Skip to main content
The Journal of Neuroscience logoLink to The Journal of Neuroscience
. 1982 Sep 1;2(9):1177–1194. doi: 10.1523/JNEUROSCI.02-09-01177.1982

Auditory and visual maps of space in the optic tectum of the owl

EI Knudsen
PMCID: PMC6564311  PMID: 7119872

Abstract

The receptive field properties and functional organization of visual and auditory responses were studied in the optic tectum of the barn owl (Tyto alba). Most units throughout the depth of the tectum responded to both visual and auditory stimuli. The entire visual field of each eye was represented topographically in the contralateral tectum. In the portion of the tectal map representing the zone of binocular vision, 50% of the superficial layer units and 100% of the deep; layer units were driven binocularly. The representation of the frontal binocular region of space was greatly expanded in the map; the average magnification factor was 3 times greater for the frontal binocular zone than for the monocular zone. The responses of the superficial and deep tectal units to auditory stimuli were space specific; they responded only when a sound source was located in a particular region of space, or receptive field, regardless of the intensity or type of sound used. Most auditory receptive fields contained a distinct “best area” where a sound source was most effective in driving the unit. Auditory space, as defined by receptive fields and best areas, was represented topographically in the tectum. The auditory and visual maps of space had the same orientations, positions, magnification factors, and termination coordinates at the anterior and dorsal edges of the tectum. Yet the maps lost their registry near the posterior and ventral margins where the most peripheral regions of space were represented. These characteristics suggest that the spatiotopic organization in the tectum is a compromise between a tendency for the space representations of different modalities to align and for the representation of each modality to fill the entire tectum.


Articles from The Journal of Neuroscience are provided here courtesy of Society for Neuroscience

RESOURCES