCTTCCTTGAGATTTCTACAATACAACCTGAGAAGTTCTGCCAAAAATT[G/A]TCTCTTTGCGGGGTAAAATATTTTTCTCTCCATAGGAGTGACAACAATATCTGCAGGCTT |
| S1_16428287 | 5 | 20 | 725184 | 8E−52 | CAACGTACTGCAGACCCTGTCAAAATGCCATGAATAGGTTATTATAGTTATGAACATCTC[G/A]TCAAACAAAGATTTGCAACCAATGGTATGAGCATTCAGATTTCAAGACTGTCCAAAAAAC |
| S1_43488339 | 5 | 20 | 2904117 | 1E−50 | GACAAAGTCATCAAGTAATTGCCTTCTCATGACAGATAAATCTGACTGCAGGGATGTGCC[G/A]AGCTTATAAGGCCAATTAGACAGCATAAAACAAATAGAAATGCTGGTCATTGAGACAATG |
| S1_114295977 | 4 | 20 | 6774493 | 1E−48 | GCTTGGCATGTTTATGATGAGTATTCCTTTTGATAGCAGTAAAAATAGTACTTATTGGCT[A/G]ACTTGAAAGATCTAGAAGATTGGTTGGACTGCAGTTATATTTTTCTCTAGCTCAGCTAGG |
| S1_30976509 | 3 | 20 | 8500327 | 2E−54 | ATTGTTTGGCTCCATCAATATAGGAAGATATCTAAGGAGTTACTGACTTGTAATATGGAA[C/T]CATAACTGACAATATAGCTTCAACATGATGTACTTACTTCGTGAATGCCTGCAGAGGAGG |
| S5_17384653 | 5 | 20 | 8742611 | 1E−36 | TTAACCATTAAAATTTATTTACAATGTAAAATTTCCACAGAGAGTAGGTTCTGTAATCTC[C/A]GATTTTCTTCGACAAAATCAGCGGATTCATTCTTTATTCTGTTTATTGTGCTCTGCAGCT |
| S1_160073245 | 4 | 20 | 9514825 | 1E−42 | TTCCGCCTGATGCTTTAACATATAAAAAGCTGCAGATGCAGAAACTAAATATCTGACATG[A/G]TCAATAGTTAGATTATGACTTTCAGCTTGTAGATTACCAATTACCAGACCACCATAAAGC |
| S2_46633476 | 3 | 20 | 9808073 | 1E−50 | AGATCATGTCGTGAAAATACCTTCAGATCCTTCTCCTCCTCCCCCGTTTCCCTCGCGTCC[T/A]CCAAATTCGCCTTTCCTTCCTCCACCACCTCCGCCTCCGCCTATGATGAGCAGCAGTGGA |
| S1_231563096 | 5 | 20 | 9944570 | 4E−49 | GTTGAGTTTCAGAGTTTCTGCAGCTCCCTTTGCAGTAGTTAGGCAGTAACCCATCACCTG[A/G]AAAGCATATCGGTTTCGATACTGTATGAACTTCCACAAGAACAGCCCTGCCATTGCTCCA |
| S1_60794376 | 5 | 20 | 10523563 | 7E−46 | TTCAATACTTGTTGTCATTATAACATCAGAGATTGCAATTCCTTCATGATGCCACTGCAG[G/C]ATCCCCATATGGACAGCTGGTTTCAGTTGTCATTATCCTATTGCACTCAAATCTTGAAAT |
| S1_199666449 | 5 | 21 | 240474 | 4E−49 | AGTTCCACTCATAAAACCAGTTCTCTACCCAAGCGGTAGCACGAATTCCTCAACAAAATT[A/G]TAGAATTTCCACTTTGTTCTCCGGAAGCATTGCCATTGGTGGTGCTGCAGTTACTCCATA |
| S1_257000706 | 2 | 21 | 928527 | 2E−54 | TACAAAATGAGATGGTTCACAAGCTGAAGAACAAACCTCATCTGCAGTAAAAAGAAGAAC[A/G]TCACTGTGCCTCAAAAAAAGTTCAAGAGCTCTCTGTTGTTGAGGCAGCCCAAGCAAAAGA |
| S1_171090323 | 5 | 21 | 2104297 | 1E−50 | CGAGGGAAGGAGAATGTGGAGCTACTGATTGCAGATATACTTATTGGTTCAGCAGACTAC[G/A]TCCATCATGACCCCTATAATACATTGTTCTGCAGGCAATATCAGTGTTCTTCCTAGGACC |
| S1_25663258 | 3 | 21 | 2772381 | 8E−33 | TGTGAAAATTTGGCTGTTTTGCTGCAGTTTCATCATATTGCAAACTAATATTATAAACTC[A/T]AAAAGTTTTGTCCACTATAGAACTAGTGTCAGCATCAATTTCCAATATTAGCCAGGCTAA |
| S1_371159620 | 4 | 21 | 3932249 | 1E−50 | GTCTGCAGGGGAGGTCAAACTCGAGCAGGTTTCGCATCAATGAGTGTAGCACCTTTATCA[C/T]CAGCATTTATTCCGGCTGCTGCCGCCACCACTCATGTTGGACTGCATCCAACAATCCTGA |
Cormier F, Mournet P, Causse S, et al. Development of a cost‐effective single nucleotide polymorphism genotyping array for management of greater yam germplasm collections. Ecol Evol. 2019;9:5617–5636. 10.1002/ece3.5141
DATA ACCESSIBILITY
Plant materials may be requested at the CRB‐PT of Guadeloupe http://intertrop.antilles.inra.fr/Portail/accessions/find/11. KASPar primers sequence is available in Appendix B.
REFERENCES
- Arnau, G. , Bhattacharjee, R. , Mn, S. , Chair, H. , Malapa, R. , Lebot, V. , … Pavis, C. (2017). Understanding the genetic diversity and population structure of yam (Dioscorea alata L.) using microsatellite markers. PLoS One, 12(3), e0174150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnau, G. , Némorin, A. , Maledon, E. , & Abraham, K. (2009). Revision of ploidy status of Dioscorea alata L. (Dioscoreaceae) by cytogenetic and microsatellite segregation analysis. Theoretical and Applied Genetics, 118, 1239–1249. 10.1007/s00122-009-0977-6 [DOI] [PubMed] [Google Scholar]
- Asemota, H. N. , Ramser, J. , Lopez‐Peralta, C. , Weising, K. , & Kahl, G. (1996). Genetic variation and cultivar identification of Jamaican yam germplasm by random amplified polymorphic DNA analysis. Euphytica, 92, 341–351. 10.1007/BF00037118 [DOI] [Google Scholar]
- Bourke, P. M. , Voorrips, R. E. , Visser, R. G. F. , & Maliepaard, C. (2018). Tools for genetic studies in experimental populations of polyploids. Frontiers in Plant Science, 9, 513 10.3389/fpls.2018.00513 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broccanello, C. , Chiodi, C. , Funk, A. , McGrath, J. M. , Panella, L. , & Stevanato, P. (2018). Comparison of three PCR‐based assays for SNP genotyping in plants. Plant Methods, 14, 28 10.1186/s13007-018-0295-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaïr, H. , Sardos, J. , Supply, A. , Mournet, P. , Malapa, R. , & Lebot, V. (2016). Plastid phylogenetics of Oceania yams (Dioscorea spp., Dioscoreaceae) reveals natural interspecific hybridization of the greater yam (D. alata). Botanical Journal of the Linnean Society, 180, 319–333. [Google Scholar]
- Cormier, F. , Lawac, F. , Maledon, E. , Gravillon, M.‐C. , Nudol, E. , Mournet, P. , … Arnau, G. (2019). A reference high‐density genetic map of greater yam (Dioscorea alata L.). Theoretical and Applied Genetics. 10.1007/s00122-019-03311-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuenca, J. , Aleza, P. , Navarro, L. , & Ollitrault, P. (2013). Assignment of SNP allelic configuration in polyploids using competitive allele‐specific PCR: Application to citrus triploid progeny. Annals of Botany, 111, 731–742. 10.1093/aob/mct032 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danecek, P. , Auton, A. , Abecasis, G. , Albers, C. A. , Banks, E. , DePristo, M. A. , … 1000 Genomes Project Analysis Group (2011). The variant call format and VCFtools. Bioinformatics, 27, 2156–2158. 10.1093/bioinformatics/btr330 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davey, J. W. , Hohenlohe, P. , Etter, P. , Boone, J. , Catchen, J. , & Blaxter, M. (2011). Genome‐wide genetic marker discovery and genotyping using next‐generation sequencing. Nature Reviews Genetics, 12, 499–510. 10.1038/nrg3012 [DOI] [PubMed] [Google Scholar]
- Dereeper, A. , Nicolas, S. , Lecunff, L. , Bacilieri, R. , Doligez, A. , Peros, J. P. , … This, P. (2011). SNiPlay: a web‐based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects. BMC Bioinformatics, 12, 134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elshire, R. J. , Glaubitz, J. C. , Sun, Q. , Poland, J. A. , Kawamoto, K. , Buckler, E. S. , & Mitchell, S. E. (2011). A robust, simple genotyping‐by‐sequencing (GBS) approach for high diversity species. PLoS One, 6, e19379 10.1371/journal.pone.0019379 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia‐Lor, A. , Ancillo, G. , Navarro, L. , & Ollitrault, P. (2013). Citrus (Rutaceae) SNP markers based on Competitive Allele‐Specific PCR; transferability across the Aurantioideae subfamily. Applications in Plant Sciences, 1(4), apps.1200406 10.3732/apps.1200406 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glaubitz, J. C. , Casstevens, T. M. , Lu, F. , Harriman, J. , Elshire, R. J. , Sun, Q. I. , & Buckler, E. S. (2014). TASSEL‐GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS One, 9(2), e90346 10.1371/journal.pone.0090346 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gompert, Z. , & Mock, K. E. (2017). Detection of individual ploidy levels with genotyping‐by‐sequencing (GBS) analysis. Molecular Ecology Resources, 17, 1156–1167. 10.1111/1755-0998.12657 [DOI] [PubMed] [Google Scholar]
- Hiremath, P. J. , Kumar, A. , Penmetsa, R. V. , Farmer, A. , Schlueter, J. A. , Chamarthi, S. K. , … Varshney, R. K. (2012). Large‐scale development of cost‐effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnology Journal, 10, 716–732. 10.1111/j.1467-7652.2012.00710.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- IPGRI/IITA (1997). Descriptors for Yam (Dioscorea spp.). International Institute of Tropical Agriculture, Ibadan, Nigeria/International Plant Genetic Resources Institute, Rome, Italy.
- Krishna, H. , Alizadeh, M. , Singh, D. , Singh, U. , Chauhan, N. , Eftekhari, M. , & Sadh, R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6, 54 10.1007/s13205-016-0389-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langmead, B. , & Salzberg, S. (2012). Fast gapped‐read alignment with Bowtie 2. Nature Methods, 9, 357–359. 10.1038/nmeth.1923 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lebot, V. , Trilles, B. , Noyer, L. J. , & Modesto, J. (1998). Genetic relationships between Dioscorea alata L. cultivars. Genetic Resources and Crop Evolution, 45, 499–509. [Google Scholar]
- Mahalakshmi, V. , Ng, Q. , Atalobor, J. , Ogunsola, D. , Lawson, M. , & Ortiz, R. (2007). Development of a West African yam Dioscorea spp. core collection. Genetic Resources and Crop Evolution, 54, 1817–1825. 10.1007/s10722-006-9203-4 [DOI] [Google Scholar]
- Malapa, R. , Arnau, G. , Noyer, J. L. , & Lebot, V. (2005). Genetic diversity of the greater yam (Dioscorea alata L.) and relatedness to D. nummularia Lam. and D. transversa Br. as revealed with AFLP markers. Genetic Resources and Crop Evolution, 52, 919–929. 10.1007/s10722-003-6122-5 [DOI] [Google Scholar]
- Nemorin, A. , David, J. , Maledon, E. , Nudol, E. , Dalon, J. , & Arnau, G. (2013). Microsatellite and flow cytometry analysis to help understand the origin of Dioscorea alata polyploids. Annals of Botany, 112, 811–819. 10.1093/aob/mct145 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otoo, E. , Anokye, M. L. , Asare, P. A. , & Telleh, J. P. (2015). Molecular categorization of some water yam (Dioscorea alata L.) germplasm in Ghana using microsatellites (SSR) markers. Journal of Agricultural Science 7(10), 226–238. [Google Scholar]
- R Core Team (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; Retrieved from https://www.R-project.org/ [Google Scholar]
- Risterucci, A.‐M. , Hippolyte, I. , Perrier, X. , Xia, L. , Caig, V. , Evers, M. , … Glaszmann, J.‐C. (2009). Development and assessment of diversity arrays technology for highthroughput DNA analyses in Musa. Theoretical and Applied Genetics, 119, 1093–1103. 10.1007/s00122-009-1111-5 [DOI] [PubMed] [Google Scholar]
- Sartie, A. , Asiedu, R. , & Franco, J. (2012). Genetic and phenotypic diversity in a germplasm working collection of cultivated tropical yams (Dioscorea spp.). Genetic Resources and Crop Evolution, 59, 1753–1765. 10.1007/s10722-012-9797-7 [DOI] [Google Scholar]
- Saski, C. A. , Bhattacharjee, R. , Scheffler, B. E. , & Asiedu, R. (2015). Genomic resources for water yam (Dioscorea alata L.): Analyses of EST‐sequences, de novo sequencing and GBS libraries. PLoS One, 10(7), e0134031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saxena, R. K. , von Wettberg, E. , Upadhyaya, H. D. , Sanchez, V. , Songok, S. , Saxena, K. , … Varshney, R. K. (2014). Genetic diversity and demographic history of Cajanus spp. illustrated from genome‐wide SNPs. PLoS One, 9, e88568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Semagn, K. , Babu, H. , Hearne, S. , & Olsen, M. (2014). Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 33, 1–14. 10.1007/s11032-013-9917-x [DOI] [Google Scholar]
- Semagn, K. , Beyene, Y. , Makumbi, D. , Mugo, S. , Prasanna, B. m. , Magorokosho, C. , & Atlin, G. (2012). Quality control genotyping for assessment of genetic identity and purity in diverse tropical maize inbred lines. Theoretical and Applied Genetics, 125, 1487–1501. 10.1007/s00122-012-1928-1 [DOI] [PubMed] [Google Scholar]
- Siqueira, M. V. , Marconi, T. G. , Bonatelli, M. L. , Zucchi, M. I. , & Veasey, E. A. (2011). New microsatellite loci for water yam (Dioscorea alata, Dioscoreaceae) and cross‐amplification for other Dioscorea species. American Journal of Botany, 98, 144–146. [DOI] [PubMed] [Google Scholar]
- Su, T. , Li, P. , Yang, J. , Sui, G. , Yu, Y. , Zhang, D. , … Zhang, F. (2018). Development of cost‐effective single nucleotide polymorphism marker assays for genetic diversity analysis in Brassica rapa . Molecular Breeding, 38, 42 10.1007/s11032-018-0795-0 [DOI] [Google Scholar]
- Suzuki, R. , & Shimodaira, H. (2006). Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics, 12, 1540–1542. 10.1093/bioinformatics/btl117 [DOI] [PubMed] [Google Scholar]
- Tamiru, M. , Natsume, S. , Takagi, H. , White, B. , Yaegashi, H. , Shimizu, M. , … Terauchi, R. (2017). Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC Biology, 15, 86 10.1186/s12915-017-0419-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vandenbroucke, H. , Mournet, P. , Vignes, H. , Chaïr, H. , Malapa, R. , Duval, M. F. , & Lebot, V. (2016). Somaclonal variants of taro (Colocasia esculenta Schott) and yam (Dioscorea alata L.) are incorporated into farmers’ varietal portfolios in Vanuatu. Genetic Resources and Crop Evolution, 63, 495–511. 10.1007/s10722-015-0267-x [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
Plant materials may be requested at the CRB‐PT of Guadeloupe http://intertrop.antilles.inra.fr/Portail/accessions/find/11. KASPar primers sequence is available in Appendix B.
